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Abstract
This paper investigates the channel prediction algorithm of the time-varying channels in underwater acoustic (UWA) communication systems 
using the long short-term memory (LSTM) model with the attention mechanism. AttLstmPreNet is a deep learning model that combines an 
attention mechanism with LSTM-type models to capture temporal information with different scales from historical UWA channels. The 
attention mechanism is used to capture sparsity in the time-delay scales and coherence in the gep-time scale under the LSTM framework. The 
soft attention mechanism is introduced before the LSTM to support the model to focus on the features of input sequences and help improve the 
learning capacity of the proposed model. The performance of the proposed model is validated using different simulation time-varying UWA 
channels. Compared with the adaptive channel predictors and the plain LSTM model, the proposed model is better in terms of channel 
prediction accuracy.
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1  Introduction

The underwater acoustic (UWA) channel is recognized 
as one of the most challenging communication channels 
due to its adverse time-frequency selectivity, limited band‐
width, and random noise (Jiang et al., 2022; Jiang and Dia‐
mant, 2023; Zhu et al., 2023; Zhu et al., 2021; Song et al., 

2019). The time variation of the UWA channel is generally 
coupled with the complicated marine environment at differ‐
ent time scales (Oliveira et al., 2021; Zhou  et al., 2015; Yang 
 et al., 2017). For example, the scattering of surface waves 
may lead to small-scale phenomena. Meanwhile, the sound 
speed profile, surface height, and the motion of the transmit‐
ter/receiver will cause large-scale phenomena (Qarabaqi and 
Stojanovic, 2013). Substantial research has conducted in the 
past years, overcoming the impact of the underwater environ‐
ment and improving the UWA communication quality. A con‐
sensus indicates that the throughput and robustness of the 
UWA communication link will be improved futher if the 
UWA channel properties are maximized and an adaptive 
UWA communication method is tuilized.

The quality of channel information, which is feedback 
from the receiver, determines the performance of the adap‐
tive UWA communication systems. Supported by a proper 
channel, the adaptive UWA communication system can 
determine the physical layer parameters and the selected 
environment match modulation schemes, such as using a 
low-modulation scheme and spread spectrum technology 
under the multipath channel. The channel received by the 
transmitter is frequently outdated due to the slow acoustic 
propagation and the fast time-varying UWA channel. 
Therefore, a channel prediction model that does not rely 
on extra training sequences in the receiver is required.

In terrestrial wireless communication, channel predic‐
tion has been widely used in beam-forming, physical secu‐
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rity, and fifth-generation usage scenarios. However, in the 
UWA communication society, the UWA channel prediction 
has only seen application in recent years. The channel pre‐
diction approach can be mainly divided into two catego‐
ries: model-dependent and model-independent (Liu et al., 
2021; Zhang et al., 2020a). The former approach assumes 
that the previous knowledge of the UWA channel is 
known, and the prediction performance can thatn be im‐
proved when the correctly defined model matches the real‐
istic channel model. The UWA channel evolution in Fux‐
jaeger and Iltis (1994) was modeled as an autoregressive 
process, and the channel parameters were predicted by ex‐
tended Kalman filter because of the assumption of the un‐
correlation channel tap and independent transitions. Nada‐
kuditi and Preisig (2004) assumed that the multipath is ad‐
opted to optimize the postfiler coefficients for tracking the 
channel. Thus, the model-dependent approach could attain 
no more than the comprehensive of the researchers. That is, 
if the natural UWA channel does not match the assumed 
model, then the prediction performance based on the model-
dependent approaches cannot be effectively presented.

In constrast to the model-dependent approach, the model-
independent method disregrads previous knowledge of the 
channel, such as the adaptive and deep learning channel pre‐
dictions. This type of approach can track the channel per tap 
based on the history of channels. The adaptive algorithms, 
namely the least means square (LMS) and RLS, are widely 
used to update the channel. Similar to many adaptive pro‐
cessing applications, the RLS has superior accuracy with 
high computational complexity compared with LMS. A 
channel prediction network that comprises a one-dimension‐
al convolutional neural network and a long short-term mem‐
ory (LSTM) model is designed in Liu et al. (2021). Howev‐
er, the existing UWA channel predictor occasionlly consid‐
ers the inherent physical sparsity and the evolutionary corre‐
lation of the UWA channel. A channel prediction model 
based on LSTM integrated with the attention mechanism is 
proposed in this paper, and the performance is analyzed un‐
der different UWA channels to exploit their characteristics.

The key idea of the attention mechanism comes from the 
human visual attention mechanism. When peopeo perceive 
things, they often provide increased attention to specific parts 
based on their needs. Motivated by this natural phenomenon 
of humans, the attention mechanism is widely applied in sev‐
eral fields with remarkable results. A recurrent neural net‐
work (RNN) using an attention mechanism was proposed by 
Mnih et al. (2014) in computer vision for image classifica‐
tion. In Bahdanau et al. (2016), an attention machanism 
with RNN was first used in machine translation work. The 
attention mechanism can generally be regarded as a resource 
allocation scheme, which is the primary means to solve the 
problem of information overload (Niu et al., 2021).

The significant contributions of this paper are presented 
as follows. A learning model named AttLstmPreNet is de‐
signed for UWA channel prediction, which is integrated 

with an attention mechanism using an LSTM network. 
The proposed AttLstmPreNet can exploit the sparsity and 
time evolution of the UWA channel to conduct the channel 
prediction effectively. The prediction performance was 
evaluated using a set of simulation channels. Notably, the 
proposed AttLstmPreNet is a hybrid channel prediction ap‐
proach between model-dependent and mode-independent 
because this approach is driven by the history of channel 
data and the previous knowledge of channel data.

2  UWA channel characteristics

Owing to the physiucal characteristics of the underwater 
environment, namely the dynamic of the sea environment, the 
UWA signal will be reflected and scattered, resulting in the re‐
ceipt of signal along with multiple propagation paths, and this 
phenomenon is known as the multipath effect. Theoretically, 
the number of propagation paths was infinite. However, most 
paths can be ignored with the transmission loss, and a few 
dominant paths with high energy should be considered; thus, 
the UWA channel will almost emerge in a sparse structure.

UWA channels can be regraded as a function of time 
and depth. A coherent function was proposed to describe 
the temporal coherence of UWA channels (Yang, 2012), 
which can be expressed as follow:

Γ ( τ ) ≡ [ h* ( t )h ( t + τ ) ]

[ h* ( t )h ( t ) ] [ h* ( t + τ )h ( t + τ ) ]
(1)

where the h ( t ) is the reference estimated channel at geotime 
t, and h ( t + τ ) is the channel arriving with a latency τ, [ pq ] 
denotes the maximum valued of the correlation between the 
p and q signal. (⋅)* is the conjugation operation, and the < ⋅ > 
is the ensemble average function over geotime t (Huang 
et al., 2013). The temporal coherence of the UWA channel 
was computed in different time scales (i.e., interpacket, intra‐
packet) under different sea states using Equation (1). The re‐
sults show that the channel coherence is high during the intra‐
packet and the interpacket in the calm sea. The correlation of 
channels is poor under the rough sea. Figure 1 shows the in‐
trapacket temporal coherence under different sea conditions.

The following observations can be drawn from the dis‐
cussion above,

• Most UWA channels have a sparse multipath arrival 
structure, which is caused by the propagation environment.

• Under different environmental conditions, the evolution 
of the UWA channel has varying temporal coherence. In 
particular, the UWA channel exhibits remarkable temporal 
coherence in stationary environments (such as in a calm sea 
or protected ocean). By constrast, the temporal correlation of 
the channel is poor in nonstationary environments (such as in 
a rough sea or open ocean).
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The paper aims to provide an LSTM-based channel pre‐
diction model with an attention mechanism to improve 
adaptive UWA communication by exploiting the channel 
properties (sparsity and temporal coherence).

3  UWA channle prediction model based on 
LSTM with attention mechanism

3.1  UWA single-carrier communication system

Consider a single-input-single-output single-carrier acous‐
tic communication system in a dynamic ocean environ‐
ment. The binary information bit is divided into P groups, 
in which P denotes the number of bits per symbol, and 
each group is mapped to one of the 2P-ary symbols of the 
map alphabet A = { αp }P

p = 1, where αp can be a complex or 
real value. The transmitted symbol vector is constructed 
by concatenating a training symbol sequence of length Nt 
with the information symbol sequence. That is, the trans‐
mitted symbol vector can be represented as x = { xn }Ns

n = 1, 
where the Ns denotes the length of the transmitted symbols.

The transmitted symbols are filtered via a raised-cosine 
pulse-shaping filter with an impulse response g ( t ) to form 
the baseband signal u ( t ), which can be written as follows:

s ( t ) = ∑
n = 1

Ns

xn g ( t − nTs ) (2)

where g ( t ) is a raised-cosine pulse-shaping filter with a 
roll-off factor γ, and Ts is the symbol interval. The pass‐
band transmitted signal u ( t ) is produced by the s ( t ) mod‐
ulated with a carrier frequency fc, namely:

u ( t ) = s ( t )e j ⋅ 2πfc ⋅ t (3)

Assume that the channel delay length is L. The received 
baseband singal is distorted by multipath spread and noise 
can then be expressed as shown below:

y ( t ) = ∑
l = 0

L − 1

hl ( t ) s ( t − τl ( t ) ) + noise ( t ) (4)

where the hl ( t ), τl is the time-varying fading factor and de‐
lay time corresponding to the lth propagation path, and 
noise ( t ) is the equivalent baseband noise at the receiver, 
which is independetn of the s ( t ).

The baseband channel information can be estimated by 
using the knowledge of the transmitted and the received 
baseband signals, that is, s ( t ) and y ( t ). Many scholars 
have developed UWA channel estimation algorithm in the 
past years, such as maximum likilihood, least squares, and 
compressed sensing. Herein, the estimated channel in base‐
band can be expressed as shown below:

h ( τ, t ) = ∑
l = 0

L − 1

hi ( t )δ ( τ − τl ( t ) ) (5)

where hl ( t ) and τl ( t ) denote the fading amplitude and the 
time delay of the discrete channel path, respectively.

3.2  Brief review of the UWA channel prediction 
method

The traditional model-independent channel predictor, 
such as the LMS and RLS, are highly suited for channle 
prediction in real-world communicaiton systems (Lin et 
al., 2015; Ma et al., 2019; Radosevic et al., 2011). The gen‐
eral channel prediction structure can be modeled as fol‐
lows:

h͂ [ m + 1, l ] = wT [ m, l ] ĥ [ m, l ] (6)

where l denotes the channel tap index corresponding to the 
time delay, m denotes the channel geotime, w [ m, l ] =
[ w0 [ m, l ] ,w1 [ m, l ] , ⋯, wn − 1 [ m, l ] ]T represents the pre‐

diction coefficients, ĥ[m, l] = [h[m, l], h[m − 1, l ] , h [ m −
2, l ] , ⋯, h [ m − n + 1, l ] ]T represents the estimated val‐
ue at lth channel tap in the historical moment, and n is the 
order of the predictor.

Figure 1　Temporal coherence of different UWA channels
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From the above description of Equation (6), the channel pre‐
diction approach works by the per channel tap, implying that the 
computational complexity rises with the channel length. The 
channel prediction algorithm can impose several significant 
channel taps to eliminate the noise perturbation and improve 
the channel prediction accuracy due to the sparsity of the 
UWA channel; however, determining the critical channel tap should 
be carefully studied (Lin et al., 2015; Radosevic et al., 2011).

The goal for adaptive predictor based on LMS or RLS is solv‐
ing the prediction coefficients w [ m, l ] of Equation (6). The 
two approaches are briefly described below. Assuming at the 
geotime (m − 1)th, the channel prediction error at geotime mth 
can be computed by the Equation (6) and be written as follows:

e [ m, l ] = ĥ [ m, l ] − h͂ [ m, l ]

= ĥ [ m, l ] − wT [ m − 1, l ] ĥ [ m − 1, l ]
(7)

In the core idea of LMS, the update of w [ m, l ] lies in the 
criterion of the least mean square error, namely the minimiza‐
tion of the cost function Jw = E { |e [ m, l ] |2 } ≈ |e [ m, l ] |2. 
Thusm the prediction coefficients can be updated below:

w [ m, l ] = w [ m − 1, l ] − μ∇Jw

= w [ m − 1, l ] − μ ∂|e [ m, l ] |2

∂w [ m − 1, l ]

= w [ m − 1, l ] + 2μe [ m, l ] ĥ [ m − 1, l ]

(8)

where μ is the step size and 0 < μ < 1, which controls the 
tracking performance of w. According to the Equation (8), 
the previous coefficients and the past channel information 
with step size are managed to form the new prediction coeffi‐
cients. The step size μ must compromise the perdiction per‐
formance and convergence speed of the LMS algorithm.

Unlike the LMS prediction algorithm, the goal of RLS is 
to minimize the sum of the error squares between the actual 
and predicted value. The cost function can be expressed as 

Jw = ∑
j = 1

n

λn − j|e [ m, l ] |2, where λ is the forget factor 0 < λ <

1, which is used to balanced the old and present data.
The selection of λ should match the emporal coherence 

of UWA channels. The prediction step of RLS is as follows:

w [ m, l ] = w [ m − 1, l ] + k [ m − 1, l ] e [ m, l ] (9)

where e [ m, l ] = ĥ [ m, l ] − wT [ m − 1, l ] ĥ [ m − 1, l ] is 
the prediction error, and k [ m − 1, l ] is the RLS gain vector:

k [ m − 1, l ]=
P [ m − 2, l ] ĥ [ m − 1, l ]

λ + ĥT [ m − 1, l ] P [ m − 2, l ] ĥ [ m − 1, l ]
(10)

where the matrix P can be computed by the recursion:

P [ m − 1, l ]=
1
λ

( I − k [ m − 1, l ] ĥT [ m − 1, l ]) P [ m − 2, l ]

(11)

where the P [ 0, l ] = δ− 1 I and δ is a tiny number.

3.3  Proposed UWA channel prediction model

3.3.1 Channel prediction based on LSTM
The LSTM is a variant of an RNN and can solve the 

problems of exploding and vanishing gradients, which is 
suitable for time series prediction (Zhu et al., 2021; Zhang, 
2020b; Zhang et al., 2019; Greff et al., 2017).

In the application of channel prediction, the channel da‐
ta (measured from the real world or generated from the 
UWA channel simulator (Qarabaqi and Stojanovic, 2013)) 
are applied to train the LSTM model. The update of the 
well-trained LSTM network for channel prediction can be 
expressed as follows:

ht = gLSTM ( H t, WLSTM ) (12)

where H t is the history channels, ht is the predicted output 
channel, and WLSTM is the parameters of LSTM that can be 
trained. Contatenting LSTM, a regression layer is used to 
make a regresion of the prediction channel as follows:

ĥt = Wreght (13)

where Wreg is the paramters of the regression layer that can 
be trained.

3.3.2 Attention mechanism
Under the same principle of the attention mechanism, many 

scholars have developed some modifications and improve‐
ments in the attention mechanism for adapting to a specific 
task. The variants of attention mechanism can be categorized 
into two types: soft attention, and hard attention, under the 
softness of attention criterion (Niu et al., 2021). Compared 
with soft attention, hard attention requires minimal computa‐
tion because computing all attention weights for all elements 
is unnecessary. The operation of hard attention can be regard‐
ed as making a hard decision for each input and is thus non-
differentiable and difficult to optimize (Xu et al., 2015).

On the contraty, soft attention aims to compute the prob‐
ability for each input sequence element when calculating 
the attention distribution. Comprehensively, he weights on 
each element are usually calculated by a SoftMax func‐
tion, and the output is an operation of weights with an in‐
put sequence. The entire computing process can be de‐
scribeed as a differentiable function (Xu et al., 2015). 
Thus, the attention mechanism can be trained jointly with 
the rest of the networking using backpropagation method.

Assuming the input sequences, X = [ x1, x2,⋯, xN ], xn =
[ xn,1, xn,2,⋯, xn,L ]T, and n ∈ [1, N ]. For each element of X, 
the attention mechanism generates a positive weight α i, j,
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i ∈ [1, N ], and j ∈ [1, L ]. The weight α i, j is computed by 
an attention model fatt (⋅) and can be expressed as follows:

[ e1, e2,⋯, eN ] = fatt ( X )

[ α1, α2,⋯, αN ] = Softmax [ e1, e2,⋯, eN ]
(14)

where α i,j is the element of α i. While the refined sequences 
by the attention mechanism can be written as:

Xatt = X ⊙ [ α1, α2,⋯, αN ] (15)

where ⊙ represents element-wise multiplication.
Soft attntion is adopted in this paper. A simple but effec‐

tive soft attention mechanism is parcticed in the designed 
mode via a dense connection layer with a Softmax function.

3.3.3 Designed attention LSTM for UWA channel prediction
Following the brief introduction of LSTM and the atten‐

tion mechanism, a learning model called Attention LSTM is 
developed for the UWA channel (AttLstmPreNet). Figure 2 
shows the full architecture of the proposed networ, which 
comprises an attention mechanism and LSTM model. The 
attention mechanism is adapted to focus on the characteris‐
tic of the history channels, which are constructed by a dense 
layer connected with the input of the network.

Consider a set of channels H ∈ RM × N, where M and N 
denote the geotime and channel tap (i. e., the time delay), 
respectively. After processing by the attention mechanism, 
the focused dataset H * can be computed as follows:

H * = H ⊙ [ α1, α2,⋯, αN ] (16)

where [ α1, α2,⋯, αN ] can be learned from the attention mech‐
anism following Equation (14). An LSTM model is then adopt‐
ed to predict channels under the learned long-term dependen‐
cies. The output channel of the LSTM model can be obtained 
on the basis of Equation (12) and (13). The attention mecha‐
nism can provide corresponding attention to the input channel 
set with the natural properties of UWA channels. Therefore, 
the proposed AttLstmPreNet incorporates the advantages of 
LSTM in the temporal information processing and the benefits 
of the attention mechanism in the feature selection.

The performance of the proposed AttLstmPreNet is eval‐
uated in Section 4. In paricular, the application of the atten‐

tion mechanism will be imposed on the following three as‐
pects: channel tap (AttLstmPreNet-Type1), prediction time 
step (AttLstmPreNet-Type2), and jointly with channel tap 
and prediction time step (AttLstmPreNet-Type3).

4 Numerical simulation

The performance of the aforementioned channel predic‐
tion models, namely, the type of AttLstmPreNet-based, the 
plain LSTM-based, the LMS-based, and the RLS-based, is 
compared using the simulation channel measurements. The 
simulation channel measurement data are generated from 
the time-varying UWA channel simulator (Qarabaqi and 
Stojanovic, 2013), which also considers physical aspects of 
acoustics propagation as the inevitable random channel vari‐
ations. Zhang et al. (2020a) used the simulator to approxi‐
mate the real-world channel measurements with different 
degrees of mobility, such as the Surface Processes and 
Acoustic Communications Experiment in 2009 
(SPACE’08) and the Mobile Acoustic Communications Ex‐
periment in 2010 (MACE’10). Two UWA channel measure‐
ments were simulated (Cases A and B) in the current study. 
The system parameters are provided in Table 1 as follows.

4.1 Simulaiton channel analysis

Following Table 1, Figure 3 shows the ensembles of 
simulated time-varying UWA channels over the measure‐
ment duration of 180 s. The vertical and horizontal axes 
denote the geotime and time delay, respectively. Figure 3 
shows that the channel is time-varying, especially in the 
channel amplitude and delay. Meanwhile, Figure 3 also in‐
dicates the sparse structure of the UWA channel. It should 
be noted that the horizontal axes in Figure 3 represent the 
time-delay axis with the unit ms, and the vertical axis rep‐
resents the geo-time axis and its unit is s. Following Equa‐
tion (1), the temporal coherence of the mentioned simula‐
tion UWA channels was computed, as shown in Figure 4. 
The temporal coherence in Case B is higher than that in 
Case A, which is consistent with the simulation settings. 
The similarity definition (Yang, 2012; Zhou et al., 2017; 

Table 1　Simulation parameters used in channel simulation (Qarabaqi 
and Stojanovic, 2013)

Simulation parameters

Carrier frequency (kHz)

Bandwidth (kHz)

Depth of water (m)

Transmitter height (m)

Receiver height (m)

Distance between Tx  and Rx (km)

Sound source angle (°)

Sound speed (m/s)

Case A

10

10

100

20

50

1

[−60, 60]

1 530.00

Case B

15.5

5

10

4

4

1

[−89, 89]

1 511.50

Figure 2　Structure of AttLstmPreNet
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Tu et al., 2021) revealed that the channel whose temporal 
coherence is larger than 0.85 is defined as a slowly vary‐
ing channel; otherwise, the channel is fast varying.

4.2  Prediction performance comparison

The aformentioned channel predictors are deployed for 
training and analysis. All channel predictors were trained 
on the simulation channel measurements of Cases A and 
B, comprising 361 samples (80% of the channel set were 
used for training, and the rest were used for testing). The 
AttLstmPreNet model comprises attention, LSTM, and 

dense models, while the plain LSTM is constructed by two 
LSTM layers and a dense layer. The loss function of the 
LSTM is the mean absolute error (MAE). All LSTM mod‐
els were implemented with Keras running on top of Ten‐
sorFlow, which is performed on a computer with 2.5 GHz 
Intel (R) Core (TM) i7-11700K CPU (64 G RAM) and Ge‐
Force GTX 1050 Ti GPU. The prediction order for LMS 
and RLS channel preditors is set 8. The step size μ of LMS 
is to set 0.7 and 0.3 for Cases A and B channel sets, respec‐
tively. The forget factor λ of RLS is set to 0.85 and 0.75 
for Cases A and B channel sets, respectively (the parame‐
ter set referenced from Liu et al. (2021). Notably, the pa‐
rameters of LMS and RLS are empirical values depending 
on the UWA channel properties. The training loss of the 
mentioned LSTM-based models in different channel sets is 
given in Figure 5. The loss value for each model decreased 
as the training epoch progressed. Figures 5(a) and (b) 
show that the AttLstmPreNet-Type2 achieves low loss val‐
ue curves with a faster rate than other LSTM-based mod‐
els in Cases A and B channel sets, respectively, thereby im‐
posing that the attention mechanism on the time step is 

beneficial to reducing the training loss. In particular, in the 
fast time-varying UWA channel set (i.e., Case A), AttLstm‐
PreNet-Type2 has a faster convergence speed compared 
with the plain LSTM.

Figure 5　 MAE loss curve of the mentioned prediction models 
during the training phase

Figure 3　Simulation time-varying channel impulse responses

Figure 4　Temporal coherence of Case A and Case B
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Figures 6 and 7 show the prediction channel by apply‐
ing the well-trained methods on Cases A and B, respec‐
tively, namely AttLstmPreNet-Type1, AttLstmPreNet-
Type2, AttLstmPreNet-Type3, plain LSTM, LMS, and 
RLS. Similar to the training phase, the MAE loss func‐
tion is used to measure the error of prediction results, as 
shown in Table 2. From the MAE loss, the mentioned 
predictors work well in the slow time-varying channels. 
The RLS predictor achieved lower MAE values among 
the fast and slow time-varying channels than the LMS 

predictor. Notably, the parameters of RLS should be fi‐
netuned compared with the LSTM-based predictor. For 
LSTM-based predictors, the AttLstmPreNet-Type2 and 
AttLstmPreNet-Type3 work slightly better than plain 
LSTM in different time-varying channels. Considering 
model simplification, the AttLstmPreNet-Type2 should 
be encouraged. In a large number of multipath condi‐
tions (i.e., Case A), the AttLstmPreNet-Type1 showed 
similar performance to plain LSTM, while the perfor‐
mance of AttLstmPreNet-Type1 is worse than the plain 

Figure 6　Prediction results for Case A using the mentioned predictors

Figure 7　Prediction results for Case B using the mentioned predictors
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LSTM in Case B. The result indicates that the AttLstm‐
PreNet-Type1 is suitable for a channel with more cluster 
multipath than plain LSTM with a simple structure.

5  Conclusions

A deep learning approach is applied in this paper to 
time-varying UWA channel prediction. A novel deep 
learning model named AttLstmPreNet is designed on the 
basis of LSTM with an attention mechanism. In the pro‐
posed model, AttLstmPreNet exploits the attention 
mechanism and LSTM network to capture temporal in‐
formation from the historical UWA channels. A soft at‐
tention mechanism is introduced before the LSTM to 
support the model to focus on the features of input se‐
quences and help improve the learning capacity of the pro‐
posed model. Experimental results on the simulated datas‐
et demonstrate the effectiveness of the proposed model. 
The results show that the proposed model is better thant the 
adaptive channel predictors (e.g. LMS or RLS predictor).

The authors believe that this paper is the first to desin an 
LSTM model with an attention mechanism for UWA 
channel prediction with a simulation channel dataset. 
Applying the attention mechanism to real-world UWA 
communication systems will be an essential issue. Thus, 
highly advanced attention mechanisms will be introduced 
in the future. Meanwhile, the parameter optimization of the 
adaptive channel predictors must be studied jointly with the 
UWA properties.
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