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Abstract
Fractional terminal and super-twisting as two types of fractional sliding mode controller are addressed in the present paper. The proposed 
methodologies are planned for both the nonlinear fractional-order chaotic systems and the nonlinear factional model of Hovercraft. The 
suggested procedure guarantees the asymptotic stability of fractional-order chaotic systems based on Lyapunov stability theorem, by presenting 
a set of fractional-order laws. Compared to the previous studies that concentrate on sliding mode controllers with unwanted chattering 
phenomena, the proposed methodologies deal with chattering reduction of terminal sliding mode controller/super twisting to converge to 
desired value in finite time, consequently. The main advantages of the offered controllers are 1) closed-loop system stability, 2) robustness 
against external disturbances and uncertainties, 3) finite time zero-convergence of the output tracking error, and 4) chattering phenomena 
reduction. Finally, the simulation results show the performance of the approaches both on the chaotic and Hovercraft models.

Keywords  Fractional-order system; Super-twisting algorithm; Terminal methodology; Sliding mode control; Stability; Nonlinear system; 
Hovercraft

1  Introduction

Fractional calculus background dates to the seventeenth 
century, and the Hopital letter goes back to Leibniz and 
asked his opinion about the derivative of the fractional-or‐
der 0.5. Subsequently, the researchers propose definitions 
for the fractional-order derivative and integral to apply on 
their applications. Nowadays, fractional calculus has sev‐
eral applications in various sciences (Podlubny, 1998). Ro‐
botic (Couceiro et al., 2010; Munoz et al., 2007), bioengi‐
neering (Magin, 2006), cancer disease (Rook and 
Ghasemi, 2018), signal processing (Aslam and Raja, 
2015), chaos phenomena (Rabah et al., 2017; Tavazoei et 

al., 2008), controllers design (Sira-Ramírez, 2002), and 
observers design (Sharafian and Ghasemi, 2019) are some 
of the application for the fractional calculus. The fractional 
models because of their accuracy than the integer-order 
ones are attract scientists and engineering to describe real 
objects (Petras, 2010).

Hovercraft, as an amphibious craft, are capable to 
travel over land, water, and other faces. British inventor 
Christopher Cockrell constructed the first real-world 
Hovercraft in the 1950s. Due to their exceptional fea‐
tures, they have unique capabilities in various areas. 
The crucial application of Hovercraft is the transporta‐
tion of tanks, soldiers, and large equipment in hostile en‐
vironments (Cabecinhas et al., 2017; Modiri and Mobay‐
en, 2020).

The chaos behavior is the characteristic structure of frac‐
tional dynamical models. In recent decades, chaos has 
been raised as one of the quarrelsome subjects in engineer‐
ing, physics, and mathematics and furthermore their re‐
searches have grown extremely. The chaos has a random 
appearance due to its name, which occurs in many of phe‐
nomena. The famous phenomenon is the specific feature 
of chaos as “butterfly effect”. In 1963, the Meteorologist 
“Edward Lorenz” acquired the first chaotic 3rd-order dy‐
namic (Lorenz, 1963). Because of the complex dynamics 
and inherent instability of the chaotic system, it was first 
thought that chaotic systems couldn’t be controlled. In 
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1990, it was shown that chaotic systems are controllable 
and various control objectives can be considered for them 
(Ott et al., 1990).

One of the famous techniques for designing a robust 
controller is chaotic systems sliding mode control (SMC). 
The overall structure of SMC is simple and fast respond‐
ing, without sensitivity respect to external disturbances 
and internal parameters (Utkin, 1992). Chattering phenom‐
enon is inherent in the traditional sliding mode controller 
due to its discontinuity nature. To reduce the chattering 
and to keep the advantages of traditional SMC, high order 
one is suggested in Levantovsky and Levant (1987). For 
high order sliding mode, a popular applicable approach is 
the super-twisting algorithm. In Sharafian and Ghasemi 
(2019), an observer of Neuro-terminal sliding mode has 
been designated for an affine nonlinear system. Fractional 
nonsingular terminal SMC is offered in Shahbazi et al. 
(2021) regarding a nonlinear fractional-order class of cha‐
otic systems. To control of Hovercraft, the following refer‐
ences can be mentioned. A reinforcement learning based 
tracking controller based on inputs/outputs of the USV in 
Wang et al. (2021). In Wang and Su (2019), a finite-time 
observer-based interactive trajectory tracking control 
scheme is created for an asymmetric under-actuated sur‐
face vehicle.

Hu et al. (2020) addresses terminal SMC regarding a 
nonlinear class of fractional second order system. Fraction‐
al variable structure fuzzy SMC for nonlinear systems is 
derived in Song et al. (2018) based on finite time stability 
in presence of uncertainties. Adaptive SMC is developed 
for fractional order TS observer in Li and Zhang (2022). 
Djeghali et al. (2021) depicts sliding mode disturbance ob‐
server for uncertain fractional nonlinear systems. Alipour 
et al. (2022) deals with fractional nonsingular terminal 
SMC to apply on spacecraft model.

L1 adaptive back stepping approach is developed in Xu 
et al. (2021) for path planning of nonlinear model of under 
actuated ship with guaranteed stability. Xu et al. (2020) 
deal with the sliding mode heading autopilot with guaran‐
teed exponentially stable approach. This procedure should 
be applied in unmanned vehicles such as aircraft, underwa‐
ter vehicles, drones and autonomous vehicles.

Our approach focuses on the super twisting/terminal 
sliding mode controller (STSMC and TSMC) design re‐
garding the special chaotic system class of nonlinear 
fractional-order (FO). Our methodology has some mer‐
its such as: 1) convergence of tracking error to zero, 2) 
the closed-loop system stability, and 3) reduction of the 
chattering phenomena. For proving the convergence of 
STSMC and TSMC algorithms, Lyapunov function is 
used.

The organization of the present paper is explained next. 
A basic definition of fractional calculus (covering the frac‐
tional integral and differential) is included in section 2, 

then models the Hovercraft, and describes the special frac‐
tional order system. As a nonlinear fractional system class, 
a super twisting sliding mode controller is introduced in 
section 3. Section 4 depicts fractional terminal sliding 
mode procedure design. Section 5 presents the simulation 
results of the proposed methods applied on the chaotic 
fractional system and Hovercraft. Finally, section 6 in‐
volves brief conclusions.

2  Preliminaries and system formulation

In this part, some basic definitions, preliminaries of frac‐
tional calculus, hovercraft model, and a special class of 
FO system are all given.

2.1  Fractional Mathematics

Three common definitions of fractional-order derivative 
and a fractional integral are designate in the following in 
Podlubny (1998).

Definition 1:The Grunwald-Letnikov (G) derivative def‐
inition of order q of function f (t) is described as:

GL
a Dq

t f ( t ) = lim
N → ∞

 é
ë
êêêê t − a

N
ù
û
úúúú

− q∑j = 0

N − 1(− 1) j(q
j ) f ( t − j é

ë
êêêê t − a

N
ù
û
úúúú )

Definition 2: Riemann-Liouville (RL) FO integral and 
derivative is one of the most popular definitions. The RL 
integral of order q is defined as,

a D− q
t f ( t ) =

1
Γ (q ) ∫

a

t

(t − τ ) q − 1
f (τ )dτ

and the RL derivative of order q is:

RL
a Dq

t f (t ) =
1

Γ ( )1 − q

d
dt ∫a

t

(t − τ )− q
f (τ )dτ (1)

where the Gamma function is depicted by Γ (·) and 0 <
q < 1.

Definition 3:The q-order derivative of Caputo (C) type 
is given by:

c
a Dq

t f (t ) =
1

Γ ( )1 − q ∫
a

t

(t − τ )− q
f ̇ (τ )dτ (2)

Some properties of fractional derivatives are as follows:
Fractional differentiation is linear operation (Petras, 

2010):

a Dq
t (α f (t ) + β g (t ) ) = α a Dq

t f (t ) + β a Dq
t g (t ) (3)

Take the derivable and continuous function of x(t) ∈R in‐
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to assumption. In every time instant t ≥ t0 and 0 < q < 1

1
2

C
t0

Dq
t x2(t ) ≤ x (t ) C

t0
Dq

t x (t ) (4)

The solution of c
0 Dq

t x (t ) = f (t, x), Mittag-Leffler stabil‐
ity (Li et al., 2009) was considered as Mittag-Leffler sta‐
ble in the case of

‖x ( t )‖ ≤{ m [ x ( t0 ) ]( t − t0 )− γ Eα, 1 − γ (− λ ( t − t0 )α ) }b  (5)

where m ( x ) (with Lipschitz constant m0) is Lipschitz lo‐
cally on x ∈ B ∈ Rn, m ( x ) ≥ 0, m (0 ) =  0, b >  0, λ ≥ 0, 
γ ∈  [0, 1 − α], α ∈  (0, 1), and the initial time is represented 
by t0.

Remark 1: Asymptotic stability is implied by Mittag-
Leffler stability (Li et al., 2009).

Theorem 1: As an equilibrium point in system 
c

0 Dq
t x (t ) = f (t, x) consider x = 0. Also, as a domain con‐

taining the origin take D ⊆ R into consideration. As a con‐
tinuous differentiable function presume V (t, x (t ) ):
 [0, ∞) × D →  R which is Lipschitz locally respecting x in 

a way that

α1  x
a ≤ V ( t, x (t ) ) ≤ α2 x

ab

c
0 Dβ

t V ( t, x ( t ) ) ≤− α3  x
ab

(6)

where t ≥ 0, x ∈ D, β ∈ (0, 1), α1, α2, α3, a and b represent 
positive constants of arbitrary type. Hence, the Mittag-Lef‐
fler stable equation of x =  0 is considerable. This equation 
would be globally Mittag-Leffler stable if hypotheses hold 
on Rn globally  (Li et al., 2009).

In this paper, we use Caputo fractional order operators 
as our main tool.

2.2  Hovercraft Modelling

The Hovercraft controller design is a so attractive sub‐
ject for researchers. These controller procedures are so 
complicated due to 1) high speed, 2) low friction, 3) non-
holonomic constraint of 2nd order on dynamics, 4) heading 
path force generation in actuators, 5) dynamical coupling 
among states. The symbols and their descriptions of Hov‐
ercraft dynamics are shown in Table 1 (Jeong and Chwa, 
2017).

Figure 1 depicts Hovercraft model in a two-dimensional 
space as a rigid body frame {B} and inertial frame {I}.

The kinematics and dynamics of the hovercraft are as 
follows:

ì
í
î

ïïDq x =  cos ( )θ  u −  sin ( )θ  v

Dq y = sin ( )θ  u +  cos ( )θ  v
(7)

ì

í

î

ï
ïï
ï

ï
ïï
ï

Dqu =− m− 1 du0
sign ( )u − m− 1 du u + m− 1 bT T cos ( )θ + vr

Dqv =− m− 1 dv0
sign ( )v − m− 1 dv v + m− 1 bT T sin ( )θ − ur

Dqr =− J − 1 dr0
sign ( )r − J − 1 dr r − J − 1 a bT T cos ( )θ         

(8)

where x, y, u , v, and r stand for positions, longitudinal, lat‐
eral, and angular velocity, respectively. M and T show the 
mass of Hovercraft and trust force.

2.3  Problem formulation

In this section, we introduce a wide class of nonlinear 
FO systems as:

ì

í

î

ï
ïï
ï

ï
ïï
ï

Dq x = F1( )x, y, z                             

Dq y = F2( )x, y, z + u ( )t + σ ( t )

Dq z = F3( )x, y, z                             

(9)

Table 1　The symbols of hovercraft dynamics

Symbol

a

v

r

θ

T

{ ud, vd, xd, yd }

{du0
, dv0

, dr0
, du, dv, dr }

m

J

u

é
ë
êêêê ù

û
úúúúcosθ sinθ

− sinθ cosθ

(ex, ey)

(eu, ev )

bT

Explanation

The arm length from mass center to the 
surface of rudder

Lateral velocity

Angular velocity

Rudder angle

Trust force

Desired parameters

Friction coefficients

Mass of hovercraft

Inertia moment

Longitudinal velocity

Rotational matrix

Position tracking errors

Velocity errors

Force scaling coefficient

Figure 1　Outline of hovercraft model
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where u is the control input, the state variable is represent‐
ed by x=[x, y, z]T, F1, F2, and F3 show nonlinear function, 
and σ ( t ) represents the uncertainties. Some systems such 
as Chen, Liu, Lu, and Lorenz chaotic model can be pre‐
sented in the form of the Equation (9).

If we consider F1( x, y, z ) = a ( y − x), F2( x, y, z ) = cx −
xz − y and F3( x, y, z ) = xy − bz, then the system (9) 
shows the Lorenz chaotic system.

To track the desired trajectory, custom SMC uses linear 
sliding-mode (LSM) surface. In LSM controller design, 
the main challenge is the selection of sliding surface ac‐
cording to the requirements of system performance.

3  Procedure design of fractional super-
twisting sliding mode

The first step in the sliding mode control procedure is 
designating a sliding surface.

s = x + λ1 y + λ2 z (10)

where λ1 and λ2 are positive constants. According to Equa‐
tion (5), by assuming the mentioned equation’s fractional 
q-order differential and using Equation (9), we have:

Dq s = Dq x + λ1 Dq y + λ2 Dq z
= F1( x, y, z ) + λ1 F2( x, y, z ) + λ2 F3( x, y, z ) (11)

The second step in the SMC procedure is the introduced 
control signal. The control objectives are both the stability 
of closed-loop system and the chattering-free zero-conver‐
gence of the sliding surface. To guarantee this goal, the su‐
per twisting SMC law is suggested as:

u ( t ) = ueq ( t ) + ur ( t ) (12)

where the ueq(t ) and  ur ( t ) reach controller parts equally 
based on the following definitions.

ueq(t ) =
1
λ1

[ − F1( x, y, z ) − λ1 F2( x, y, z ) −
λ2 F3( x, y, z ) − λ1 σ (t ) ]

(13)

and  ur ( t ) is as below

ur ( t ) =
1
λ1

[ − α | s |ρsgn (s) − β ∫ sgn ( )s dt ] (14)

Compensation of model uncertainties are performed by 
the 1st term. The other term is responsible for decreasing 
the phenomena of chattering where the α,  β,  ρ in Equation 
(14) satisfy 0 < ρ < 1 and α,  β > 0.

The below theorem is derived by the authors, to comfort 
the super twisting sliding mode controller design.

Theorem 2: Consider the nonlinear FO system men‐
tioned in Equation (9) and the sliding surface designated 
by Equation (10). The controller structure proposed in 
(12), (13), and (14) make the closed-loop system stable in 
the sense of the Lyapunov and bounded all signals in‐
volved in it.

Proof: To investigate the stability of a closed-loop sys‐
tem, the next Lyapunov function is considerable.

V =
1
2

s2 (15)

Using Equation (6), the derivative of order q in the for‐
mer equation is

DqV ≤ s·Dq s (16)

According to Equation (11), expression (16) can be writ‐
ten that

DqV ≤ s·Dq s = s[ Dq x + λ1 Dq y + λ2 Dq z ] =

s [ F1( x, y, z ) + λ1 F2( x, y, z ) +

λ1 σ (t ) + λ1u + λ2 F3( x, y, z ) ]

(17)

By Equations (12) through (14), the Equation (17) can 
be reconstructed as:

DqV ≤− α | s |ρ + 1 − β ∫ || s ≤ 0 (18)

Based on the theorem 1, it concludes the closed-loop 
stability; and accordingly, the sliding surface converges to 
zero. Furthermore, it is assured that signals in the closed-
loop system are bounded. Thus the proof is completed.

In the simulation results section, the application of 
the proposed method to the chaotic systems class is dem‐
onstrated to depict the capability of the mentioned con‐
troller.

4  Fractional terminal sliding mode procedure 
design

Consider the eu = u − ud and ev = v − vd as the velocity 
errors. Using ex =  x − xd and ey =  y − yd as the position 
error, the ud and vd as desired value of longitudinal, lateral 
can be derived below.

é
ë
êêêê ù

û
úúúúud

vd

=
é

ë
ê
êê
ê ù

û
ú
úú
úcosψ sinψ

− sinψ cosψ

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úDq xd + lx tanh ( )− kxex

Dq yd + ly tanh ( )− kyey

(19)

where kx, ky, lx, and ly are positive scalar.
Theorem 3: Convergence of the eu and ev as velocity er‐
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rors to zero makes the position errors (ex,  ey) converge to 
the origin asymptotically.

Proof: Equation (20) is gained using kinematics men‐
tioned in (8).

é
ë
êêêê ù

û
úúúúu

v
=

é

ë
ê
êê
ê ù

û
ú
úú
úcosψ sinψ

− sinψ cosψ
é
ë
êêêê

ù
û
úúúú

Dq x
Dq y

(20)

Substituting Equations (19) and (20) to the velocity er‐
rors, eu and ev can be reconstructed as:

 é
ë
êêêê ù

û
úúúúeu

ev

= é
ë
êêêê ù

û
úúúúu

v
− é

ë
êêêê ù

û
úúúúud

vd

=

               
é

ë
ê
êê
ê ù

û
ú
úú
úcosψ sinψ

− sinψ cosψ

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úDqex − lx tanh ( )− kxex

Dqey − ly tanh ( )− kyey

(21)

The Equation (22) is obtained when both eu and ev con‐
verge to zero.

ì
í
î

ïï

ïïïï

Dqey = ly tanh ( )− kyey

Dqex = lx tanh ( )− kxex

(22)

Candidate the following Lyapunov function to demon‐
strate the overall stability of the closed loop system.

Ve =
1
2

ex
2 +

1
2

ey
2 (23)

Taking q-order time derivative of Equation (23) leads to 
the Equation (24).

DqVe ≤ ex D
qex + ey D

qey (24)

Using Euation (22), we have

DqVe ≤− lxex tanh (kxex ) − lyey tanh (kyey ) (25)

Let lx, ly, kx, ky be positive constant parameters; then it is 
obvious DqVe ≤ 0 and position errors (ex,  ey) converge to 
zero neighborhood.

This completes the proof.
The first step in the terminal sliding mode control proce‐

dure is designating a sliding surface as:

s = eu + λ ev
α (26)

where λ > 0, α < 1.
Taking the q-order time derivative of Equation (26) and 

using Equations (5) and (8) leads to the following equation.

Dq s = Dqeu +
λ Γ (α + 1)

Γ (α − q + 1)
 ev

α − q Dqev = ( Dqu − Dqud ) +

λ Γ (α + 1)
Γ (α − q + 1)

 ev
α − q ( Dq − Dqvd )

Dq s=(−m−1 du0
sign (u)−m−1 duu+m−1 bTT cos (θ )+vr−Dqud )

+
λ Γ (α+1)
Γ (α−q+1)

 ev
α−q (−m− dv0

sign (v)−m−1 dv v+

m−1bT T sin (θ )−ur−Dqvd )

(27)

To guarantee both the finite time stability and the distur‐
bance rejection, the TSMC law is proposed as:

T = ( )m− 1 bT

− 1
 [ m− 1 du0

sign ( )u + m− 1 duu − vr + Dqud

− K1 sign ( s ) ]

θ = ( )λ Γ ( )α + 1 bT

m Γ ( )α − q + 1
 ev

α − q

− 1

 [ m− 1 dv0
sign ( )v

+m− 1 dvv + ur + Dqvd − K2 sign ( )s ]

(28)

Theorem 4: Consider Hovercraft dynamics mentioned 
in Equation (8). Then the sliding surface proposed in equa‐
tion (26) and control inputs discussed in Equation (28) 
cause the asymptotic stability of the closed loop system. 
Besides, the zero-convergence of sliding surface and track‐
ing errors is satisfied, and bounds for all system signals 
would be determinable.

Proof: Lyapunov function is candidate as

Vs =
1
2

s2 (29)

The q-order derivative of the Equation (29) is

DqVs ≤ s·Dq s (30)

Substituting Equation (27) in Equation (30), we have

DqVs ≤ s·[ ( − m− 1 du0
sign (u) − m− 1 du u +

m− 1 bT T cos (θ ) + vr − Dqud +

λ Γ ( )α + 1

Γ ( )α − q + 1
 ev

α − q − m− 1 dv0
sign (v) − m− 1 dv v +

m− 1 bTT sin (θ ) − ur − Dqvd ]) (31)

Using control inputs in (28), the Equation (31) can be re‐
written as

DqV ≤ s ( − K1 sign ( s ) − K2 sign (s) ) ≤ 0 (32)

This completes the proof.

5  Simulation results

To check the suggested control procedures efficiency and 
capability, this section deals with the application of the cases.
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Case 1: Chaotic System
Suppose the following nonlinear FO Lorenz system.

ì

í

î

ïïïï

ï
ïï
ï

Dq x = a ( )y − x                                  

Dq y = cx − xz − y + u ( )t + σ ( t )

Dq z = xy − bz                               

(33)

where (a, b, c) = (10, 
8
 3

, 28) and σ (t ) = sin (wt ) as an ex‐

ternal disturbance.
Next, Figure 2 is obtained for both [ x (0) , y (0) , z (0) ] =

[1,  5,  4 ] as initial conditi ons and [ x (0) ,  y (0) ,  z (0) ] =

[ − 9, − 1, 9 ] in order to depict the extreme chaotic perfor‐
mance of Equation (33).

Employing the suggested controller in Equation (12), 
Figure 3 shows the states of the system.

According to the results of the simulation, the comparison 
of Figures 1 and 2 depicts the zero-convergence of the states 
of the system asymptotically without chattering (Figure 3).

Figure 4 demonstrates the sliding surface’s smoothness 
tending to zero.

Figure 5 shows that the control signal without chatter‐
ing. The simulation outcomes illustrate promising perfor‐
mances in both tracking and stability approach. The pro‐
posed controller succeeds in chattering reduction.

The capability performance of the proposed model is 

observable in Figures 2‒6. According to the Compari‐
son of our technique with Aghababa (2013), based on 
Figures 3‒6, the planned approach guarantees 1 − the 
faster convergence to zero, 2− robustness against distur‐
bances.

Case 2: Hovercraft
As an illustration of the proposed procedure men‐

tioned in sections 3, 4, the Hovercraft is simulated with 
the aid of friction coefficients and parameters of Karami 
and Ghasemi (2020). The Hovercraft mass was 0.585 kg, 
a = 0.14  m, J = 0.01 kg·m2 and bT = 10.

The simulation outcomes are observable in Figures 7‒12.

Figure 4　The proposed sliding surface trajectory

Figure 2　Original system’s state variable

Figure 3　Proposed method’s state variable with [ x (0) , y (0) , z (0) ] =
[ 9, 1, 9 ]

Figure 5　Proposed control input
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Figure 7 displays both the state variables, their conver‐
gence to the desired value in a finite time. Time respons‐
es of the tracking errors are exhibited in Figure 8. These 
can be shown fast convergence of the tracking errors to 
zero.

Using the proposed controller, the velocity tracking er‐
rors are presented in Figure 9.

Figure 10 displays the control inputs trajectories. The 
boundedness of all signals involved in the overall system 
are obvious.

The sliding surface is illustrated in Figure 12. As it can be 
shown, sliding surface converges to zero in limited time.

Comparing the proposed exploration with that of (Sira-
Ramírez, 2002) and based on Figures 7‒13, the proposed 

technique 1− has the faster convergence to zero, 2− is ro‐
bust against external disturbance.

As shown in above figures, this technique guarantees 1) 

Figure 6　State variable (Aghababa, 2013)

Figure 7　Tracking of the state response

Figure 8　Tracking error

Figure 9　Tracking of the velocity variable
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the robustness against disturbances and uncertainties, 2) 

the tracking of desired trajectory, 3) the chattering phe‐

nomena reduction and 4) stability of closed loop system.

6  Conclusion

This article deals with a super-twisting sliding mode 
control design for a class of nonlinear FO chaotic systems 
and a terminal sliding mode control design for Hovercraft. 
To illustrate the closed-loop system's stability, theoretical 
analysis has been provided by candidate Lyapunov function. 
Robustness of the suggested controller in the presence of 
the external disturbances and the convergence of tracking 
error to origin are the chief advantages of the suggested 
controller design procedure. The promising functionality of 
the mentioned procedure is confirmed according to the simu‐
lation results. The systems represent excellent performance 
and fine effectiveness. Future studies can be done to control 
fractional-order uncertain chaotic systems using adaptive slid‐
ing mode, control laws and intelligent network.

Competing interest  The authors have no competing interests to de‐
clare that are relevant to the content of this article.
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