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Abstract
Stability is the key issue for kinetic-energy supercavitating projectiles. Our previous work established a six degrees of freedom (DOF) dynamic 
model for supercavitating projectiles. However, the projectile’s structure did not meet our current design specifications (its sailing distance 
could reach 100 m at an initial speed of 500 m/s). The emphasis of this study lies in optimizing the projectile’s configuration. Therefore, a 
program was developed to optimize the projectile’s structure to achieve an optimal design or the largest sailing distance. The program is a 
working optimal method based on the genetic algorithm (GA). Additionally, the convergence standard and population producing strategy were 
improved, which greatly elevated the calculation speed and precision. To meet design specifications, the improved GA was combined with the 
6DOF model, which establishes a dynamic optimization problem. The new projectile’s structure was obtained by solving this problem. Then, 
the new structures’ dynamic features were compared with the ideals proposed in this paper. The criterion of stability, which is called weakened 
self-stability, was redefined based on the results. The weakened self-stability is the optimal stability for an actual kinetic projectile motion, and 
it is instructive for the design of supercavitating projectiles in the future.
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1  Introduction

For a long time, many scholars and engineers have car‐
ried out extensive research on drag reduction and cavities. 
Underwater vehicles are developing in the direction of 
long sailing distances, high speed, and intelligence (Ash‐
ley, 2001; Savchenko, 2001). To consider a vehicle’s index 
of long sailing distance and high speed, researchers usually 
optimize the design to meet the requirements. The super‐
cavitating technology represents a successful result of 
such optimization. Supercavitating vehicles use a special 
hydrodynamic layout, which makes full use of supercavity 
features. The drag is greatly reduced as if flying in the air. 

The kinetic energy supercavitating projectile is efficient in 
drag reduce. It has a high or ultra-high speed and can 
achieve precise and fast damage for targets in water.

The former Soviet Union used cavitation to increase the 
torpedo velocity to nearly 100 m/s (Zhang et al., 2014). 
This supercavity drag reduction technology is a milestone 
for underwater vehicles. However, the single-phase flow 
becomes a multi-phase flow, which has many disturbance 
factors and is difficult to analyze and calculate in theory 
(Wei et al., 2013). When a vehicle moves with supercavity, 
most of the forces that act on it will disappear. The force 
of the vehicle becomes highly nonlinear, which often leads 
to deflection and loss of control. These difficulties are an 
unprecedented challenge for mathematical modeling and 
stability research of vehicles (Ruzzene and Soranna, 2004; 
Zhang et al., 2010; Wei et al., 2012; He et al., 2013; Mirza‐
ei et al., 2015).

The stability analysis method mainly uses mathematical 
modeling or experiments. The experiments of kinetic ener‐
gy supercavitating vehicles usually require substantial hu‐
man and financial resources, which is inconvenient.

Theoretical modeling is highly imperative to determine 
a vehicle’s motion features. The model can reveal the 
mechanism of a vehicle’s motion in theory. Rand et al. 
(1997) proposed the simplistic supercavitating vehicle 
model, which mainly focuses on the frequency of tail 
slaps. The body coordinate origin is located at the cavita‐
tor, and it supposes that the vehicle rotates around the cavi‐
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tator on the plane. The results indicate that the frequency 
of tail slaps will decrease as speed decreases. In addition, 
the frequency of tail slaps highly depends on the initial 
condition. Richard Rand’s model is great in simplification, 
and it is deemed instructive for the later supercavitating ve‐
hicle research. He et al. (2013) combined Richard Rand’s 
theory and finite element method (FEM) and established a 
procedure for supercavitating vehicles. The results re‐
vealed not only the dynamic features but also the loads of 
tail slaps. The findings also highly accorded with those of 
Richard Rand. Zhao et al. (2018, 2019) proposed the hy‐
pothesis of mirror tail slap, which is a tail slap model 
based on Richard Rand’s work. The tail slaps were simu‐
lated in the cavity cross section at the vehicle’s tail posi‐
tion. The results also showed the trajectory of this vehicle. 
This previous work is preliminary research for stability.

The above works were based on Richard Rand’s theory. 
However, Richard Rand’s model is based on the single de‐
gree of freedom (DOF) vibration theory. A limitation of 
this model is that it cannot reveal the mechanism of stability 
in depth.

Therefore, Kulkarni and Pratap (2000) proposed a 
3DOF model in the longitudinal plane as early as 2000. In 
this model, the motions of tail slaps and those in supercavity 
are considered separately. In addition, the model is highly 
nonlinear, which was verified by the computational fluid 
dynamics (CFD) method. Two kinds of vehicles are simu‐
lated by this model. The results indicated that although tail 
slapping occurred, the trajectory of the vehicle remained 
linear. This work also proposed an equation about the tail 
slap angular velocity. Their proposed model is the founda‐
tion of many works on stability. To gain a qualitative under‐
standing of stability, Savchenko (2001) proposed four crite‐
ria for judging the stability of supercavitating vehicles. 
These criteria covered the velocity from 50 to 1 000 m/s, 
which was based on numerous experimental results, and in‐
cluded double-cavity, sliding, tail slapping, and aerodynam‐
ic-hydrodynamic stabilities. Savchenko’s results were very 
institutive for future works. Sail S. Kulkarni and Savchenko 
provided pioneering works for the study of stability.

The 3DOF dynamic model of Sail S. Kulkarni is consid‐
erably better than Richard Rand’s work. However, this 
3DOF model excludes the influence of attack angle. Zhou 
et al. (2016) added the influence of attack angle and many 
uncertainty influences during motion. Moreover, the uncer‐
tainty of trajectory was analyzed based on these works. 
The results were verified by experiments in the literature. 
This previous work was considered instructive for engi‐
neering. Nguyen Thai et al. (2018) established an accurate 
3DOF model and evaluated it by experiment. This model 
is based on exterior ballistics, and it is more scientific com‐
pared with previously proposed models. The error was 
nearly 1.1%. Their work verified for the first time a mathe‐
matical model using experiments. Wang et al. (2020) pro‐

posed a 6DOF model for kinetic supercavitating vehicles. 
This model was verified by three kinds of vehicles. In ad‐
dition, the dynamic features were explored and showed a 
special dynamic behavior in space. Finally, a new stability 
evaluation method was proposed, and it was meaningful 
for theoretical supercavitating research.

Multiple analysis methods have been proposed for 
years. As a result, the 6DOF dynamics model is more use‐
ful than others in exploring the features of kinetics and dy‐
namics and can be used to analyze the mechanism of insta‐
bility in theory. For kinetic energy supercavitating vehi‐
cles, the stability is influenced by the vehicle structure, hy‐
drodynamic environment, and initial conditions. A fluctuat‐
ing initial condition in a small sailing distance has a mini‐
mal impact on stability unless other unpredictable distur‐
bances occur when the vehicle is launched. These factors 
directly determine whether the target can be destroyed. 
The vehicle’s structure is the most important factor affect‐
ing its performance. On the other hand, stability is a key 
index to measuring the hydrodynamic layout of supercavi‐
tating vehicles and is the basis of the following studies. 
However, quantitative analysis of vehicle stability in the 
past was difficult. The stability of supercavitating vehicles 
by experiments is very inconvenient and costs a huge 
amount of manpower, material, and financial resources.

Most scholars believe that large supercavitating vehicles 
(LSVs) and small supercavitating vehicles (SSVs or pro‐
jectiles) have the same dynamic model or behavior. How‐
ever, the dynamic behavior and model were dramatically 
different from recent experiments on water. These test data 
were from authors’ previous works and relative literature. 
From the tail slap angular velocity view, the angular veloc‐
ity of SSVs is ten times more than that of LSVs. The dif‐
ference was considered in depth. The established dynamic 
model also differed. For instance, the supercavity calcula‐
tion strategy must consider the physical dimension. The 
memory effect and cavity drift features are considered im‐
perative for LSVs but not for SSVs. These differences will 
make the dynamic models diverse, which leads to different 
optimization strategies. The early optimization problem 
mainly focuses on cavitators because they are important 
for supercavity configuration. Scholars have conducted 
many works on the cavitator area, and the research meth‐
ods used varied. Choi et al. (2005) used the potential theo‐
ry to optimize the cavitator to minimize the drag, and the 
cavity shape was calculated. The author’s work is based 
on a gradient optimization algorithm, which can simultane‐
ously optimize the cavitator and cavity. Jiang et al. (2009) 
converted the free-boundary value problem of supercavi‐
ties into an equivalent shape optimal problem. The objec‐
tion function was defined by the integral square error of 
pressure difference. Then, the optimization of the cavitator 
and cavity boundary calculation were merged into a multi-
objective optimization problem. However, the author de‐
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signed the cavitator without considering the vehicle’s 
structure layout. Ahn et al. (2010) optimized an LSV with 
a control system that included configuration, mass distribu‐
tion, and manipulator. A limitation of this work was the ve‐
hicle velocity (170–200 m/s). Shafaghat et al. (2011) de‐
fined a multi-objective optimization problem to optimize 
the cavitator shape. Based on the flow characteristic and 
cavitator model, the design parameters and constraint con‐
ditions were obtained. Then, Non-dominated Sorting Ge‐
netic Algorithms-Ⅱ was employed to optimize this issue. 
The results were compared with those of the classical opti‐
mal method, which showed that the cone-shaped cavitator 
was optimal in the current condition. Mirzaei and Taghvaei 
(2019) optimized the configuration of a ventilated supercav‐
itating vehicle. The layout was compared between a natu‐
ral supercavitating vehicle and its ventilated counterpart. 
The results showed that the ventilated case had a smaller 
cavity radius than the natural one. The supercavitating ve‐
hicle design is aimed at the cavitator structure. The meth‐
od is mainly based on potential theory and CFD. The dy‐
namic method is rarely used. In addition, some researchers 
combined the optimal algorithm with FEM, which in‐
volves complicated computations; thus, the method is incon‐
venient to use in engineering.

In our previous work (Wang et al., 2020), we put for‐
ward the quantitative criterion for the stability of super‐
cavitating projectiles, and it can be used to predict a pro‐
jectile’s motion by the numerical method. Thus, the hy‐
drodynamic layout of this projectile can be changed 
quickly, and the resources can be saved. In this work, we 
mainly focused on solving the optimization problem of 
high-speed projectiles. A complete program about the pro‐
jectile’s optimal condition, which is also based on genetic 
algorithm (GA), was explored. The program has a good 
generality and can meet the accuracy of engineering. An 
optimal hydrodynamic layout was obtained by the 6DOF 
model based on the improved GA. For guiding the engi‐
neering design, the dynamic features of this optimized 
projectile were analyzed by the 6DOF model. The results 
showed that this projectile has a self-stability tendency, 
which is a special motion. The self-stability tendency is 
closest to the ideal motion and the optimal design results. 
This structure is instructive for the design of kinetic energy 
supercavitating projectile.

2  Mathematical model of supercavitating 
projectiles

A complete mathematical model was proposed in Wang 
et al. (2020). Therefore, all the reference coordinate sys‐
tem definitions, coordinate transformation, parameters, 
and formulation derivation can be referred to in Wang et 
al. (2020). This work is a continuation of previous work. 

The supercavitating projectile’s research needs not only 
experiments but also a mathematical model. The quantita‐
tive description of the projectile’s velocity and attitude is 
important to study the various phenomena during motion, 
and the model can reveal the dynamic features in nature. 
In addition, a reasonable model is required for further re‐
search about the projectile’s motion. To simplify this model, 
we analyzed the body coordinate system (Ox1y1z1). The 
motion equations are listed as follows:

a. Dynamic equations:
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b. Kinetic equations:
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e. Hydrodynamics coefficient equations:

C0 = Cx0(1 + σ ) (16)

f. Angle equations:

cos δ = cos α cos β (17)

g. Motion converting equations:

hef = R + L sin χ − R (t ) (18)

Eqs. (1)–(18) show the scalar equations used to describe 
the motion of supercavitating projectiles. These equations 
are strongly nonlinear and ordinary differential equations. 
In the process of establishing the above equations, given 
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the limitations of the problems studied, the applicable 
range of velocity was between 100 and 900 m/s. More‐
over, considering the low gas density in the supercavity, 
the aerodynamic force of the projectile in the cavity was 
ignored. The motion equation was continued by a hyper‐
bolic function for the convenience of analysis.

Wang et al. (2020) validated the 6DOF model using 
four methods.

In the first verification case, we employed an experi‐
ment on kinetic energy supercavitating projectiles. The su‐
percavity model was validated by the test data. The maxi‐
mum test sailing distance served as a preliminary valida‐
tion for this model.

In the second verification case, we compared the model 
results with those of the classical model, which is a single 
DOF model. The 6DOF supercavitating model is a precise 
model that considers many factors. However, the classical 
model only considers the drag of the cavitator. The dis‐
placement of the 6DOF model is less than that of the clas‐
sical model’s counterpart in theory. The 6DOF model 
greatly rectifies the classical model. Their velocity curves 
have high similarity. Therefore, the 6DOF model correctly 
predicts the projectile’s motion underwater.

In the third and fourth verification cases, we used two 
groups test results and projectile data recorded in Zhao et 
al. (2014) and Nguyen Thai et al. (2018). The results of 
the test and numerical calculation were consistent, which 
proves the accuracy of the 6DOF model.

3  Stability of supercavitating projectile

3.1 Stability criterion

The stability of the kinetic energy supercavitating pro‐
jectile is a key factor in evaluating its ballistics capability. 
Quantitative research is a significant method for the stability 
of supercavitating projectiles. When hef is equal to 0, tail 
slapping occurs exactly. Therefore, the limitation angle of 
tail slaps χlim is defined as follows (Wang et al., 2020):

χ lim = arcsin
é
ë
êêêê

R ( )t − R
L

ù
û
úúúú (19)

The limitation angle of tail slaps χlim reflects the relative 
position of the projectile and the supercavity at the projec‐
tile’s tail location. When χ, which is the angle between the 
supercavitating body axis and the horizontal line that passes 
through the mass center, is greater than the χlim, tail slaps 
will occur, and vice versa. Therefore, depicting χ and χlim 
on the same figure is meaningful. The χ−χlim curve has the 
following features (Figure 1):

1) The χ−χlim curve can reflect the stability of the super‐
cavitating projectile. If the projectile has stability with tail 

slaps, then the χ curve will sustain oscillation and pass 
through the χlim curve.

2) The χlim was used for the boundary. The proportion of χ 
below or above the χlim reflects the degree of motion stability.

When the upper part of χ, which is above χlim, is greater 
than the counterpart below, serious tail slaps of the projec‐
tile occur. This finding indicates that the projectile’s body 
wetting would increase, and the drag is also increase. 
These factors will enhance the rate of attitude, reduce the 
displacement, and deflect the trajectory. In other words, 
the stability is relatively poor. However, when χ is totally 
above χlim, the supercavity cannot reduce the drag, and the 
projectile loses its stability. However, when the χ is under 
χlim completely, the projectile moves into the supercavity 
without making contact with it, which is an ideal state for su‐
percavitating projectile. Thus, the projectile can balance the 
force and moment simultaneously due to the attack angle 
change.

3.2 Ideal stability for supercavitating projectile

Savchenko (2001) believes that the motion of a super‐
cavitating projectile in the cavity varies with speed. Three 
cavitation schemes can be considered (v < 70 m/s): the sta‐
ble sliding along the inner surface of the cavity (v = 100–
200 m/s), mutual impact with the cavity wall (v < 900 m/s), 
and aerodynamic interaction with the cavitating steam 
splashing medium (v > 1 000 m/s). Four different stability 
mechanisms occur in turn. Theoretically, the ideal motion 
mode of a supercavitating projectile is the complete move‐
ment of the projectile into the cavity during motion. The 
definition of self-stability is introduced here as follows:

Self-stability: In the underwater motion of a supercavi‐
tating projectile, only the cavitator is in contact with water, 
and the rest is completely in the supercavity.

Section 3.1 presents a special motion mode of supercavi‐
tating projectile. In this case, the kinetic energy supercavi‐
tating projectile has self-stability. However, the ideal mo‐
tion is hard to achieve due to the unpredictable disturbance 
in water, which is mainly caused by turbulence flow and 
many uncertainty factors.

Figure 1　χ−χlim curve (Wang et al., 2020)
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According to the definition of self-stability, a mathe‐
matical model can be established for qualitative analysis. 
If the ideal self-stability exists, the relation is held as fol‐
lows:

χ < χ lim (20)

Substituting the definition of χ and χlim into Eq. (20), we 
have the following:

arccos (cosφcosψ ) < arcsin ( R ( )t − R
L ) (21)

Simplifying Eq. (21), we attain the following equation:
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attain the following:
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m ( dVy1

dt
+ ωy1Vz1 ) =

− 1
2

C0 Ac ρV
2 sin ( π

2
− δ) sin α cos β − mg cosψ (25)

m ( dVz1

dt
− ωy1Vx1 ) =  − 1

2
C0 Ac ρV

2 sin ( π
2

− δ) sin β (26)

Iy1

dωy1

dt
=

1
2

C0 Ac ρV
2 sin ( π

2
− δ) xcm sin β (27)

Iz1

dωz1

dt
=

1
2

C0 Ac ρV
2 sin ( π

2
− δ) xcm sin α cos β (28)

The angular velocity ωx1 = 0 rad/s and roll angle θ = 0 rad 
are used in Eqs. (24) – (28), which are constrained by the 
cavitation number σ(t), pitch angle ψ, and yaw angle φ. 
The relation between the parameters of Eq. (23) is ex‐
tremely complicated and strictly defined in mathematics. 
Meanwhile, the numerical results indicated that the solu‐
tion is always divergent under a small initial disturbance.

This conclusion was also obtained by the following opti‐
mization results. Therefore, designing a kinetic energy su‐
percavitating projectile to keep an ideal self-stability when 
the projectile moves in water is impossible (the velocity is 
between 300 and 900 m/s). If the projectile achieves self-
stability, then the control strategy must be employed in 
this projectile, which can cause hydrodynamic forces to 
constantly shift positions to balance the gravity and distur‐
bances of the projectile.

3.3 Optimizing the projectile’s structure

For the above features, the χ−χlim curve is a key basis for 
judging the stability of a supercavitating projectile. Figure 1 
shows the χ−χlim curve based on the conditions in Table 1. 
The curve indicates that this projectile can achieve stable mo‐
tion under this structure (Figure 2) and the initial conditions.

However, the proportion of the χ above χlim gradually in‐

Table 1　Simulation parameters of supercavitating projectile (Wang 
et al., 2020)

Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Physical quantity

Moment of inertia Ix1 (kg·m2)

Moment of inertia Iy1 and Iz1 (kg·m2)

Supercavitating projectile’s mass (kg)

Distance between the mass center and 
cavitator (m)

Projectile’s maximum diameter (m)

Projectile’s length (m)

Cavitator diameter (m)

Fluid density (kg/m3)

Fluid temperature (℃)

Saturated vapor pressure (Pa)

Fluid kinematic viscosity (m2/s)

The atmosphere pressure (Pa)

The initial depth of this projectile motion (m)

Acceleration of gravity (m/s2)

Vx1 (m/s)

Vy1, Vz1 (m/s)

ωx1 (rad/s)

ωy1 (rad/s)

ωz1 (rad/s)

θ, φ, ψ (rad)

x, y, z (m)

Value

5.82×10-4

1.59×10-6

0.116

6.025×10-2

1.256×10-2

1.568 1×10-2

4.5×10-3

1 000

20

2 338.8

1.006×10-6

101 325

2

9.8

500

0

0

1

1

0

0
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creased with the projectile motion. This condition Eq. (20) 
suggests the increasingly serious strengthening of the tail 
slaps. Tail slapping is an important factor in velocity atten‐
uation. The calculation results showed that the displace‐
ment of this projectile was 25 m. Although this supercavi‐
tating projectile was stable, its sailing distance was short 
and could not meet the design requirements. Therefore, a 
reasonable structure design is imperative.

4  Optimization of the structure of 
supercavitating projectiles

The stability of supercavitating projectiles is affected by 
many factors, which include initial disturbances, motion 
disturbances, flow velocity, and fluid structure. The initial 
disturbances, motion disturbances, and flow velocity are 
external factors, and the fluid structure is an internal fac‐
tor. From mathematical point of view, the projectile’s con‐
figuration is the parameter of dynamic system, which de‐
termines the evolution direction of the nonlinear dynamic 
system. Therefore, the projectile’s structure is significant 
for stability. The design objective meets the design require‐
ments, which allows the projectile to achieve exceptional 
sailing distance and damage effect.

4.1 Simplification of the projectile structure and 
calculation

The supercavitating projectile’s shape is complicated. 
Mechanical parameters, such as the moment of inertia, 
mass, and volume, are usually obtained by the software 
SolidWorks. The complex structure parameters will in‐
crease the number of optimal objective functions. The 
number of objective functions will greatly increase the dif‐
ficulty of optimization and reduce the solving speed. 
Meanwhile, when the supercavity totally covers the projec‐
tile, the local structure, such as the fin, which is the transi‐
tion part between the fin and cylinder, has a minimal effect 
on the projectile’s motion. One of the most notable prob‐
lems is the fins. For kinetic supercavitating projectiles, the 
tail is not designed to generate aerodynamic force inside 
the cavity but to gain an amphibious property. The gas in‐
side the supercavity is thin, and the aerodynamic force will 
not affect the motion of the supercavitating projectile un‐
der a non-hypervelocity condition (V < 900 m/s).

Kinetic energy supercavitating projectiles feature small 
volume and light mass. The action mode of tail slaps is essen‐
tially different from that of large supercavitating projectiles.

The cavity diameter of the tail of the kinetic supercavi‐
tating projectile is relatively large and approximately 2–3 
times larger than the projectile’s tail diameter. In this pa‐
per, the cavity diameter was around 2.3 times larger and 
completely wrapped the projectile. When tail slaps occur, 
its tail is in unilateral wet. Given the high speed of kinetic 
energy supercavitating projectiles, secondary cavitation 
usually occurs at the fin. Secondary cavities on different 
fins affect each other and merge. Such an effect is equiva‐
lent to that of treating the tail as a cylinder. In addition, 
given the small size of the supercavitating projectile, the 
secondary cavitation effect of the fin has minimal influ‐
ence on the cavity during tail slaps. Figure 3 shows the test 
results of the fin (Wang et al., 2018b). The fin height H 
was 24 mm. Figure 3 also reveals the test results of the fin 
piercing cavities with diameters of 18, 12, and 6 mm. The 
influence of fin on the cavity is very significant in the cases 
of a and b but very weak in the case of c. In this work, the 
height of the fin H was 3.28 mm, and the influence on the 
cavity can be ignored. Therefore, the influence of the fin 
on the tail slap force was ignored.

Most of the designs of kinetic energy supercavitating pro‐
jectiles lack fins. Given that almost no aerodynamic stabili‐
ty mechanism is available for kinetic energy supercavitat‐
ing projectiles when the flight speed is less than 1 000 m/s, 
the tails are non-functional underwter. The details can be 
found in Zhang et al. (2014).

However, large supercavitating projectiles are different. 
Large supercavitating projectiles have lower speeds than 
kinetic supercavitating projectiles and control and propul‐
sion systems, and the cavity diameter of the projectile tail 
is usually 1.5–2 times that of the projectile tail. The deflec‐
tion angle is generated by the fin’s deflection, which can 
generate hydrodynamic force and control the attitude of 
the projectile. Therefore, the fins of supercavitating vehi‐
cles usually pierce the supercavity. Thus, the influence of 

Figure 2　Structure of supercavitating projectile (Wang et al., 2018a)

Figure 3　Experiment results (Wang, 2018b)
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the fins on supercavity cannot be ignored.
The large-scale and small supercavitating vehicles mainly 

involves the following three differences:
1) From the launch point of view, the launch of super‐

cavitating vehicles mainly depends on the launcher and 
launch system. Its diameter is close to that of a missile or 
torpedo. However, supercavitating projectiles rely on high-
density and high-speed small-caliber artillery and machine 
guns to launch.

2) From the perspective of motion mode, supercavitat‐
ing vehicles are usually equipped with a control system 
with a navigation speed of 50–200 m/s, a large sailing dis‐
tance, and a long navigation time. However, the supercavi‐
tating projectile has a sailing speed between 200–1 500 m/s; 
its motion completely depends on its own kinetic energy, 
and its sailing distance and sailing time are small.

3) From the perspective of the generation mechanism of 
supercavity, the supercavity generation of supercavitating 
vehicles mainly occurs through ventilation. By changing 
the ventilation and thermodynamic state of the gas, the 
shape of the supercavity is controlled to change the naviga‐
tion state of the vehicle. However, supercavitating projec‐
tiles rely entirely on their cavitators to produce a supercav‐
ity. The change in their velocity will modify their super‐
cavity morphology and eventually cause their gradual evo‐
lution toward instability.

A simplified structure was used to derive the formulation 
of mass center, mass, and moment of inertia. The formula‐
tion’s result (Ix1=1.538×10−4 kg·m2, Iz1=Iy1=1.436×10−6 kg·m2, 
m=0.095 7 kg, xcm=5.99×10−2 m) is extremely close with that 
obtained by the software (Ix1=5.82×10−4 kg·m2, Iz1=Iy1=
1.59×10−6 kg·m2, m=0.116 kg, xcm=6.025×10−2 m). The 
mass center error was less than 1%. However, the resulting 
Ii1 (Iy1, Iz1) was relatively large. This outcome was caused 
by the simplification of calculations. The moment of iner‐
tia was mainly used to calculate attitude angles. However, 
the attitude angles change was small for the projectile 
with stable motion. Meanwhile, the order of magnitude of 
Ii1 (Iy1, Iz1) was consistent with those obtained with formu‐
lations and software. Thus, the moment of inertia could 
not make large errors. For Ix1, the fin stability method was 
employed in the amphibious supercavitating projectiles 
without a rotating stability. Therefore, Ix1 had a slight influ‐
ence on this structure optimization problem. In summary, 
we ignored the local structures to accelerate the calcula‐
tion and improve the efficiency of design. Figures 4 and 5 
show the original and simplified structures, respectively.

The simplified structure has four parameters: the length 
of cylinder part L1, diameter of cylinder part D, diameter 
of cavitator d, and length of frustum of cone L2.

For optimal calculation, the formula of the mass center 
and moment of inertia must be derived based on the sim‐
plified model. We set the coordinate origin at the cavitator 
center. Figure 6 shows the projectile’s axis, that is, the z 
axis. The material of frustum of cone L2 was tungsten al‐
loy (density: 18.75 g/cm3), and that of cylinder part L1 was 
aluminum (density: 2.7 g/cm3). According to the coordi‐
nate of the cavitator, the mass center position of x and y 
were 0 and 0, respectively. The value of z can be calculat‐
ed as follows:

z0 =
∭

v1 + v2

zρ ( )x, y, z dv

∭
v1 + v2

ρ ( )x, y, z dv
(29)

Eq. (29) can be calculated in two steps as follows:
Step 1: Numerator:

∭
v1 + v2

zρ ( x, y, z )dv

= ∭
v1

zρ ( x, y, z )dv + ρ2∭
v2

zρ ( x, y, z )dv

= ρ1∭
v1

zdv + ρ2∭
v2

zdv

= ρ1∫
L2

L1 + L2

zdz ∫
0

2π

dθ ∫
0

D
2

rdr +

    ρ2∫
0

L2

zdz ∫
0

2π

dθ ∫
0

z
2L2

[ ]D − d +
d
2
rdr

=
L1 D2πρ1

8 (L1 + 2L2 ) +
L2

2πρ2

48 (d 2 + 2dD + 3D2 ) (30)

Step 2: Denominator:

Figure 4　Original structure (Wang et al., 2019)

Figure 5　Simplified structure

Figure 6　Coordinate of cavitator
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∭
v1 + v2

ρ ( x, y, z )dv = ∭
v1

ρ ( x, y, z )dv + ∭
v2

ρ ( x, y, z )dv

= ρ1∭
v1

dv + ρ2∭
v2

dv

=
1
4
ρ1πD2 L1 +

1
12

ρ2πL2(D2 + d 2 + Dd ) (31)

The value of z0 is as follows:

z0 =

L1 D2πρ1

8 ( )L1 + 2L2 +
L2

2πρ2

48 ( )d 2 + 2dD + 3D2

1
4
ρ1πD2 L1 +

1
12

ρ2πL2( )D2 + d 2 + Dd

  (32)

When the mass center was obtained by the above meth‐
od, the coordinate origin moved to the mass center. The co‐
ordinate is called the principal axis system. The matrix of 
the moment of inertia degenerated to a diagonal matrix. 
According to the symmetry, the formulation Iy = Ix holds. 
The matrix of the moment of inertia was different due to 
the mass center position and needed to be divided into two 
cases for the analysis:

When z0 > L2 holds, the mass center is located on the 
cylinder part, and the moment of inertia Ix can be calculat‐
ed as follows (Figure 7):

Ix = ∭
v1 + v2

( y2 + z2 ) ρ ( x, y, z )dv = ∭
v1

( y2 + z2 ) ρ ( x, y, z )dv

+∭
v2

( y2 + z2 ) ρ ( x, y, z )dv

= ρ1∭
v1

( y2 + z2 )dv + ρ2∭
v2

( y2 + z2 )dv  = ρ1∭
v1

y2dv

+ρ1∭
v1

z2dv + ρ2∭
v2

y2dv + ρ2∭
v2

z2dv

= ρ1∫− ( )z0 − L2

L1 − ( )z0 − L2

dz ∫
0

D
2

r3dr ∫
0

2π

sin2θdθ

+ρ1∫− ( )z0 − L2

L1 − ( )z0 − L2

z2dz ∫
0

D
2

rdr ∫
0

2π

dθ

+  ρ2∫− z0

− ( )z0 − L2

dz ∫
0

1
L2

[ ]L2 − [ ]− z − ( )z0 − L2 ( )D
2

− d
2

+
d
2
r3dr ∫

0

2π

sin2θdθ

+ρ2∫− z0

− ( )z0 − L2

z2dz ∫
0

1
L2

[ ]L2 − [ ]− z − ( )z0 − L2 ( )D
2

− d
2

+
d
2
rdr ∫

0

2π

dθ

=
D4

64
L1πρ1 +

ρ1

12
D2 L1πé

ëL2
1 + 3L1(L2 − z0 ) + 3(L2 − z0 ) 2ù

û

+
πρ2

320
L2(d 4 + d 3 D + d 2 D2 + dD3 + D4 )

+
πρ2

120
L2[ L2

2(d 2 + 3dD + 6D2 )
− 5(d 2 + 2dD + 3D2 ) L2 z0 + 10z 2

0 (d 2 + dD + D2 ) ]
(33)

When z0<L2 holds, the mass center is located on the frus‐

tum of the cone part, and the moment of inertia Ix can be 

calculated as follows (Figure 8):

Ix = ∭
v1 + v2

( y2 + z2 ) ρ ( x, y, z )dv = ∭
v1

( y2 + z2 ) ρ ( x, y, z )dv

+∭
v2

( y2 + z2 ) ρ ( x, y, z )dv

= ρ1∭
v1

( y2 + z2 )dv + ρ2∭
v2

( y2 + z2 )dv   

= ρ1∭
v1

y2dv + ρ1∭
v1

z2dv + ρ2∭
v2

y2dv + ρ2∭
v2

z2dv

= ρ1∫
L2 − z0

L2 − z0 + L1

dz ∫
0

2π

sin2θdθ ∫
0

D
2

r3dr

+ρ1∫
L2 − z0

L2 − z0 + L1

z2dz ∫
0

2π

dθ ∫
0

D
2

rdr

+∫− z0

L2 − z0

z2dz ∫
0

2π

dθ ∫
0

d
2

+ ( )D − d
2L2 rdr

+∫− z0

L2 − z0

dz ∫
0

2π

sin2θdθ ∫
0

d
2

+ ( )D − d
2L2 r3dr =

D4 ρ1 L1π
64

+
D2 ρ1 L1π é

ë
ù
ûL2

1 + 3L1( )L2 − z0 + 3( )L2 − z0

2

12

+
π [ ]d ( )L2 − z0 + Dz0

2

[ ]L2
2 − 3L2 z0 + 3z 2

0

12L2

+
π [ ]d ( )L2 − z0 + Dz0

4

64L3
2

   

(34)

According to the parallel axis theorem, the coordi‐

nates of the mass center are the principal axes, and 

therefore, the moment of inertia Iz is constant. The for‐

mulation is as follows:

Figure 7　Coordinate of mass center on the cylinder part
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 Iz = ∭
v1 + v2

( x2 + y2 ) ρ ( )x, y, z dv = ∭
v1

( x2 + y2 ) ρ ( )x, y, z dv

+∭
v2

( x2 + y2 ) ρ ( )x, y, z dv

= ρ1∭
v1

( )x2 + y2 dv + ρ2∭
v2

( )x2 + y2 dv

= ρ1∫
L2

L1 + L2

dz∫
0

2π

dθ∫
0

D
2

r3dr + ρ2∫
0

L2

dz∫
0

2π

dθ∫
0

z
2L2

[ ]D − d +
d
2
r3dr

=
D4 L1πρ1

32
+
ρ2πL2( )d 4 + d 3 D + d 2 D2 + dD3 + D4

160

(35)

4.2 Optimization of algorithm design

Holland (1992) researched the GA theory and method. 
GA is a highly parallel, random, and self-adaptive algo‐
rithm developed from the mechanism of natural selection 
and evolution in biology. In short, it uses the population to 
search for optimal solutions, and the population represents 
a group of solutions. By applying a series of genetic opera‐
tions, such as selection, crossover, and mutation, to the 
current population, a new generation is generated, and the 
population gradually evolves to contain an approximate 
optimal solution. This optimal solution is not accurate in 
mathematics, but the approximate solution meets the basic 
design requirements (Vaissier et al., 2019; Chan et al., 
2020; Costa-Carrapiço et al., 2020; Ramos-Figueroa et al., 
2020; Wang and Sobey, 2020).

Therefore, in this section, the approximate optimal solu‐
tion was found based on the GA (Vaissier et al., 2019), and 
the algorithm was improved to optimize the offline projec‐
tile. The improved algorithm can be applied well to the op‐
timization of projectile parameters, and it can accelerate 
the calculation speed.

For the optimization of this design problem, an optimi‐
zation problem with a clear mathematical equation must 
be constructed first. Thus, the time series {tn}, which is the 
time corresponding to the intersection point between χ and 

χlim, was introduced. This time series is important for stabil‐
ity analysis. If the time series {tn} is long, the frequency of 
tail slap is high. A high tail slap frequency is disadvanta‐
geous to the projectile’s stability and can increase the drag 
of flight. During the design of a supercavitating projectile, 
the number of tail slaps should be minimized as much as 
possible. The maximum of the time series {tn} reflects the 
stable flight distance of the supercavitating projectile. When 
this projectile flight is 0.1 s, the maximum {tn} is close to 
0.1 s, which indicates that the projectile can fly stably for 
a long time. This condition can be written as follows:

  max { tn } ≥ kptp (36)

where kp is the scale factor between 0 and 1 and tp is the 
time of this projectile’s movement.

If the projectile has minimized tail slap number and 
long sailing distance, its structural design is optimized. 
Therefore, {tn} can be one of the constraint conditions, and 
the sailing distance can be the objective function of this 
optimization issue. The projectile’s sailing distance and 
the number of {tn} restrict each other. The most important 
concern in the design is the sailing distance. If the design 
sailing distance can be reached, then the number of {tn} is 
not important for engineering.

In summary, this optimization problem can be written as 
follows:

max        x
s.t.             max { tn } ≥ kptp

                      x ≥ 0

                       m ( dVx1

dt
+ ωy1Vz1 − ωz1Vy1 ) = Fx1

                      m ( dVy1

dt
+ ωz1Vx1 − ωx1Vz1 ) = Fy1

                      m ( dVz1

dt
+ ωx1Vy1 − ωy1Vx1 ) = Fz1

                      Ix1

dωx1

dt
+ ωy1ωz1( Iz1 − Iy1 ) = Mx1

                      Iy1

dωy1

dt
+ ωx1ωz1( Ix1 − Iz1 ) = My1

                      Iz1

dωz1

dt
+ ωx1ωy1( Iy1 − Ix1 ) = Mz1

                      ωx1 =
dθ
dt

+
dφ
dt

sinψ

                      ωy1 =
dφ
dt

cosψ cos θ +
dψ
dt

sin θ

                      ωz1 =
dψ
dt

cos θ − dφ
dt

cosψ sin θ

                      
dx
dt

= Vx

                      
dy
dt

= Vy

                      
dz
dt

= Vz

(37)

Figure 8　Coordinate of mass center on the frustum of the cone part
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4.2.1 Note for initialization of the population 
Traditionally, the initial individuals of the population, 

which are single variables, are generated randomly in a 
certain range. Four variables were considered parameters 
of the projectile structure in this work. These parameters 
feature synergies and control the motion of the projectile. 
The individuals of the population are the structural param‐
eters and have four genes (cylinder length L1, diameter of 
cylinder part D, diameter of cavitator d, and length of frus‐
tum of cone L2). To ensure that good genes can be inher‐
ited between individuals during genetic operation, we as‐
sessed the stability of all generated individuals. The stabil‐
ity criterion was based on the maximum value of {tn}. Sup‐
posing that the projectile’s moving time is tp, the maxi‐
mum of {tn} is {tn}max, and kp is a coefficient between 0 
and 1. If kptp < {tn}max holds, then the projectile’s motion is 
stable, and vice versa. When an individual is unstable, it 
needs to be regenerated and judged again until the initial 
population becomes stable and is outputted for use.

4.2.2 Note for fitness of the population 
A range is used for the fitness evaluation of the popula‐

tion, and the fitness of the initial population is stored. In 
the first iteration, fitness can be used directly to avoid re‐
peated calculations. For engineering, all individuals do not 
need to reach convergence completely; that is, the differ‐
ence between individuals is less than 1%. Such accuracy is 
not significant for practice. Thus, after its calculation, the 
fitness must be evaluated to determine whether it can meet 
the engineering requirements. The fitness was evaluated 
by its mean value, and the difference vector between fit‐
ness and its mean value was solved. If the difference is ac‐
ceptable, the final optimal results can be outputted.

4.2.3 Note for the initial condition of 6DOF dynamic equations 
The initial value is the key to trajectory evolution. There‐

fore, the influence of the initial value of the 6DOF dy‐
namic equations needs to be considered in the optimization 
problem to ensure that the optimized projectile can meet the 

requirements of trajectory dispersion, stability, and sailing 
distance under the small disturbance of the initial value. 
The projectile needs a certain generalization capability to‐
ward the initial value. Intermediate ballistics is a subject 
that studies the disturbance law of muzzle flow field to pro‐
jectiles and mainly focuses on the disturbance phenomenon 
in the air (Li et al., 2015). In addition, the bore damage of 
the barrel has an important impact on its exterior ballistics
(Shen et al., 2020a, 2020b). These two methods have be‐
come important in the study of the initial random distur‐
bance of modern exterior ballistics.

These methods are also based on emission dynamics 
and the CFD method, but their calculation is large and 
complex, which is not conducive to engineering applica‐
tions. Therefore, Monte Carlo simulation is still the main 
research method in modern external ballistics. In this 
work, ψ and φ were between −0.05 and 0.05 rad. The ωy 
and ωz were between −1 and 1 rad/s.

The projectile was launched by a smooth-bore gun. Thus, 
ωx = 0 rad/s and θ = 0 rad.

4.3 Basic flow of the algorithm

The traditional GA was improved to accelerate the cal‐
culation speed. Figure 9 shows the flow of this algorithm. 
The main structure of this algorithm is as follows:

5  Dynamic features of the optimized projectile

5.1 Optimized results

For the maximum use of the initial kinetic energy of the 
projectile, the maximum sailing distance and stability 
should be achieved under the initial velocity. The maxi‐
mum length of the projectile was not more than 200 mm, 
and the minimum length was not less than 100 mm. Given 
that the long rod projectile is beneficial for damaging the 

Figure 9　Flow of GA improvement
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target, the slenderness ratio of the long rod projectile is 
generally greater than 10. The projectile’s body consists of 
two materials: the frustum of the cone is tungsten alloy 
(density: 18.75 g/cm3), and the cylinder part is aluminum 
(density: 2.7 g/cm3). The lengths of the frustum of the cone 
and the cylinder were between 50 and 100 mm. A 30 mm-
caliber gun was used to launch the projectile. Considering 
the sabot design, the cylinder diameter cannot be adjusted 
in a large range. Therefore, the cylinder diameter was set 
in the range of [12.5, 12.56] mm, and that of the cavitator 
was [1, 12.5] mm. To ensure accuracy, we used a 22-bit bi‐
nary code for coding. The initial population was 200, and 
500 generations were set in the evolution. The cross proba‐

bility was 0.7, the selection probability was 0.5, and the 
mutation probability was 0.001 for a general GA.

Table 2 shows the optimized projectile parameters. It 
meets the convergence requirements when it evolves to the 
49th generation. The projectile can have a large displace‐
ment. For the original structure, when the projectile moved 
for 0.1 s, its velocity was attenuated to 200 m/s. It reached 
the termination of this code because the code set 0.1 s as 
the motion time. However, the improved structure was dif‐
ferent. When the projectile flight lasted for 0.1 s, the rest 
velocity was 437.84 m/s. The change in velocity was 
62.16 m/s after 0.1 s. Currently, the rest velocity is consid‐
erable, and it not only has a strong penetration capability 
but can also increase the sailing distance. Therefore, the 
optimized projectile has a better water ballistic perfor‐
mance. The water ballistic performance is mainly evalu‐
ated by displacement. For a certain projectile, if the veloc‐
ity decreases slowly, then the number of tail slaps is less‐
ened, and a good tendency of self-stability is observed. 
Thus, the projectile is well designed. This projectile struc‐
ture is instructive for the design of underwater projectiles 
with a large sailing distance. Therefore, the nature of sta‐
bility, which is meaningful for engineering design, must be 
researched in depth. Figure 10 shows the optimized super‐
cavitating projectile configuration and the conceptual de‐
sign of amphibious supercavitating projectile. This opti‐
mized projectile features a large cone part, which has been 
found in Yi et al. (2008a, 2008b, 2008c, 2009a, 2009b). 
Meanwhile, the accuracy of this optimization procedure 
has also been verified. We provided the supercavitating 
projectile with a tail to inspire more scholars to further 
carry out the overall design research of amphibious super‐
cavitating projectiles. The amphibious supercavitating pro‐
jectile will become an important development direction of 
underwater ammunition in the future.

5.2 Mechanism of stability

Table 3 lists the calculation parameters. However, the 
matrix of the moment of inertia, mass center position, 
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Algorithmfor optimized supercavitating projectiles

Step1: Start;

Step2: Calculation of the initial population.

Sub2Step1: In a certain range, a certain number of 
parameters are randomly generated, namely, cylinder length 
L1, diameter of cylinder part D, diameter of cavitator d, and 
length of frustum of cone L2, and they are assembled as 
different individuals.

Sub2Step2: The stability is calculated for all individuals. If 
the result is unstable, turn to Sub2Step3; otherwise, turn to 
Sub2Step4.

Sub2Step3: A new individual is regenerated, and the 
stability is also calculated; if it is unstable, turn to 
Sub2Step3; otherwise, turn to Sub2Step4.

Sub2Step4: Output the individuals and assemble them into a 
population.

Step3: Start the iteration.

Step4: Calculate the initial fitness of the population.

Sub4Step1: If it is the initial population, turn to Sub4Step2; 
otherwise, turn to Sub4Step3.

Sub4Step2: The range of the initial population is assigned to 
the fitness, and Sub4Step4 is applied.

Sub4Step3: The individual fitness is calculated, and 
Sub4Step4 is applied.

Sub4Step4: The fitness is outputted.

Step5: The mean value of fitness is calculated.

Step6: The difference between the fitness vector and its 
mean value is calculated.

Step7: If the difference meets the design, turn to Step8; 
otherwise, turn to Step10.

Step8: The maximum of this difference is solved.

Step9: The optimal results are outputted.

Step10: Selection.

Step11: Coding.

Step12: Crossover.

Step13: Mutating.

Step14: Decoding.

Step15: The population is reorganized, and Step3 is applied.

Table 2　Comparison results before and after optimization

Items

Origin

Optimized

L2 (mm)

52.92

97.91

L1 (mm)

103.89

96.62

d (mm)

4.50

1.00

D (mm)

12.56

12.50

Max sailing 
distance (m)

25.00

46.75

Figure 10　Optimized configuration
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mass, and projectile length can be obtained by calculating 
the structural parameters. Thus, this optimized projectile is 
different from the original structure.

By the initial conditions in Table 2, the trajectory and at‐
titude of the projectile can be calculated. First, for the ki‐
netic energy supercavitating projectile, the most important 
thing is its stability. The good performance of the super‐
cavitating projectile is based on a well-structured design. 
It is instructive for the projectile’s design in future works. 
Therefore, the first task is to deeply explore the stability 
mechanism of this projectile. In our previous work, we 
proposed the χ−χlim curve to judge the stability. Figure 11 
shows the χ−χlim curve of the optimized projectile. Accord‐
ing to the stability criterion, the number of tail slaps was 8, 
which is beneficial for the projectile’s stability. Thus, the 
projectile moved by 46.75 m. Meanwhile, when the χ−χlim 
curve was enlarged partly (Figure 12), the difference Δχ 
between χ and χlim curves was Δχ <<4×10−4 rad=0.017° . 
This result indicates that the supercavitating projectile be‐
longs has a body-fitted cavity, which is close to the effect 
of film drag reduction theoretically. The findings also 
showed that when the tail slaps were about to occur, given 
its good self-stability, the tail slap motion did not proceed 
completely. Only the tail of the projectile touched the cavity, 
and the projectile showed the dynamic behavior of reverse 
rotation immediately. The tail slap action was largely weak‐
ened, and thus, the drag of this projectile can be reduced 

greatly. The results also revealed that the mathematical so‐
lution may be inconsistent with the dynamic behavior. 
Therefore, the stability criterion, which was proposed in 
our previous work, needs to be weakened. This relation 
can be written as follows:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

|
|
||||dχ

dt
t = ti

= 0

|

|
|
||
|d2 χ

dt2
t = ti

< 0
⇒ χ ti

− χlimti
≤ ε = 0.017 45     rad (38)

where {ti} is maximum time array of χ, {χ ti
} and {χlimti

} are 

the function value of χ and χlim curves at {ti}, respectively. 
ε is the weakening quantity. When all values of the se‐
quence { χ ti

− χlimti
} are less than the ε, then the motion is 

weakened stability. The value of ε was set as 1° , that is, 
0.017 45 rad.

The discussion above showed that self-stability only ex‐
ists in theory. Notably, given the uncertainty of launch con‐
ditions and the environment, self-stability is difficult to 
maintain. The kinetic projectile approaches self-stability in 
a state of minimum energy consumption under current con‐
ditions, which is a universal law of nature, that is, the prin‐
ciple of minimum energy. For the actual needs, the weak‐
ened self-stability is defined as follows: the motion closest 
to self-stability.

In Section 3.2, we proposed the ideal motion equations 
of this projectile based on the stability criterion. Self-sta‐

Table 3　Simulation parameters of optimized projectile

Physical quantity

The density of the frustum of the cone (kg/m3)

The density of the cylinder part (kg/m3)

The length of frustum of cone (m)

The length of the cylinder part (m)

The projectile’s maximum diameter (m)

The cavitator diameter (m)

The fluid density (kg/m3)

The fluid temperature (℃)

The saturated vapor pressure (Pa)

The fluid kinematic viscosity (m2/s)

The atmosphere pressure (Pa)

The initial depth of this projectile motion (m)

Acceleration of gravity (m/s2)

Vx1 (m/s)

Vy1, Vz1 (m/s)

ωx1 (rad/s)

ωy1, ωz1 (rad/s)

θ, φ, ψ (rad)

x, y, z (m)

Value

18.75×103

2.7×103

9.79×10−2

9.66×10−2

1.25×10−2

1.0×10−3

1 000

20

2 338.8

1.006×10−6

101 325

2

9.8

500

0

0

1

0

0

Figure 11　χ−χlim curve

Figure 12　Partly enlarged χ−χlim curve
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bility is a special motion that results in the complete pro‐
jectile movement in the supercavity. In this condition, the 
best drag reduction effect can be achieved. This motion is 
impossible in theory because the gravity component in the 
vertical direction is hard to balance. Eqs. (24)– (28) repre‐
sent an ideal case. However, in case of any disturbances, 
this ideal motion will be lost and transferred to the tail slaps.

Figure 11 shows a motion with a good self-stability ten‐
dency. This motion is an optimal one under the design. 
The experimental results also indicated that when the pro‐
jectile’s velocity was more than 1 000 m/s, that is, hyper‐
velocity, the projectile approximately moved to the super‐
cavity. However, the self-stability tendency, whose velocity 
is between 300 – 900 m/s, is different from the motion of 
hypervelocity. For the hypervelocity motion, the projectile 
will interact with the steam medium produced by the cavi‐
tation. The self-stability tendency is a projectile’s inherent 
property. We have observed this phenomenon in experi‐
ments (Figure 13). The tail of the projectile first touched 
the smooth and stable supercavity, and then, the tail imme‐
diately left the wall and rotated in reverse. At this point, an 
instantaneous disturbance occurred on the supercavity, and 
a disturbance wave was generated on the supercavity and 
expanded continuously. The supercavitating projectile con‐
stantly moved in this mode within 0.1 s. Thus, the drag of 
the projectile was mainly the pressure difference drag, and 
the friction drag can be ignored during the tail slaps.

Figure 13 displays the velocity curve of the projectile. A 
comparison of the results with the structure discussed in 
previous work (Wang et al., 2020) revealed the following 
characteristics:

1) Similarities: The mean value of kinetic energy dissi‐
pation in Vy1 and Vz1 directions was zero.

2) Differences: The velocity amplitude of the optimized 
structure in the direction of Vy1 and Vz1 was far less than 
that before optimization. This result suggests that the self-
stability tendency of this projectile has less energy dissipa‐
tion in Vy1 and Vz1 directions. The projectile’s velocity at‐
tenuated slowly per second. Figure 14 also reveals the re‐
sultant velocity and velocity components Vx1 in x1. The two 
curves are very close, which indicates that the attenuation 
of the projectile in the axial was consistent with the resul‐
tant velocity. The dissipation of kinetic energy was mainly 
used to overcome the pressure difference drag movement 
and increase the sailing distance.

Figure 15 shows the angular velocity curve. Compared 
with previous work, the angular velocity curve changed 
dramatically because of the projectile’s good self-stability. 
When the projectile moved into the supercavity, the hydro‐
dynamics acting on the cavitator consistently produced a 
restoring moment. The moment caused the projectile to ro‐
tate inversely. For the maintenance of stability, the hydro‐
dynamics changed directions continually. This perfor‐
mance is related to the structural design. Moreover, al‐

though the angular velocity derivative was relatively large, 
the angular velocity was smaller than that of the projectile 
with poor stability. In addition, the angular velocity fluc‐

Figure 13　Self-stability tendency

Figure 14　Velocity curve

Figure 15　Angular velocity before and after optimization
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tuation range was between −2.5 and 2.5 rad/s and stable 
during movement, which is also an important reason for 
projectile stable motion. Affected by the angular velocity, 
the pitch angle ψ, yaw angle φ, attack angle α, and side‐
slip angle β showed changes in a small range. The curve 
of the pitch angle ψ and yaw angle φ indicated that the be‐
havior of this projectile was stable in water. The attack an‐
gle α, and sideslip angle β suggest that the body is less 
likely to overturn (Figures 16 and 17, respectively). 
These indicators all show the well-designed results of this 

projectile.
Figure 18 presents the displacement of the projectile. 

When the projectile moved by approximately 47 m in the x 
direction, the horizontal and vertical dispersions were 4.17 
and less than 1 cm, respectively. Therefore, the self-stabili‐
ty tendency of projectile ballistic dispersion was also 
small. This feature is beneficial for the kinetic energy su‐
percavitating projectile launched by a set number design. 
The projectile can impact the fixed target accurately in a 
short time for rapid damage in water.

To fully show the advantages of the optimized projec‐ tile, we further provided the simulation results of the opti‐

Figure 16　Attitude angle before and after optimization Figure 17　Attack angle before and after optimization

Figure 18　Displacement within 0.1 s
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mized projectile within 0.5 s here (Figure 19). Figure 19 
shows that the optimized projectile had a sailing distance 
of nearly 200 m in 0.5 s and a residual speed of 291.4 m/s. 
Therefore, the optimized kinetic supercavitating projectile 
showed good performance in terms of the exterior and ter‐
minal ballistics.

6  Conclusions

For kinetic energy supercavitating projectiles, stability 
and sailing distance are key factors in evaluating the pro‐
jectile performance. These indicators are highly depen‐
dent on the structure. Therefore, the structure must have a 
reasonable design. To improve the sailing distance and sta‐
bility of the supercavitating projectile, we optimized the 
projectile structure based on GA. The main conclusions 
are as follows:

1) Complete self-stability is difficult to achieve. Weak‐
ening self-stability is the closest motion state to self-stabil‐
ity in the actual process of supercavitating projectiles. Af‐
fected by the initial launch conditions, launching the pro‐
jectile without any disturbance is difficult. To enable the 
optimized projectile to reach a certain generalization capa‐
bility for the initial value, we considered the influence of 
the initial value by Monte Carlo simulation in the optimi‐
zation process. Therefore, the optimized projectile ap‐
proached self-stability by minimum energy dissipation, 
that is, weakened self-stability. The weakened self-stability 
is the reflection of self-stability in practice.

2) The kinetic supercavitating projectile has the tendency to 
destabilize. Whether optimized or unoptimized, the energy 
of the kinetic supercavitating projectile is always gradually 
consumed and reduced in underwater motion. The reduc‐
tion of kinetic energy weakens the stability of the projectile 

and eventually loses stability, which is the inevitable trend 
for kinetic projectile movement. However, the purpose of 
optimizing the projectile configuration is to delay the evo‐
lution time of the projectile to instability. The instability 
cannot be avoided unless the control method is employed.

The optimization method and parametric expression of 
the projectile used in this paper are universal for the kinetic 
energy supercavitating projectile, which is launched directly 
underwater. However, with the development of combat in‐
tegration, amphibious ammunition will become an impor‐
tant development trend in the future. The research of am‐
phibious ammunition needs to comprehensively consider 
air-exterior, cross-medium, and water ballistics. There‐
fore, the optimization strategy and method for amphibious 
ammunition have become an important direction of future 
research work.

Nomenclatures
m

Vx1

Vy1

Vz1

V

ωx1

ωy1

ωz1

t

C0

Ac

ρ

δ

Mass of supercavitating projectile (kg)

Velocity component on body coordinate system (Ox1) (m/s)

Velocity component on body coordinate system (Oy1) (m/s)

Velocity component on body coordinate system (Oz1) (m/s)

Resultant velocity of supercavitating projectile (m/s)

Angular velocity component on body coordinate system 
(Ox1) (rad/s)

Angular velocity component on body coordinate system 
(Oy1) (rad/s)

Angular velocity component on body coordinate system 
(Oz1) (rad/s)

Time (s)

Drag coefficient

Cavitator area (m2)

Water density (kg/m3)

Angle between the velocity vector and Ox1 (rad)

Figure 19　Displacement within 0.5 s
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α

β

Cxf

Sw

kn

hef

g

θ

φ

ψ

R(t)

R

η

χ

χlim

Rn

Cxfr

Ix1

Iy1

Iz1

xcm

σ(t)

Cx0

x1

ηc

L

L1

D

d

L2

z0

Ix, Iy, Iz

v1

v2

Pa

Pc

Rc(t)

Lc(t)

H

Attack angle (rad)

Sideslip angle (rad)

Coefficient of friction drag

Surface area of the projectile wetting-water (m2)

Smooth function coefficient

Critical parameter (m)

Acceleration of gravity (m/s2)

Roll angle (rad)

Yaw angle (rad)

Pitch angle (rad)

Supercavity function (m)

Radius of projectile (m)

Angle of the tail-slap force direction (rad)

Angle between the body and the line through the mass 
center (rad)

Angle between the supercavity and body (rad)

Cavitator radius (m)

Coefficient of rotation friction drag

Moment of inertia on Ox1 (kg·m2)

Moment of inertia on Oy1 (kg·m2)

Moment of inertia on Oz1 (kg·m2)

Length of mass center to the cavitator (m)

Cavitation number

Drag coefficient (0.82)

Projectile’s length projection on the horizon (Lp) (m)

Cavity coefficient (0.85)

Projectile length (m)

Length of the cylinder part (m)

Diameter of the cylinder part (m)

Cavitator diameter (m)

Length of frustum of cone (m)

Mass center in calculation coordinate (m)

Moment of inertia in calculation coordinate (kg·m2)

Volume of the cylinder part (m3)

Frustum of cone volume (m3)

Standard atmosphere pressure (Pa)

Supercavity pressure (Pa)

Maximum radius of supercavity (m)

Supercavity length (m)

The fin’s length (m)
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