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Abstract
The nonlinear dynamic behaviors of viscoelastic axially functionally graded material (AFG) pipes conveying pulsating 
internal flow are very complex. And the dynamic behavior will induce the failure of the pipes, and research of vibration and 
stability of pipes becomes a major concern. Considering that the elastic modulus, density, and coefficient of viscoelastic 
damping of the pipe material vary along the axial direction, the transverse vibration equation of the viscoelastic AFG pipe 
conveying pulsating fluid is established based on the Euler-Bernoulli beam theory. The generalized integral transform 
technique (GITT) is used to transform the governing fourth-order partial differential equation into a nonlinear system of 
fourth-order ordinary differential equations in time. The time domain diagram, phase portraits, Poincaré map and power 
spectra diagram at different dimensionless pulsation frequencies, are discussed in detail, showing the characteristics of 
chaotic, periodic, and quasi-periodic motion. The results show that the distributions of the elastic modulus, density, and 
coefficient of viscoelastic damping have significant effects on the nonlinear dynamic behavior of the viscoelastic AFG pipes. 
With the increase of the material property coefficient k, the transition between chaotic, periodic, and quasi-periodic motion 
occurs, especially in the high-frequency region of the flow pulsation.

Keywords  Axially functionally graded pipe; Pipe conveying pulsating flow; Integral transforms; Nonlinear dynamics; 
Chaotic motion; Quasi-periodic motion

1  Introduction

Pipe conveying fluid is an important structure in a num‐
ber of engineering fields, and is widely used in heat ex‐
changers, nuclear industry, petroleum transportation, avia‐
tion and other industries. Due to the excitation of the exter‐
nal and internal fluids, pipe structural properties, and other 
factors, pipes conveying fluid will have complex dynamic 
behaviors (Jin,1997; Jin and Song, 2005; Wang and Chen, 
2019). The vibration and stability of pipes becomes a ma‐
jor concern over the past decades. Paidoussis and collabo‐
rators (Paidoussis and Moon, 1988; Paidoussis et al., 1989; 
Paidoussis et al., 1992; Paidoussis and Semler, 1993) in‐
vestigated the nonlinear dynamic behavior of cantilever pipes 
through experiments and numerical simulations, the chaotic 
motion behavior through phase portraits, bifurcation dia‐
grams and Poincaré maps, and found that chaos occurred 
through period-doubling bifurcation. Tang and Dowell 
(1988) studied the chaotic phenomenon of cantilevered 
pipes using experimental method and numerical technique, 
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and the results showed that chaotic motion would occur 
when the flow rate exceeded a critical value. The nonlin‐
ear dynamic behavior of pipe conveying pulsating fluid 
with high average velocity and spring constraint were in‐
vestigated by Wang and his collaborators (Wang, 2009; 
Wang et al., 2017), and they found that the average velocity 
and spring constraints have significant effects on the non‐
linear dynamic response of the system. Ni et al. (2014) 
studied the nonlinear dynamic behavior of two coupled 
pipe system conveying pulsating fluids, and the results 
showed that the connection stiffness had a significant ef‐
fect on the dynamics of the coupled pipe system. For some 
parameters, the motion types of the two pipes may be out 
of synchronization. Oyelade and Oyediran (2020) studied 
the nonlinear dynamics of pipes under thermal loads, and 
effects of the initial curvature, temperature, axial force, 
pressure, longitudinal and transverse strain were took into 
account. The nonlinear analysis results showed that the 
amplitude of pipe motion was significantly increased due 
to the influence of thermal load.

Functional gradient materials (FGM) are new heteroge‐
neous composite materials made of two or more homoge‐
neous materials, and it has been widely used in various 
fields due to their excellent properties. By varying the vol‐
ume fraction of each homogeneous material, the properties 
of AFG pipes vary continuously along the pipe from one 
end to the other. Comparing with the traditional composite 
pipe (Nikbakht et al., 2019; Wang and Soares, 2021; Fu 
et al., 2022a; Fu et al., 2022b; Wang et al., 2022), the AFG 
pipe can eliminate the interface effects of traditional uni‐
form composites. For instance, the AFG pipe can be used 
in optimized design of control lines in subsea engineering 
and aerospace engineering by varying the properties along 
the axial direction (Gupta and Talha, 2015). The dynamic 
behaviour of functionally gradient pipes become a major 
concern over the past decade. However, most of the litera‐
ture mainly focuses on the linear dynamics behavior of the 
AFG pipes. An and Su (2017) studied the linear vibration 
characteristics of AFG pipes with simple support, and ana‐
lyzed the influence of the material elastic modulus, density 
distribution and flow rate on the free vibration characteris‐
tics of AFG pipes. Zhou et al. (2018) discussed the linear 
dynamics of cantilever AFG pipes, and analyzed the influ‐
ence of the elastic modulus and density distribution on the 
critical flow rate. Heshmati (2020) analyzed the influence 
of different eccentricity and power rate exponents on the 
critical flow rate of the radially functional gradient materi‐
al pipes with eccentric defects. Deng et al. (2017) studied 
the dynamic characteristics of multi-span viscoelastic FGM 
pipes by the dynamic stiffness method, and analyzed the 
influence of the volume fraction index, flow velocity, inter‐
nal pressure and damping on pipe stability and frequency 
effects. Recently, there are few studies discussing the non‐
linear dynamics of FGM pipes. Lu et al. ( 2020) studied the 

fatigue life of AFG pipes under the conditions of primary 
resonance and 1:3 internal resonance. Tang and Yang (2018) 
applied the homotopy analysis method to study the post-
buckling behavior and nonlinear vibration characteristics 
of radially functional gradient pipes with steady internal 
flow. The results showed that the statics and dynamics of 
pipe can be significantly changed by the material proper‐
ties. Khodabakhsh et al. (2020) used the Timoshenko 
beam model to study the post-buckling behavior and non‐
linear vibration characteristics of radially FGM pipes con‐
sidering shear deformation and moment of inertia, and dis‐
cussed the effects of moment of inertia and shear deforma‐
tion on buckling behavior, critical flow rate, nonlinear fre‐
quency and dimensionless amplitude. Shafiei and She (2018) 
predicted the vibration characteristics of a two-dimension‐
al FGM based on the higher-order theory. The generalized 
differential quadrature method (GDQM) was employed in 
his studies, and the influences of non-local parameters, strain 
gradient parameters, temperature and material variations 
on the vibration characteristics of FGM pipes under differ‐
ent boundary conditions are discussed. Ebrahimi-Mamaghani 
et al. (2020) investigated the thermo-mechanical vibration 
of AFG pipe conveying fluid. Using Rayleigh beam theory 
and considering the linear and nonlinear stress-tempera‐
ture relationship, the govern equation of the system was es‐
tabulished. The effects of the material gradient, power in‐
dex, boundary conditions, moment inertia factor, tempera‐
ture and boundary conditions on the dynamic structure of 
the system are discussed. Dai et al. (2019) investigated 
the thermoelastic vibration of AFG pipe conveying fluid 
considering temperature variation effects. The differential 
quadrature method was employed to solve the govern 
equations based on Euler-Bernoulli beam theory. The influ‐
ence of the elasticity and thermoelasticity gradients on the 
material performance were discussed. Most recently, Tuo 
et al. (2022) investigated the linear stability of axially 
functionally graded pipe conveying fluid using the general‐
ized integral transform technique (GITT) for four combina‐
tions of boundary conditions, and the results showed that 
the complex frequency, critical velocity of buckling insta‐
bility and coupled flutter of the axially functionally graded 
pipe are significantly influenced by the elastic modulus 
gradient.

The present work aims to investigate the nonlinear dy‐
namic behavior of AFG pipe conveying pulsating fluid. 
Based on the Euler-Bernoulli beam theory, the nonlinear 
vibration equation of an AFG pipe conveying pulsating 
flow with simply supported boundary condition was estab‐
ulished. Using the GITT technique (Cotta et al., 2019; Fu 
et al., 2019; Li et al., 2020; Tuo et al., 2022; Fu et al., 
2022c), the governing nonlinear partial differential equa‐
tions were transformed into a nonlinear system of coupled 
ordinary differential equations, which were solved numeri‐
cally using the build-in function NDsolve of the software 
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Mathematica. Furthermore, the GITT technique intrinsically 
keeps the property of the partial differential equations ac‐
cording to eigenvalues, which is different from the way add‐
ing auxiliary variable to construct the physical-preserving 
scheme (Zhao et al., 2017; Shen et al., 2018; Jiang et al., 
2022, 2023). With this model, The effects of elastic modu‐
lus, density and viscoelastic damping coefficient in the axial 
direction on the nonlinear dynamic behavior were studied. 
The bifurcation, phase portrait, and energy spectra dia‐
grams were obtained to investigate the nonlinear dynamic 
behavior characteristics of the AFG pipe.

2  Theoretical model

Considering a viscoelastic AFG pipe conveying a pulsat‐
ing fluid, as illustrated in Figure 1. The pipe has a length 
L, inner radius ro, outer radius r1, and cross-sectional area 
Ap. The fluid has a mass per unit length mf and an average 
velocity u ( t ). The elastic modulus E ( x ), coefficient of 
viscoelastic damping E∗ ( x ), and density of the AFG pipe 
are given by Shariati et al. (2020), Loghman et al. (2021), 
and Babilio (2014) :

E ( x ) = E0 f ( x ) (1a)

E* ( x ) = E *
0 f ( x ) (1b)

ρ ( x ) = ρ0 g ( x ) (1c)

f ( x ) = 1 + (αE - 1) ( x
L ) k

(2a)

h ( x ) = 1 + (αE* - 1) ( x
L ) k

(2b)

g ( x ) = 1 + (αρ - 1) ( x
L ) k

(2c)

where αE = EL EO is the elastic modulus ratio, αE* = E ∗
L E *

O 

the coefficient of the viscoelastic damping ratio, and αρ =
ρL ρO the density ratio. E1, E

∗
1, ρ1 and EO, E *

O and ρO repre‐

sent the elastic modulus, coefficient of viscoelastic damp‐
ing and density at the left and right ends of the pipe, re‐
spectively. Figure 2 shows the variation of the material 
properties along the axial under different exponents k when 
αE=2.

The stress-strain relationship of the Kelvin-Voigt type 
of viscoelastic material is given by:

σ = (E ( x ) + E* ( x )
∂
∂t ) ε (3)

Bending moment is expressed as:

M = (E ( x ) + E* ( x )
∂
∂t ) I

∂2w

∂x2
(4)

where w ( x,t ) is the transversal deflection of the pipe.

Shear force is given by:

S = -
∂M
∂x

= -
∂
∂x

é

ë
êêêê(E ( x ) + E* ( x )

∂
∂t ) I

∂2w

∂x2

ù

û
úúúú (5)

The lateral vibration equation of an AFG pipe is written 
as (Paidoussis and Issid,1974; Paidoussis,1987; Paidoussis 
and Li,1993),

-
∂2

∂x2

é

ë
êêêê(E (x ) + E* (x )

∂
∂t ) I

∂2w

∂x2

ù

û
úúúú +

∂
∂x

é
ë
êêêê(T - Af p1 ) ∂w

∂x
ù
û
úúúú =

mf ( ∂2w

∂t2
+ 2u

∂2w
∂x∂t

+ u2 ∂2w

∂x2
+

du
dt

∂w
∂x ) + mf ( x )

∂2w

∂t2

(6)

where, T is the axial force, Af is the cross-sectional flow 
area and p1 is the fluid pressure.

Considering that the extension of the pipe due to bend‐
ing deformation will produce additional axial force:

T - Af p1 = T0 - Af po (1 - 2vδ ) + mf

du
dt

( x - L )

+é
ë
êêêêE ( x ) + E* ( x )

∂
∂t

ù
û
úúúú

Ap

2L ∫
0

L( )∂w
∂x

2

dx
(7)

where, T0 is static tension, and p0 is the pressure of internal 

flow at x = L.
Substituting Eq-7 into the lateral vibration equation (Eq-6) 

of the AFG pipe, we have:

Figure 2　Variation of the material properties along the axial under 
different exponents k (αE=2)

Figure 1　Schematic of an axially functionally graded material pipe
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∂2

∂x2

é

ë
êêêêE ( x ) I

∂2w

∂x2
+ E∗ ( x ) I

∂3w

∂x2∂t
ù

û
úúúú

+é
ë
êêêêmfu

2 - T0 + Af p0 (1 - 2vδ ) + mf

du
dt

( L - x )ù
û
úúúú ∂2w

∂x2

-
∂
∂x

é

ë

ê
êê
ê(E ( x ) + E* ( x )

∂
∂t ) Ap

2L ∫
0

L( )∂w
∂x

2

dx
∂w
∂x

ù

û

ú
úú
ú

+2mfu
∂2w
∂x∂t

+ [mf + ρ ( x ) Ap ] ∂2w

∂t2
= 0

(8)

Neglecting the pressure p0 and static tension T0, we have:

∂2

∂x2

é

ë
êêêêE ( x ) I

∂2w

∂x2
+ E∗ ( x ) I

∂3w

∂x2∂t
ù

û
úúúú

+é
ë
êêêêmfu

2 + mf

du
dt

( L - x )ù
û
úúúú ∂2w

∂x2

-
∂
∂x

é

ë

ê
êê
ê(E ( x ) + E* ( x )

∂
∂t ) Ap

2L ∫
0

L( )∂w
∂x

2

dx
∂w
∂x

ù

û

ú
úú
ú

+2mfu
∂2w
∂x∂t

+ [mf + ρ ( x ) Ap ] ∂2w

∂t2
= 0

(9)

The following dimensionless parameters are introduced:

ξ =
x
L

, w* =
w
L

, τ = ( )Eo I
mf + ρo Ap

1/2

t
L2

, 

α0 =
E ∗

0

L2

I
E0 (mf + ρ0 Ap )

,

Q =
Ap L2

2I
, β =

mf

mf + ρo Ap

, 

α (ξ ) =
ρ ( x ) Ap

mf + ρo Ap

, U = uL ( )mf

Eo I

1/2

(10)

The dimensionless governing equation is then obtained 
as (dropping the asterisks of w* for simplicity):

f (ξ )w‴′ + 2f ′ (ξ )w‴ + é
ë f ″(ξ ) + U 2 + β U̇ (1 - ξ )ùû w″

+αoh″(ξ ) ẇ″ + 2αoh′ (ξ ) ẇ‴ + αoh (ξ ) ẇ‴′

-Q [ f (ξ )w″ + f ′ (ξ )w′]∫
0

1

(w′ )2 dξ

+2 β Uẇ′ - 2αoQ [h (ξ )w″ + h′ (ξ )w′]∫
0

1

w′ẇ′dξ

+[α (ξ ) + β ] ẅ = 0

(11)

Here, the prime “'” denotes the spatial derivative in ξ 
and the dot “∙” denotes the time derivative in τ.

The internal fluid velocity of the AFG pipe is assumed 
to be sinusoidal and given in the following dimensionless 
form:

U = U0 (1 + ψ sin (ωτ ) ) (12)

where U0 is the average flow velocity, ψ is the pulsation 
amplitude, and ω is the dimensionless pulsation frequency.

The boundary conditions for simply-supported ends are:

w (0,τ ) = w (1,τ ) = w'' (0,τ ) = w'' (1,τ ) = 0 (13)

3  Integral transform solution

Following the formalism of the generalized integral 
transform technique, the governing equation of the follow‐
ing auxiliary eigenvalue problem is employed (Cotta et al., 
2019; Fu et al., 2019; Li et al., 2020) :

d4 Xi( )ξ

dξ 4
= μ4

i Xi(ξ ),  0 < ξ < 1 (14)

with simply supported (SS) boundary conditions:

Xi(0) = X ″i  (0) = Xi(1) = X ″i  (1) = 0 (15)

where the eigenfunctions Xi(ξ ) and eigenvalues μ i are giv‐
en by:

Xi(ξ ) = 2 sin ( μiξ ),  i = 1,2,3⋯ (16)

μ i = iπ,  i = 1,2,3⋯ (17)

The eigenfunctions satisfy the following orthonormal 
property:

∫
0

1

Xi(ξ ) Xj(ξ )dξ = δ ij =
ì
í
î

1,  i = j

0, i ≠ j
(18)

The integral transform and inverse pairs are defined by:

w̄i(τ ) = ∫
0

1

w (ξ,τ ) Xi( )ξ dξ (19a)

wi(ξ,τ ) = ∑
i = 1

∞

Xi(ξ ) w̄i(τ ) (19b)

Multiplying the governing equation (Eq-11) by the ei‐
genfunction Xi(ξ ) and integrating in ξ ∈ [ 0,1] , the gon‐
vern equation can be rewritten:

∑
j = 1

∞ é

ë

ê
êê
ê ù

û

ú
úú
ú

Lij

d2w̄j ( τ )

dt2
+∑

j = 1

∞
é
ë

ù
ûαo ( A∗

ij μ
4
j +Cij )+2U β Hij

dw̄j ( τ )

dt

-2αoQ∑
j = 1

∞

[ ]Nijw̄j ( τ ) ∑
j = 1

∞ ∑
k = 1

∞ é
ë
êêêê ù

û
úúúúGjkw̄j ( τ )

dw̄k ( τ )
dt

-Q∑
j = 1

∞

[ ]Fijw̄j ( τ ) ∑
j = 1

∞ ∑
k = 1

∞

[ ]Gjkw̄j ( τ ) w̄k ( τ )

+∑
j = 1

∞
é
ë

ù
û( )Aij μ

4
j + Bij + U 2 Dij + β U̇Eij w̄j ( τ ) = 0

(20)
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where these coefficients defined by:

Aij = ∫
0

1

f (ξ ) Xi Xjdξ (21a)

A∗
ij = ∫

0

1

h (ξ ) Xi Xjdξ (21b)

Bij = 2 ∫
0

1

f' (ξ ) Xi X ‴j  dξ + ∫
0

1

f ″(ξ ) Xi X ″j dξ (21c)

Cij = 2 ∫
0

1

h′ (ξ ) Xi X ‴j  dξ + ∫
0

1

h″(ξ ) Xi X ″j dξ (21d)

Dij = ∫
0

1

Xi X ″j dξ (21e)

Eij = ∫
0

1

(1 - ξ ) Xi X ″j dξ (21f)

Gij = ∫
0

1

X ′i X ′j dξ (21g)

Fij = ∫
0

1

f (ξ ) Xi X ″j dξ + ∫
0

1

f ′ (ξ ) Xi X ′j dξ (21h)

Hij = ∫
0

1

h′ (ξ ) Xi X ′j dξ (21i)

Nij = ∫
0

1

h (ξ ) Xi X ″j dξ + ∫
0

1

h′ (ξ ) Xi X ′j dξ (21j)

Lij = ∫
0

1

[ β + g (ξ ) (1 - β ) ] Xi Xjdξ (21k)

4  Results and discussion

4.1  Convergence analysis and results verification

As no previous study on nonlinear vibration results of 
the AFG pipe is encountered in the literature, the hybrid 
analytical-numerical solution is verified by analyzing the 
nonlinear vibration of the simply supported homogeneous 
pipe. Figure 3 shows the bifurcation diagram by the pres‐
ent study compared with that by Ni et al. (2014), for mass 
ratio β = 0.6, average flow velocity U0 = 4.5, viscoelastic 
damping coefficient α0 = 0.005, pulsation amplitude ψ = 0.4, 
and slenderness ratio parameter Q = 5 000. It can be seen 
that both the displacement amplitude and the bifurcation 
point are in good agreement with the results presented by 
Ni et al. (2014). It can be concluded that the proposed 
GITT solution for the nonlinear dynamics analysis of pipe 
was successfully verified.

Convergence analysis has been carried out to analyze 
the dynamic behavior of the simply supported AFG pipe 
under pulsating flow. Bifurcation diagrams of the transient 
displacement at the center of the pipe versus the dimen‐
sionless pulsation frequency are shown in Figure 4, with 
αE = αE∗ = αρ = 2, β = 0.6, U0 = 4.5, α0 = 0.005, ψ = 0.4, 

and Q = 5 000, calculated with NW= 2, 4, 6, and 8. As can 
be seen, when the dimensionless pulsation frequency of in‐
ternal fluid is less than 40, there is no difference between 
the results with truncation orders NW=2, 4, 6 and 8. How‐
ever, when the dimensionless pulsation frequency is greater 

than 40, there is the obvious difference between the bifur‐
cation diagram with NW=2 and higher truncation orders 
(NW=4, 6 and 8). For truncation orders NW=4, 6, and 8, 
the variation of the bifurcation diagrams can be negleced. 
It can be concluded that the present hybrid numerical-ana‐
lytical model (GITT mdoel) with NW=8 can predict the dy‐
namic behavior of AFG pipes within the selected dimen‐
sionless frequency range ω ∈ [ 0,90 ]. It can be seen from 
Figure 4 (d) that an AFG pipe (k = 1, αE = αE∗ = αρ = 2) has 

a complex dynamic behavior in the range of pulsation fre‐
quency from 0 to 90, presenting periodic, quasi-periodic, 
and even chaotic motions.

Figure 5 shows the phase portraits, Poincaré map, pow‐
er spectra diagram, and time domain diagram for different 
dimensionless pulsation frequencies shown in Figure 4(d), 
which can reflect the characteristics of chaotic, quasi-
periodic, and periodic motion. Within frequency range ω ∈ 
[ 0,10 ], the pipe shows aperiodic (chaotic) motion in a 
large frequency range, and the power spectra of chaotic 
motion show a broadband phenomenon without obvious 
main peaks, as shown by Figures 5 (a) and(b). There is also 
a small region of periodic motion, in the range of ω ∈ [ 5,6 ]. 
In the range of ω ∈ [10,15 ], the chaotic motion becomes 
period-1 motion through the period-doubling bifurcation. 
From ω = 15 to 36.7, the pipe vibration is mainly manifested 
as period-1 motion. The power spectrum of period-1 motion 
is a smooth curve with obvious main peaks, shown by 
Figure 5 (c), but there is a period-doubling motion near 
ω = 16. For ω ∈ [ 36.7,52.6 ], the periodic motion is 

(a) Present study (NW=4)

(b) Presented by Ni et al. (2014).

Figure 3　 Bifurcation diagram of simply supported homogeneous 
pipe with β = 0.6, U0 = 4.5, α0 = 0.005, ψ = 0.4, and Q = 5 000
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observed. For ω ∈ [ 52.6,54.7 ] and [ 60.8,63.6 ], the AFG 
pipe is mainly manifested as chaotic motion, but between 
the two ranges, periodic motion is observed. In the range of 
ω ∈ [ 63.6,90 ], except for period-3 motion in ω ∈ [ 70.2,80.7 ], 
all the other frequencies induce quasic-periodic motion. 
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The power spectrogram of quasic-periodic motion has a 
wide frequency phenomenon at the same time and an obvi‐
ous main peak is shown in Figure 5e.

4.2  Influence of elastic modulus distribution on 
system dynamic behavior

Figures 6‒8 show the parametric analysis of the elastic 
modulus distribution on the dynamic response of the AFG 

pipe, with the homogeneous density and coefficient of vis‐
coelastic damping (αE∗ = αρ = 1). The elastic modulus ratio 

αE is taked as 2, and k is takend as 0.1, 0.5, 1, 2, 5 and 10.
Figure 6 (a) shows the bifurcation diagram of AFG pipe 

with k=0.1. In the range of ω ∈ [ 0,11.7 ], the pipe is mainly 
manifested as chaotic motion, and there are also areas of 

(a) k=0.1
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Figure 5　Phase portraits diagram, Poincaré diagram, power spectra, 
and time-domain phase diagram at the midpoint under different 
pulsation frequencie
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partial periodic motion, for instance ω ∈ [ 7.5,8 ]. In the range 
of ω ∈ [11.7,15 ], chaotic motion is changed into period-1 
motion. In the range of ω ∈ [15,28 ], periodic motion is 
mainly observed. From ω = 28 to 41.5, it is manifested as 
period-1 motion. In the range of ω ∈ [ 42.6,70 ], it is mainly 
manifested as multi-period motion. From the range of ω=
70 to 90, the static equilibrium state is transformed into 
periodic motion through Hopf bifurcation. Figure 6(b) 
shows the bifurcation diagram for k = 0.5. For dimension‐
less frequency ω=0 to 11.7, it is mainly manifested as 
chaotic motion, and there is also periodic motion, such 
as in the range of ω ∈ [ 5,5.5 ]. Within the range of ω ∈ 
[11.7,63.5 ], it is mainly manifested as periodic ω = 10, 50,  

60, and 70 motion. For dimensionless pulsation frequency ω
=63.6 to 72, chaotic motion is transformed into periodic mo‐
tion. For dimensionless frequency ω=72 to 76.8, it is mainly 
manifested as quasi-periodic motion. In the frequency 
range of ω ∈ [ 76.85,90 ], chaotic motion is transformed in‐
to periodic motion. For k = 1, as shown in Figure 6 (c), in 
the range of ω ∈ [ 45.5,82 ], there exists a large range of cha‐
otic motion, as well as a small range of periodic motion 
(ω∈ [ 75,76.3 ]) and quasi-periodic motion (ω∈ [ 68.8,69.8 ]). 
Within the range of ω ∈ [ 82,90 ], the motion is quasi-periodic. 
As seen in Figure 6 (c)‒(f), when k ≥ 1the motion state in 
the low-frequency region (ω ∈ [ 0,45.5 ]) is stable and does 
not change with changing k, while there is a large differ‐
ence in the high-frequency region. With increasing k, the 
chaotic region in the high frequency region ω ∈ [ 45.5,90 ] 
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Figure 7　 Time domain diagram of the system at different k and 
pulsation frequencies when ω = 10, 50, 60, and 70 , repectively

(e) k=2.0

(f) k=10.0
Figure 6　 Influence of the distribution of elastic modulus on the 
dynamic behavior of AFG pipe
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is squeezed, while the periodic and quasi-periodic regions 
will be extended.

4.3  Influence of distribution coefficients of visco‐
elastic damping and density on the system 
dynamic behavior

It is assumed that the density and elastic modulus of the 
functionally gradient material pipe are uniform in all direc‐
tions (αE = αρ = 1), the coefficient of viscoelastic damping 
ratio αE∗ = 2, and k is taken as 0.1, 0.5, 1, 2, 5, and 10 to 

analyze the influence of the coefficient of viscoelastic dis‐
tribution on the dynamic response of AFG pipes.

As shown in Figures 9 (a) and (b), when k < 1, the bifur‐
cation diagram of dimensionless pulsation frequency changes 
little in the range of ω ∈ [ 0,90 ], and there are great differ‐
ences mainly in the range of frequency ω ∈ [ 67,76 ]. When 
k = 0.1, it shows period-1 motion, and there is also a small 
range of period-3 motion, as shown in Figure 9 (a). When 
k = 0.5, period-3 motion is transformed into period-1 mo‐
tion, as shown in Figure 9 (b). When k = 1, the motion is 
transformed from multi-periodic motion to period-1 motion, 

as shown in Figure 9 (c). When k > 1 , the region with great 
variation in the bifurcation diagram is within the range of 
frequency ω ∈ [ 50,60 ] and ω ∈ [ 70,90 ]. Within ω ∈ 
[ 50,60 ], when k = 2, it mainly manifests as multi-periodic 
motion. When k = 5 and k = 10, chaotic motion is mainly 
manifested in a larger range. When the dimensionless fre‐
quency increases from ω=70 to 90, the range of quasi-
periodic motion will increase gradually with increasing k. 
It can be seen that the k has a great influence on the mo‐
tion state at high frequency, and its influence on the mo‐
tion state at low frequency can be neglected.

It is assumed that the elastic modulus and coefficient of 
viscoelastic damping of AFG pipe are nonuniform (αE =
αE∗ = 1), the density ratio αρ = 2, and k is taken as 0.1, 0.5, 

1, 2, 5, and 10 to analyze the influence of density distribu‐
tion on the dynamic response of the pipe. Figure 10 (a) 
shows the bifurcation diagram for AFG pipe with k = 0.1. 
In the range of ω ∈ [ 0,10 ], the pipe is in chaotic motion, 
but there are also a few pulsation frequencies such as 
ω ∈ [ 4.5,6 ] that are in periodic motion. Within frequency 
range ω ∈ [ 9.6,11.6 ], it appears as period-3 motion. When 
the frequencyωincreases from 11.6 to 34.4, the period-1 
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Figure 8　Phase portraits of the system at different k and pulsation frequencies when ω = 10, 50, 60, and 70 , repectively
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motion appears, but a sudden change occurs at the dimen‐
sionless pulsation frequency of 12.6, changing from period-1 
motion to period-2 motion and lasting to the frequency of 
13.6. In the range of ω ∈ [ 34.4,61.5 ], it is mainly manifest‐
ed as chaotic motion, but periodic motion and quasi-peri‐
odic motion can also be observed. Within frequency range 
ω ∈ [ 61.5,90 ], it is mainly manifested as quasi-periodic 
motion, and there is also a small range of periodic motion.

It can be seen from Figure 10 that when the dimension‐
less pulsation frequency ω is less than 34.4, the effects of 
the material variation index k on the dynamic response of 
AFG pipes can be ignored. However, when ω > 34.4, with 
increasing k, the frequency range of period-1 motion will 
gradually extended, and the chaotic and quasi-periodic mo‐
tion frequency regions will not be changed, but the frequen‐
cy of chaotic and quasi-periodic motion will gradually in‐
crease. Therefore, it can be concluded that the k has almost 
no effect on the motion state under low frequency range 

(ω ∈ [ 0,34.4 ]). However, in the high frequency region, with 
increasing k, the motion state will not change, but the start‐
ing frequency at which each motion state occurs is increased.

5  Conclusion

The nonlinear dynamics of AFG pipe conveying pulsat‐
ing flow is studied by using the generalized integral trans‐
form technique. The effects of the elastic modulus, density 
and coefficient of viscoelastic damping distribution on the 
dynamic behavior of the pipe are investigated, with the fol‐
lowing main conclusions.

The distribution of the elastic modulus has an important 
influence on the motion state of the system. When the in‐
dex of material variation k < 1, it has a greater influence 
on the motion in both low-frequency and high-frequency 
regions. However, when k > 1, it has a greater effect on 

(a) k=0.1

(c) k=1.0

(e) k=5.0

(b) k=0.5

(d) k=2.0
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Figure 9　Influence of the coefficient of viscoelastic damping distribution on the dynamic behavior of AFG pipe
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the motion only at high frequencies, with negligible ef‐
fects in the low frequency region.

The distribution of density has little effect on the mo‐
tion state of the system, with k having a great influence on 
the motion state at high frequency, but almost no influence 
on the motion state at low frequency.

The distribution of the viscoelastic damping coefficient 
has an important effect on the motion state of the system. 
In the low frequency region, the k has almost no effect on 
the motion state. With the increase in k, the motion state at 
high frequency region will not change, but the starting fre‐
quency at which each motion state occurs is increased.

The present method can be extended to the analysis of 
on nonlinear dynamics of viscoelastic AFG pipe conveying 
pulsating fluid with other classical boundary conditions, 
such as clamped and free ends, or more general elastic 
boundary conditions such as rotationally restrained ends. It 
can also be extended to the analysis of linear and nonlinear 

stability of mooring cables or catenary risers using large-
deflection Euler-Bernoulli beam models.
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