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Abstract
Extreme value analysis is an indispensable method to predict the probability of marine disasters and calculate the design 
conditions of marine engineering. The rationality of extreme value analysis can be easily affected by the lack of sample 
data. The peaks over threshold (POT) method and compound extreme value distribution (CEVD) theory are effective 
methods to expand samples, but they still rely on long-term sea state data. To construct a probabilistic model using short-
term sea state data instead of the traditional annual maximum series (AMS), the binomial-bivariate log-normal CEVD 
(BBLCED) model is established in this thesis. The model not only considers the frequency of the extreme sea state, but it 
also reflects the correlation between different sea state elements (wave height and wave period) and reduces the 
requirement for the length of the data series. The model is applied to the calculation of design wave elements in a certain 
area of the Yellow Sea. The results indicate that the BBLCED model has good stability and fitting effect, which is close to 
the probability prediction results obtained from the long-term data, and reasonably reflects the probability distribution 
characteristics of the extreme sea state. The model can provide a reliable basis for coastal engineering design under the 
condition of a lack of marine data. Hence, it is suitable for extreme value prediction and calculation in the field of disaster 
prevention and reduction.

Keywords  Bivariate compound extreme value distribution; Double-threshold sampling; Extreme sea state; Short-term data; 
Probabilistic prediction

1  Introduction

China has a total coastline of 32 000 km, which has good 
prospects for marine development. As the frontier and base 
of marine development, coastal areas are also vulnerable to 
marine disasters, such as surges and waves induced by storms. 
The above extreme sea states can usually be described by 
extreme value theory. Through this theory, using the marine 
data of the marine observation station or verified reanaly‐
sis data and filtering the extreme value sequence according 
to certain standards, a corresponding fitted model can be 
developed. Then, the design values of various marine ele‐
ments in different return periods can be calculated.

In such studies, the common sampling method is to select 
annual maximum data to fit an extreme value model, such 
as Gumbel distribution, Weibull distribution, and log-normal 
distribution, to estimate the design value of marine ele‐
ments in different return periods. However, the long time-
series span and lack of some domestic observation station 
data result in fitted results that often cannot meet engineering 
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requirements. Past long-term data may not be applicable to 
current sea states. The current sea state is in a long-term 
change, and future ocean statistics will not be adequately 
represented by past sea states. Liu et al. (2010) demonstrat‐
ed that long-term sea-level changes increase the amount of 
wave runup, and thus it is complex to estimate the design 
of the sea level in long-term sea conditions. In addition, in 
actual engineering conditions, more attention is paid to high 
quantiles. Therefore, for the accuracy of the extreme value 
calculation of a long return period, the sample size is sig‐
nificant. The generalized Pareto distribution model based 
on the peaks over threshold (POT) and compound extreme 
value distribution (CEVD) models based on process sam‐
pling can effectively expand the sample sequence, but it still 
relies on long-term (usually no less than 20 years) observa‐
tion or reanalysis data. To solve this problem.

The ocean engineering structure is faced with a complex 
environment in which multiple elements work together, 
and there is a complex correlation between marine environ‐
mental elements, and the multivariate extreme value model 
has become a topic of extreme theory. Gumbel and Mustafi 
(1967) first proposed the multivariate extreme value theory 
symmetric logistic model. With the acceleration of research 
progress on the multivariate extreme value theory, Galambos 
(1977) and Leadbetter et al. (1983) summarized the theory 
into a volume from the aspects of probability statistics and 
random sequence processes. In the 1990s, Tawn et al. studied 
the multivariate extreme value theory in detail and proposed 
asymmetric logistic model (Tawn 1990), negative asym‐
metric logistic model (Joe 1989) and Dirichlet model (Coles 
and Tawn 1991), which provided a theoretical basis for the 
engineering community to solve the above problems. With 
these foundations, many scholars began to explore the appli‐
cation of the multivariate extreme value theory in complex 
sea states. Gupta and Manohar (2005) develop the extreme 
values associated with a vector of mutually correlated, sta‐
tionary, and Gaussian random processes. Li and Song (2006) 
proposed that a joint event with 100-year return period could 
be approximated by either including a 100-year return period 
wave height and a 10-year return period surge, or a 10-year 
return period wave height and a 100-year return period 
surge, or the consisting of 50-year return period wave height 
and a 50-year return period surge. Pei et al. (2012) utilized 
a stochastic hurricane simulation program along with the 
ADCIRC model to simulate 5000 years of hurricanes and the 
corresponding storm surge heights for the City of Charles‐
ton, SC. After that, Park et al. (2013) coupled the Gaussian 
discriminative analysisand Gaussian mixture models and 
investigated variations in wind field characteristics by com‐
paring the joint probability distribution functions of several 
wind field features. Jia and Sasani (2021) presented a meth‐
odology to estimate the joint exceedance probability for 
wind and flood hazards using a copula-based joint proba‐
bility mode, which could evaluate the compounding threats 

of coastal storms, designcoastal structures, and estimate 
building performance under coastal storms. At the same time, 
the research on the correlation between different marine 
elements has made progress. Chen et al. (2019) found that 
the structural response (sampling method shows the best 
performance in describing correlations between extreme 
wave heights and surges, particularly in the typhoon-affected 
areas, in comparison with wave dominated and surge- domi‐
nated sampling methods. Afterward, Yang et al. (2020) 
analyzed the joint distributions of the destructive factors 
using copulas, and discussed the combination design method 
of the destructive factors. Through this method, they opti‐
mized the combination of rains and tides for different situ‐
ation. Xi et al. (2021) applied the JPM method to tropical 
cyclone rainfall hazard estimation, they found it is impor‐
tant to include all three important variables (maximum in‐
tensity when the storm is near the point of interest (POI), 
duration of the storm, and the minimal distance) into the 
probability assignment process. Sima͂o et al. (2022) pre‐
sented an approach for obtaining an analytical probabilis‐
tic model of environmental parameters, including linear 
and directional variables. The model can well represent 
wind, sea, and swell waves and wind and current parame‐
ters at the studied location. The related structural changes 
between different combinations of engineering environ‐
mental loads are complex, and the expressions of multivar‐
iate extreme value models are mostly implicit. Only through 
complex iterative solutions can they be applied in engi‐
neering applications. Shi and Sun (2001) established the 
ternary nested logistic model and its explicit expression 
and calculated its parameters through the moment method 
and maximum likelihood method, which provided a solution 
for different combinations of engineering environmental 
loads with complex changes. At the same time, the CEVD 
theory has rapidly developed. Ma and Liu (1979) proposed 
CEVD, composed of a discrete distribution and continuous 
distribution, which has been widely recognized in the engi‐
neering field (Liu and Li 2001; Liu et al. 2002; Liu et al. 
2007; Pang et al. 2015). Then, Liu et al. extended the theory 
from one dimension to multiple dimensions, such as the 
Poisson–Gumbel mixed compound distribution and Poisson-
nested logistic compound extreme value model (Liu and 
Dong 2004; Liu et al. 2006; Pang et al. 2013).

As explained above, clearly, in the field of probability 
prediction of extreme sea states, the key problems are the 
reasonable sampling and combination of different environ‐
mental factors (Cheng et al. 2018; Yan et al. 2020). This 
paper proposes the binomial-bivariate log-normal CEVD 
(BBLCED) based on short-term observation samples of the 
POT. It considers not only the frequency of the extreme 
sea state process but also the correlation between two envi‐
ronmental elements. The model can be used to solve the 
design values of the wave height and period in different 
return periods with short-term (5 years) data.
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2  Model construction methodology

2.1  Binomial log-normal CEVD

When the number of annual measured extreme sea state 
data (k) conforms to binomial distribution, we have:

pk = é
ë
êêêê ù

û
úúúúm

k
ṗk(1 − ṗ)m−k

= é
ë
êêêê ù

û
úúúú365

k
ṗk(1 − ṗ) 365 − k

(1)

where the observation data of m days are statistically inde‐
pendent and identically, 

-
p is the mean value of pk, The ex‐

pression of binomial log-normal compound extreme value 
Distribution is:
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If G(x) conforms normal distribution, then
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where n̄ is the average value of daily maximum wave height 
taken every year, and R is the cumulative probability value.

When the sequence conforms to the log-normal distribu‐
tion, the following conversion can be performed:

XR =
ln ( )Hτ − H0 − a

σ
(5)

where a =
1
N∑i = 1

N ln ( Hi − H0 ), 

σ =
1
N∑i = 1

N [ ]ln ( Hi − H0 )
2 − a2 . n is the total number 

of measured daily maximum values; Hi is the measured 
daily maximum (i = 1, 2, ..., n); a is the mean value of 
lnHi; σ is the variance of lnHi; HT is the design value of 
T-Year return period; H0 is the threshold.

2.2  BBLCED

According to the multivariate compound extreme value 
distribution theory proposed by Wang (2005), a binomial 
bivariate Log-normal model is established.

Definition with a univariate discrete probability distribu‐
tion of

( )0          1       2         ⋯      k       ⋯
p0        p1      p2       ⋯      pk      ⋯

And a bivariate continuous probability distribution of 
G ( x, y), let

F0( x, y) = ∑
k = 1

∞

Pk∙k∙∫−∞

y ∫−∞

x

Gk− 1
x ( )u dudv (6)

Let n represent the annual frequency of extreme sea 
states, and its distribution is pk; The maximum of a marine 
element (wave height) in each extreme sea states and its 
“concomitant” another marine element (wave period) are 
noted as (ξ, ŋ), its probability density function is g ( x, y), 
and corresponding joint cumulative distribution function is 
G ( x, y), Gx( x) is Marginal distribution of G ( x, y), ( X, Y ) 
is the annual maximum of (ξ, ŋ ).

In practical application, the main problem is to give an 
R(0 < R < 1, R = 1 − P ), and solve the equation:

F ( x, y) = R (7)

Let

T =
1
P

=
1

1 − R
(8)

If ( xR, yR ) satisfies the Eq. (8), then we called ( xR, yR ) re‐
turn value of T years.

Usually, we calculate the design value with a return peri‐
od of more than ten years, i.e., 0.9 < R < 1, so there is a low 
limit of R. Therefore, in solving Eq. (8) we usually define

R0 < R < 1

According to inference of Wang (2005), when solving 
Eq. (7), It can be changed to solve F0( x, y) = R instead. If 

there is no extreme sea states in this year, there is no need 
to calculate the distribution function, so as to simplify the 
problem.

Ignoring the situation of no extreme sea states, the bivar‐
iate compound extreme value (BCEV) distribution is

F0( x, y) = P0 + F ( x, y) (9)

i.e.,

F0( x, y) = P0 + ∑
k = 1

∞

Pk∙k∙∫−∞

y ∫−∞

x

Gk − 1
x ( )u g ( )u,v dudv  (10)

The discrete distribution adopts binomial distribution. 
Let the observation data of m days are statistically indepen‐
dent and identically distributed random variables ( Xi,Yi ), 
i = 1, 2, …, n, and its distribution function is F ( x, y ). For 
a sufficiently large threshold H0, if Xj > H0,  j = 1, 2, …, n, 
then we call Xj is the data over threshold, Xj and corre‐
sponding Yj obeys bivariate Log-normal distribution. The 
length of the sample sequence is k. N obeys the binomial 
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distribution of parameter (m, p), i. e., Pr (N = k ) = Ck
m
-
p

k
 

( )1 − -
p

m − k
, and the expression of its distribution function is:

Y ( x) = ∑
k = 0

m ( )m
k

-
p

k(1 − -
p )m−k

(11)

where 
-
p is the mean value of pk, N is the number of sam‐

ples exceeding the threshold.
When n conforms to binomial distribution, the formula 

is converted to the following form:

F0( x, y) = (1 − p) n
+ ∑
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After derivation, we obtain the probability density function

f ( x, y ) = ∑
k = 1

∞ ( )n
k

p̄k( − p) n−k∙k∙Gk−1
x (u)∙g ( x, y) (13)

Bivariate Normal distribution is as follows:

U, V~BVN ( μx, μy, σ
2
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where μx, μy are respectively the mean value of variable X 
and Y; σ 2

x , σ 2
y  are respectively the variance of variable X 

and Y; ρxy is correlation coefficient of variables X and Y.
Let X = exp (U ) , Y = exp (V ) and take the logarithm of 

them, the bivariate Log-normal distribution is obtained:
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where ρxy is the correlation coefficient of U, V:

ρxy =
cov ( )X,Y

σ 2
x σ

2
y
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σxσy

(16)

where ρ is the correlation coefficient of X, Y:

ρ =
exp ( )ρxyσxσy − 1

( )exp ( )σ 2
x − 1 ( )exp ( )σ 2

y − 1

(17)

And the marginal distribution:

Gx(u) =  ∫
0

x 1

2π σx x
∙e

− ( )ln x − μx

2

2σ 2
x du (18)

When combining Eqs. (12), (15) with Eq. (18), we obta‑
ined BBLCED model.

3  Application of BBLCED model to extreme 
sea states prediction

3.1  Sampling method

3.1.1 Threshold selection
The reasonable threshold selection is the key to the suc‐

cessful fitting of POT model. If the threshold is too small, 
the difference between the sample sequence and the extreme 
value model may be distinct, and the estimated value will 
produce biased estimation (Hua and Zhang 2009; Liu 2014); 
If the threshold is too large, and the number of samples ex‐
ceeding the threshold decreases, the fitting effect of the 
model will be affected,which can cause the variance of the 
parameter estimation to be too large (Sun 2014; Cheng et al. 
2019). Therefore, we should get the reasonable threshold of 
wave height data and filter the wave height data over thresh‐
old, and find out the corresponding period data, i. e., the 
sample sequences of BBLCED model ( X, Y ).

The wave height and period data (every six hours) of a 
marine observation station in Yellow Sea, China, from 
1992 to 1996 were used as the original sample. this thesis 
uses the hill diagram method to select the threshold. The 
selection principle is to find the relatively stable line seg‐
ment at the tail index (α) of the figure as the starting point, 
and the data corresponding to the abscissa of the point is 
the threshold H0.

As shown in Figure 1, the trend of the lines become stable 
after the threshold is less than 3.4. In order to test whether 
the threshold is reasonable, this paper further judges it in 
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Figure 1　Hillplot
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combination with the parameter stability estimation dia‐
gram. The judgment method is to take H0=3.4 as the initial 
threshold, and evenly select 81 values between H0= 3.2 and 
u = 3.6, then observe whether the calculated maximum 
likelihood estimation value remains relatively stable. The 
variation range of parameters is shown in Figure 2.

Figure 2 shows that the parameters remain relatively stable 
within (3.2, 3.395). To ensure the accuracy of the POT 
model fitting, this study selected the larger value in the rel‐
atively stable interval as the final threshold, i.e., H0 = 3.395.

Figure 3 shows that when the wave height threshold is 
3.395, the maximum likelihood estimation value of each 
parameter of the corresponding period is stable within (4.7, 
5.1), so the threshold is relatively accurate.

3.1.2 Double threshold sampling
The double threshold method is a widely applied method. 

In addition to the data exceeding threshold, the interval 
between these data should also exceed a certain time to 
eliminate the impact of the same extreme sea states. Li et al. 
(2012) proposed a method to filter the wave data of Rottnest:

1) At least one recording must exceed the storm peak 
threshold, H0; storm duration is measured as the time re‐
cordings exceed the duration threshold, Hsdur;

2) The interval between two consecutive storms (storm 
peak to storm peak) is not less than 30 hours. Otherwise, 
they are regarded as the continuation of a single storm;

3) The storm break is not shorter than three hours; other‐
wise, they are regarded as the continuation of one storm.

Threshold
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3.20 3.24 3.28 3.32 3.36 3.40 3.44 3.48 3.52 3.56 3.60

Threshold
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Figure 2　Maximum likelihood estimation for each parameter at different thresholds of wave height
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Figure 3　Maximum likelihood estimation for each parameter at different wave period thresholds
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H0=3.395, Hsdur needs artificial judgment, let Hsdur= 
24 hours. Finally, 57 groups of data exceeding the threshold 
were extracted from 7304 groups of data.

3.2  Parameter estimation

After obtained the optimal threshold, the maximum like‐
lihood estimation method is used to estimate the statistical 
parameters in the BBLCED model function. The value of 
parameters are shown in Table 1.

It can be seen from Table 1 the value of parameters. By 
substituting the above parameters into Eq. (14), the joint 
distribution function can be obtained.

3.3  Parameter test

Based on the above parameter estimation results and dis‐
tribution function, it is necessary to test the fitting effect of 
BBLCED model .

Figures 4 and 5 are the diagnostic check of Log-normal 
distribution model fitting the wave height data and period 
data (every six hours) from 1992 to 1996 respectively. It 
can be seen from the Figures P–P (Figures 4(a) and 5(a)) 
and Q–Q (Figures 4(b) and 5(b)) show that all points are 
distributed on or near the two sides of the line, which 
means that the model has a good fit effect. The cumulative 
distribution function (CDF) and empirical accumulation 
function (Figures 4(c) and 5(c)) basically coincide, and the 
probability density function (PDF) and frequency histo‐
gram (Figures 4(d) and 5(d)) also coincides. Therefore, the 
four diagnostic checks support the fitted Log-normal distri‐

bution model, i.e., the model has a great goodness of fit.

3.4  Comparison of multi-year return wave height 
and period with fourPrediction methods

Based on the short-term data of Yellow Sea for five years 
(1992–1996), the BBLCED model was selected to calcu‐
late the design values of multi-year return wave height and 
period. In addition, the 20-year annual maximum of the 
wave height and period data of the Yellow Sea was used in 
the other 3 models. the results calculated by Poisson-Gum‐
bel mixed model are used as the comparison of CEVD, 
and the multi-year return wave height and period design 
values calculated by Gumbel mixed model and log-normal 
model are used as the comparison of traditional methods. 
The results obtained by these four methods are shown in 
Fig. 6–Fig. 10. Fig. 6 shows the cumulative distribution func‐
tion (CDF) diagram and probability density function (PDF) 
diagram of BBLCED model, and Fig. 7–Fig. 10 shows the 
wave height and period design values in different return 
periods found of the four models. The calculation results 
are summarized into Table 2 and Table 3.

As shown in Tables 2 and 3, there is little difference 
between the wave height and wave period predictions of dif‐
ferent return periods with the BBLCED model and the other 
three models. In particular, the results of the BBLCED model 
are closer to those obtained from the bivariate log-normal 
model sampled by the annual maximum. Compared with 
the other three models, the wave period predictions of the 
10-year and 20-year return periods under the BBLCED 
model are smaller, but the prediction is close in the other 
three situations, i.e., 50-year, 100-year, and 200-year periods. 
The most striking result to emerge from the data is that the 
BBLCED model established in this study selects the data of 
the 5-year period, which can achieve similar results with the 
other three models with 20-year data, which is the biggest 
advantage of this model.

Table 1　Statistical parameters of BBLCED model
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Figure 6　Joint CDF and PDF of the wave height and period
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model in different return periods

Table 2　Wave Height in different return periods of the four models (m)

Computational model

BBLCED

PGMCED

Bivariate log-normal

Gumbel mixed

10-year

10.6

10.0

10.7

9.6

20-year

11.1

10.6

11.1

10.3

50-year

11.8

11.4

11.6

11.2

100-year

12.2

11.9

12.0

11.9

200-year

12.7

12.5

12.4

12.7
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3.5  Reliability of BBLCED model

The return period of wave height and wave period has 
been calculated with the sea states data of 1992–1996. The 
time range of the data is extended to every five consecutive 
years of 1990–1997, i.e., 1990–1994, 1991–1995, 1992–
1996, 1993–1997. Kolmogorov-Smirnov (K-S) test is used 
to check the stability of the results of BBLCED model. As 
a contrast, annual maxima sequence is calculated as well.

As shown in Table 4, DN ≤ DN,1−α. In Figure11, the CDF 
of the wave height and period sequences is between the 

supremum and infimum, which means it fits well. Due to 
the length of sequence in different years is not the same, 
the statistics, i. e., DN, DN,1−α changed accordingly. On the 
whole, the results of BBLCED model are relatively stable. 
As for the annual maximum series, it is clear that the wave 
height sequence fit well too.

4  Conclusions

Based on the POT model, the sample sequences over 
the threshold were filtered, and the frequency of the sam‐
ple sequences conformed to the binomial distribution. On 
the premise of occurring extreme sea conditions, the wave 
height data and their “accompanying” period data conform 
to the log-normal distribution. Therefore, combining the 
binomial distribution with the bivariate log-normal model, 
we obtained a new CEVD, i.e., the BBLCED model. The 
following main conclusions are drawn:

1) Through the POT method, wave data were fully uti‐
lized, which makes up for the shortage of short-term data. 
The model based on five years (1992–1996) of wave height 
and period data of the Yellow Sea area has good fitness. 
The extreme wave height and period in the 10-year, 20-year, 
50-year, 100-year, and 200-year return periods were pre‐
dicted, and the stability of the calculation results was tested 
using the K-S test, as shown in Section 3.4. The results indi‐
cate that the calculation results of the BBLCED model fit 
well, and they are close to the results of the traditional model. 
The method has good stability, and the probability distribu‐
tion characteristics of extreme sea states can be reasonably 
reflected. Hence, the BBLCED model using 5-year data can 
replace the traditional extreme value method using 20-year 
data.

2) At the same time, the existing data are difficult to 
achieve complete accuracy, and various complex statistical 
models will also produce errors, so no method can be 
applied in all cases.

3) The BBLCED model based on the POT method makes 
the best use of the effective data, and the requirement for 
data sequence length is reduced. On this basis, the model 
not only considers the occurrence frequency of extreme sea 
states but also integrates the correlation of the wave height 
and period, which undoubtedly proposes a more reasonable 
and reliable method for the design standard of practical 
engineering. In addition, it has a wide application prospect 
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Figure 11　K-S test of wave height and wave period

Table 3　Wave Period in different return periods of the four models (s)

Computational model

BBLCED

PGMCED

Bivariate log-normal

Gumbel mixed

10-year

9.4

9.3

9.9

10.6

20-year

10.1

10.1

10.6

11.2

50-year

10.9

11.1

11.4

12.0

100-year

11.7

11.9

11.9

12.6

200-year

12.5

12.7

12.4

13.1

Table 4　K-S test statistic of the BBLCED and AMS model

Model

BBLCED

AMS

1990-1994

1991-1995

1992-1996

1993-1997

DN of wave 
height sequence

0.139

0.160

0.173

0.196

0.188

DN of wave 
period sequence

0.118

0.145

0.143

0.127

0.224

DN,1−α

0.192

0.212

0.248

0.294

0.301
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in the prediction of various engineering design and disas‐
ter prevention fields.

References

Chen YP, Li JX, Pan SQ, Gan M, Pan Y, Xie DM, Clee S (2019) 
Joint probability analysis of extreme wave heights and surges 
along China’s coasts. Ocean Engineering 177: 97-107. https://doi.
org/10.1016/j.oceaneng.2018.12.010

Cheng YJ, Pang L, Dong S (2019) Study on the estimation of very 
long return-period significant wave height during hurricane in the 
region of South China Sea. Journal of Ocean University of China, 
49(S2): 125-132. DOI: 10.16441/j.cnki.hdxb.20180015

Cheng YJ, Yan ZD, Pang L, Liu WW (2018) Probability analysis on 
the typhoon induced sea states of the South China Sea. 2018 
OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO), Kobe, Japan, 
1-10. DOI: 10.1109/OCEANSKOBE.2018.8559105

Coles SG, Tawn JA (1991) Modelling extreme multivariate events. 
Journal of the Royal Statistical Society, Series B, Methodological 
53(2): 377-392. DOI: 10.1111/j.2517-6161.1991.tb01830.x

Galambos J (1977) The theory and applications of reliability with       
Bayesian and nonparametric methods. Academic Press, New York, 
151-164. https://doi.org/10.1016/B978-0-127-02101-0.X5001-X

Gumbel EJ, Mustafi CK (1967) Some analytical properties of bivariate 
extremal distributions. Publications of the American Statistical 
Association 62(318): 569-588. DOI: 10.2307/2283984

Gupta S, Manohar CS (2005) Multivariate extreme value distributions 
for random vibration applications. Journal of Engineering Mechanics 
131(7): 712-720. DOI: 10. 1061/(ASCE)0733-9399(2005)131:7(712)

Hua YJ, Zhang ZY (2009) Comparative research on extreme risk of 
stock market based on BMM and POT model. Journal of Industrial 
Engineering/Engineering Management 23(4): 104-115. (in Chinese)

Jia Y, Sasani M (2021) Modeling joint probability of wind and flood 
hazards in Boston. Natural Hazards Review 22(4): 04021047. 
DOI: 10.1061/(ASCE)NH.1527-6996.0000508

Joe H (1989) Families of min-stable multivariate exponential and 
multivariate extreme value distributions. Statistics Probability 
Letters 9(1): 75-82. DOI: 10.1016/0167-7152(90)90098-R

Leadbetter MR, Lindgren G, Rootzen H (1983) Extreme and related 
properties of random sequences and series. Springer-Verlag, New 
York, 1-141. DOI: 10.2307/2283984

Li CW, Song Y (2006) Correlation of extreme waves and water levels 
using a third-generation wave model and a 3D flow model. Ocean 
Engineering 33(5-6): 635-653. DOI: 10. 1016/j.oceaneng.2005.06.003

Li FJ, Bicknell C, Lowry R, Li Y (2012) A comparison of extreme 
wave analysis methods with 1994 – 2010 offshore Perth dataset. 
Coastal Engineering 69: 1-11. DOI: 10.1016/j.coastaleng.2012.05.006

Liu DF, Li HJ (2001) Prediction of extreme significant wave height from 
daily maxima. China Ocean Engineering 15(1): 97-106. (in Chinese)

Liu DF, Wen SQ, Wang LP (2002) Poisson-Gumbel mixed compound 
extreme value distribution and its application. Chinese Science 
Bulletin 47(17): 1356-1360. (in Chinese)

Liu DF, Dong S (2004) Stochastic engineering oceanography. China 
Ocean University Press, Qingdao, 107-117. (in Chinese)

Liu DF, Wang LP, Pang L (2006) Theory of multivariate compound 
extreme value distribution and its application to extreme sea state 
prediction. Chinese Science Bulletin 23(51): 2926-2930. DOI: 

10.1007/s11434-006-2186-x
Liu DF, Pang L, Xie BT, Wu YK (2007) Study on typhoon disaster 

zoning and Fortification Criteria in China – double nested multi-
objective joint probability model and its application. Science in 
China Series E Technological Sciences 51(7): 1038-1048. DOI: 
10.1007/s11431-008-0053-5

Liu SS (2014) The selection and application of the threshold of 
POT model. Master thesis, Jilin University, Changchun, 12, 28. 
(in Chinese)

Liu JC, Lence BJ, Isaacson M (2010) Direct joint probability method 
for estimating extreme sea levels. Journal of Waterway Port Coastal 
and Ocean Engineering 136(1): 66-76

Ma FS, Liu DF (1979) Compound extreme value distribution theory 
and its applications. Acta Mathematicae Applacatae Sinica 2(4): 
366-375. (in Chinese)

Pang L, Chen X, Li YL (2013) Long-term probability prediction on 
the extreme sea states induced by typhoon of the South China 
sea. 2013 Advanced Materials Research, Guilin, China, 726-731, 
833-841. DOI: 10.4028/www.scientific.net/AMR.726-731.833

Pang L, Xu F, Gong X, Zhan YF (2015) Study of the influence of 
tropical cyclone on offshore wind turbine egenerator system. 
Periodical of Ocean University of China 45(10): 109-113. DOI: 
10.16441/j.cnki.hdxb.20130319

Park J, Smarsly K, Law KH, Hartmann D (2013) Multivariate 
analysis and prediction of wind turbine response to varying wind 
field characteristics based on machine learning. ASCE International 
Workshop on Computing in Civil Engineering, Los Angeles, 113-120. 
DOI: 10.1061/9780784413029.015

Pei B, Pang WC, Testik F, Ravichandran N (2012) Joint distributions 
of hurricane wind and storm surge for the city of charleston in 
South Carolina. ATC & SEI Conference on Advances in Hurricane 
Engineering 2012, Miami, 703-714. DOI:10.1061/9780784412626.062

Shi DJ, Sun BK (2001) Moment estimation in a nested logistic 
model. Systems Engineering-Theory & Practice 21(1): 53-60. (in 
Chinese)

Simão ML, Sagrilo LVS, Videiro PM (2022) A multi-dimensional 
long-term joint probability model for environmental parameters. 
Ocean Engineering 255: 111470. https://doi.org/10.1016/j.oceaneng. 
2022.111470

Sun LL (2014) Measurements and application of the extreme risk of 
financial data. Master thesis, Chongqing University, Chongqing, 
19-20. (in Chinese)

Tawn JA (1990) Modelling multivariate extreme value distributions. 
Biometrika 77(2): 245-253. DOI: 10.2307/2336802

Wang LP (2005) Multivariate compound extreme value distribution 
theory and its engineering applications. PhD thesis, Ocean University 
of China, Qingdao, 68-72. (in Chinese)

Xi D Z, Lin N, Nadal-Caraballo NC (2021) A joint-probability model 
for tropical cyclone rainfall hazard assessment. GEO-EXTREME 
2021: Climatic Extremes and Earthquake Modeling, 329: 1-10. 
DOI: 10.1061/9780784483695.001

Yan ZD, Pang L, Dong S (2020) Analysis of extreme wind speed 
estimates in the Northern South China Sea. Journal of Applied 
Meteorology and Climatology 59(10): 1625-1635. DOI: 10.1175/
JAMC-D-20-0046.1

Yang X, Wang J, Weng SG (2020) Joint probability study of 
destructive factors related to the “Triad” phenomenon during typhoon 
events in the coastal regions: Taking Jiangsu Province as an 
example. Journal of Hydrologic Engineering 25(11): 05020038. 
DOI: 10.1061/(ASCE)HE.1943-5584.0002007

136




