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Abstract
In this study, the dynamics of the tendon/top tension riser (TTR) system of a tension-leg platform (TLP) are investigated
through an experiment and by using absolute nodal coordinate formulation (ANCF). First, the model test of the TLP
system is conducted in the water tank of Harbin Engineering University to examine the motion response of the TLP and
the dynamic response characteristics of the tendon and TTR. The test scale ratio is set to 1: 66.3. Then, on the basis of the
ANCF, the stiffness, external load, and mass matrices of the element are deduced to establish the motion equation of the
tendon/riser. Finally, the static and dynamic characteristics of the tendon/TTR system of TLP are analyzed systematically
by using the ANCF method. The results are compared with commercial software and test results. The motion response of
tendon/TTR is affected by the TLP movement and environmental load simultaneously. The analysis proves the
effectiveness and accuracy of the ANCF method despite the low number of riser units, suggesting the superiority of the
ANCF method for calculating the dynamics of tendon/riser in the field of ocean engineering.
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1 Introduction

During the past few decades, the oil and gas industries

have mainly focused on deep ocean reservoirs. Deepwater
platforms such as TLP, spar, semi-submersible platforms,
and floating production storage and offloading platforms
have driven the development of deepwater risers with new
forms, functions, and technologies. This condition has led
to a continuous increase in the working depth of floating
platform mooring systems (Muehlner, 2017; Chandrasek‐
aran and Nagavinothini, 2018). The exploration of oil and
gas in deep water has led to in-depth studies and analyses
of deep water structures. Many scholars conducted investi‐
gations in this regard (Lim and Hatton, 1991; Gu et al.,
2012; Jameel et al., 2017; Liu et al., 2013). The flexible
structures of the TLP, such as risers and tendons, play an
essential role in the field of ocean engineering. They usually
present the typical slender characteristics of deepwater struc‐
tures. As slender flexible body structures, marine risers and
tendons tend to undergo a large amplitude motion subjected
to environmental forces such as current and wave forces
(Zhang and Smith, 2017; Datta, 2017). During the design
process, the dynamic analysis of the riser under the actions
of gravity, buoyancy, fluid drag force, inertial force, and
platform-forced motion excitation is critical.

Yan et al. (2009a) used the Morison equation and the
CFD software FLUENT to solve the current force of the
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TLP tendon by using the 2D model. The finite element
method was adopted to investigate the nonlinear response
of the tendon. Their results show that the changing tension
exerts significant effects on the VIV response of the ten‐
don. Yan et al. (2009b) applied the finite element software
ANSYS and FLUENT to analyze the dynamic response of
a TLP tendon in wave and current. Moreover, the dynamic
response of the TLP was studied by simplifying the tendon
to a massless spring (Ceng et al., 2007) appropriate to ten‐
don modeling (Chandrasekaran and Jain, 2002). TLP with
different broken tension tendons under extreme wind, wave,
and other environmental conditions was studied (Mansour
et al. 2006; Malayjerdi et al. 2016; Yang and Kim 2010; Jia
2012). The results indicate that the sudden disconnection
of one or more tendons causes the change of stiffness and
natural periods, the imbalance of forces and moments of
the total system, and possibly large transient overshoots in
tension at the moment of disconnection.

The absolute nodal coordinate formulation (ANCF) ap‐
proach was initially proposed by Shabana (1997), which is
based on continuum mechanics and the nonlinear finite
element theory. This method is commonly used in finite
element simulations of large deformations and rotations
with no constraint on the element’s number of rotations and
deformations. Since then, the ANCF approach has been
widely used in diverse fields, including mechanical engi‐
neering, multibody dynamics, and aerospace engineer‐
ing. More specifically, many scholars, such as Čepon and
Boltežar (2009), Tur et al. (2014), Shabana (2015), Bulín
et al. (2017), and Zhang et al. (2018), conducted investiga‐
tions in this regard. Obrezkov et al. (2020) modeled soft
fibrous tissue in cases of three-dimensional elasticity and
derived accurate numerical solutions based on the ANCF
element than those produced by ANSYS. Obrezkov et al.
(2021) conducted a deformation analysis of soft tissues
such as the Achilles tendon based on ANCF and found that
the simulation results agreed well with test results. Ma et al.
(2020) developed a novel three-dimensional rational ANCF
fluid element based on cubic rational Bezier volume and
found good agreement between the simulation results and
those in the literature.

In recent years, the ANCF method has been developed,
laying a solid foundation for further utilization in ocean
engineering. Ma and Sun (2014) described the characteris‐
tics of mooring lines with large rotation and tensile defor‐
mation in the three-dimensional space by using the ANCF
method. They found that the method has higher precision,
and convergence could be obtained by conducting static
analysis. Wang et al. (2017) combined ANCF with fluid
mechanics to better simulate the fluid-structure interaction
with incompressible multiphase flows. Zhang et al. (2022)
applied the ANCF method to the free-standing hybrid riser.
The results show that ANCF is accurate enough to calcu‐
late the flexible deepwater structures such as mooring lines

and risers with large deformations. However, the applica‐
tion of ANCF to the analysis of the dynamic characteris‐
tics of the tendon/riser system of TLP has not been real‐
ized and will thus be investigated in this study.

This study aims to develop a high-precision dynamic cal‐
culation method to investigate the dynamics of the tendon/
top tension riser (TTR) system of a TLP, which is mean‐
ingful and valuable in ocean engineering.

2 Experimental model of the TLP system

2.1 Parameters of the TLP/tendon/riser system

The TLP model test was conducted in the water tank of
Harbin Engineering University. The water tank is 50 m in
length, 30 m in width, and 10 m in depth. The TLP motion
response at a working depth of 663 m is tested.

According to the established scale ratio of 1∶66.3, the
test model’s scale parameters can be obtained. The design
parameters of TLP and the model are shown in Table 1. The
TLP/tendon/TTR model arrangement is shown in Figures 1
and 2.

Tables 2 and 3 show the physical parameters and the co‐
ordinates of the two ends of each tendon/TTR in the real
condition and the model. Tendon is represented by TD in
Tables 2 and 3.

Table 1 Main scale parameters and attributes of the TLP model

Parameter

Depth of water (m)

Draft design (m)

Diameter of the column (m)

Spacing of the column center (m)

Freeboard of the column (m)

Column height (m)

Width of the pontoon (m)

Height of the pontoon (m)

Floating tank length (m)

Displacement (reign) (MT)

Center of gravity Xg (m)

Center of gravity Yg (m)

Center of gravity Zg (m)

Inertial radius Rxx (m)

Inertial radius Ryy (m)

Inertia radius Rzz (m)

Full scale

663

21

19

59

11.5

32.5

11

8

40

39 249

0.0

0.0

29.01

31.59

31.59

31.44

Model scale

10

0.317

0.287

0.890

0.173

0.490

0.166

0.121

0.603

0.135

0.000

0.000

0.438

0.476

0.476

0.473
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2.2 Environmental conditions

The environmental condition of the regular wave prob‐
lem is the subject of concern. Eleven groups of test condi‐
tions (Table 4) are selected. The test wave period ranges
from 0.67 s to 2.6 s, and the amplitude of the wave is 25 mm.
The motion response of TLP is measured, and the test data
are converted to the full scale range according to the scale
ratio.

3 Numerical methods

3.1 Element coordinates

In the finite element method, the structure is discretized
into a series of elements. Figure 3 shows a fully paramet‐
ric three-dimensional solid beam element.

As shown in Figure 3, the complete three-dimensional
beam element has two nodes, and the node coordinate vec‐
tor can be expressed as follows:

e j = [ r j r j
x1 r j

x2 r j
x3 ]

T
(1)

where r j represents the node position vector in global coordi‐
nates; r j

x1, r j
x2, and r j

x3 represent the position vector gradients,
which can be obtained by deriving the position vector r j

Figure 3 Three-dimensional solid beam element model

Table 4 Test cases

Case

1

2

3

4

5

6

7

8

9

10

11

Test period (s)

0.67

0.78

0.85

0.97

1.10

1.20

1.55

1.90

2.25

2.39

2.6

Real period (s)

5.46

6.35

6.92

7.90

8.96

9.77

12.62

15.47

18.32

19.46

21.17

Figure 1 Layout of the experiment tendon/TTR of a TLP model
system

Figure 2 Experiment model of the tendons and TTRs

Table 2 Physical parameters of each tendon and TTR

Items

Real

Model

TD

TTR

TD

TTR

Outer
diameter

(mm)

812.8

365.1

0.017

0.012

Dry
weight
(kg/m)

578.63

242

0.257

0.269

Axial
stiffness EA

(N)

1.474E10

4.00E9

9.78E4

7.38E4

Total
length
(m)

644

679

9.71

10.24

Pretension
(MT)

1 000

139.8

65.4

23.3

Table 3 Upper and lower positions of each tendon and TTR

Items

Real

Model

TD1

TD2

TD3

TD4

TTR1

TTR2

TTR3

TTR4

TD1

TD2

TD3

TD4

TTR1

TTR2

TTR3

TTR4

Upper point

x (m)

36.218

36.218

−36.218

−36.218

6.00

6.00

−6.00

−6.00

0.546

0.546

−0.546

−0.546

0.091

0.091

−0.091

−0.091

y (m)

36.218

−36.218

−36.218

36.218

11.75

−11.75

−11.75

11.75

0.546

−0.546

−0.546

0.546

0.177

−0.177

−0.177

0.177

z (m)

2.00

2.00

2.00

2.00

37.00

37.00

37.00

37.00

0.030

0.030

0.030

0.030

0.558

0.558

0.558

0.558

Lower point

X (m)

36.218

36.218

−36.218

−36.218

6.00

6.00

−6.00

−6.00

0.546

0.546

−0.546

−0.546

0.091

0.091

−0.091

−0.091

Y (m)

36.218

−36.218

−36.218

36.218

11.75

−11.75

−11.75

11.75

0.546

−0.546

−0.546

0.546

0.177

−0.177

−0.177

0.177

Z (m)

−663

−663

−663

−663

−663

−663

−663

−663

−10

−10

−10

−10

−10

−10

−10

−10
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from the space coordinates xj = ë ûx j
1 x j

2 x j
3

T
. Then, the j

node coordinate vector is expanded as follows:

ej =
é

ë
êêêêr j1 rj2 rj3 ∂r j1

∂x1

∂r j2

∂x1

∂r j3

∂x1

∂rj1

∂x2

ù

û
úúúú

∂rj2

∂x2

∂rj3

∂x2

∂rj1

∂x3

∂rj2

∂x3

∂rj3

∂x3

T (2)

In the absolute nodal coordinate method, each three-
dimensional beam element has 24 absolute coordinates

e = [ e1 e2 … e24 ] (3)

Risers and other marine engineering slender structures
usually ignore the torsional deformation and shear defor‐
mation of the cross section in global dynamic analysis
(Zhang et al. 2019). Thus, the above-mentioned complete
three-dimensional beam element is simplified to form a
three-dimensional two-node beam element that takes into
account accuracy and efficiency based on the assumption
of the rigid section. Twisting and shearing are not consid‐
ered; thus, the number of coordinates of each node is re‐
duced from 12 to 6, of which the first three are translation
components, and the last three are rotation components. To
distinguish, let q represent the coordinates of two nodes in
a three-dimensional two-node beam element, which con‐
tains 12 components

q = [q1 q2 … q12 ]
T

(4)

The position vector of the simplified three-dimensional
beam model element can be expressed by the interpolation
polynomial of the space coordinate system

r =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úr1

r2

r3

=
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úa0 + a1 x1 + a2 x1
2 + a3 x1

3

b0 + b1 x1 + b2 x1
2 + b3 x1

3

c0 + c1 x1 + c2 x1
2 + c3 x1

3

(5)

The relationship between each item qi of the absolute
coordinates of the three-dimensional tube element and the
position vector can be expressed as follows:

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úq1

q2

q3

= r j (0,0,0 ),

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úq4

q5

q6

= r j
x1 (0,0,0 )

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úq7

q8

q9

= r k ( l,0,0 ),

é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úq10

q11

q12

= r k
x1 ( l,0,0 )

(6)

where l is the length of the riser element, and x1 is the arc
length in the local coordinates of the element, x1 ∈ [0,l ].
This processing eliminates the weak influencing items in

the riser dynamic model and reduces the number of abso‐
lute coordinates of the element, thus being conducive to
achieving higher calculation efficiency.

For a three-dimensional two-node beam element used to
simulate a riser, let its shape function be denoted as S, and
the vector radius r of any structural particle of the element
in the global coordinates can be denoted as

r ( x ) = S ( x )q (7)

The two-point cubic Hermite shape function can be ex‐
pressed as follows:

S = [S1 I LS2 I S3 I LS4 I ] (8)

where I is a 3 × 3 unit matrix, and S1–S4 can be expressed as

S1 = 1−3ξ 2 + 2ξ 3, S2 = ξ−2ξ 2 + ξ 3

S3 = 3ξ 2−2ξ 3, S4 =−ξ 2 + ξ 3 (9)

where ξ = x/L, ξ ∈ [0,1] is the dimensionless arc length coor‐
dinate, L is the unit length, and x is the arc length in local
coordinates.

3.2 Motion equation of the tendons/riser

The equation of motion balance of the tendon/riser finite
element system can be expressed as follows:

Mẍ (t ) + Cẋ (t ) + Kx (t ) = F (t ) (10)

where M, C, K, and F are the mass matrix, the damping
matrix, the stiffness matrix, and the external load matrix of
the riser element, respectively.

The mass matrix of the tendon/riser element M is ex‐
pressed as follows (Gerstmayr and Shabana, 2006):

M = ∫
o

L

ρST Sdx (11)

where L, ρ, and S denote the length of the element, the
density of the element and the Hermite shape function,
respectively.

The Hermite shape function is substituted into Eq. 11 and
integrated over the length of the element to obtain

M =

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú

ú
13
35

mI
11
210

LmI
9
70

mI − 13
420

LmI

11
210

LmI
1

105
L2mI

13
420

LmI − 1
140

L2mI

9
70

mI
13
420

LmI
13
35

mI − 11
210

LmI

− 13
420

LmI − 1
140

L2mI − 11
210

LmI
1

105
L2mI

(12)
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where m and I denote the mass of the element and a 3 × 3 unit
matrix, respectively.

The element stiffness matrix can be expressed as

K = K1 + K2 (13)

where K1 is the axial stiffness, which is expressed as

K1 = ∫
0

L (EA( ∂ε∂q ) T ∂ε
∂q )ds + ∫

0

L (EAε
∂
∂q ( ∂ε∂q ) T )ds (14)

K2 is the bending stiffness, which is expressed as

K2 = ∫
0

L (EI ( ∂Kκ∂q ) T ∂Kκ∂q )ds + ∫
0

L (EIKκ

∂
∂q ( ∂Kκ∂q ) T )ds (15)

The axial strain and curvature of the beam with large
deflection are expressed as

ε = | r′ | −1 = r′Tr′ −1 (16)

κ =
|| r′ × r″

|| r′ 3
(17)

Kκ = κ ⋅ | r' | =
|| r' × r''

|| r' 2
(18)

The external force can be mathematically expressed as

f = fg + fb + fwave + fcurrent (19)

where fg, fb, fwave, and fcurrent are the gravity, the buoyancy,
the wave force, and the current force, respectively, and can
be expressed as

fg =−( ρr Ar + ρi Ai ) gey (20)

fb = ρs Ao gey (21)

fwave(s,t ) =
1
2
ρsCd DN (vs−ṙ ) | N (vs−ṙ ) | +

ρs AoCm N ( v̇s−r̈ ) (22)

fcurrent(s,t ) =
1
2
ρsCd DN (us−ṙ ) | N (us−ṙ ) | −

ρs AoCm N (u̇s −r̈ ) (23)

where g, ρr, ρ i, Ar, Ai, and ey are the acceleration due to
gravity, the density of the riser structure, the internal flow
density, the cross-sectional area of the riser, the inner diam‐
eter circle area of the riser, and the unit vector along the
y-direction in the global coordinate system, respectively; Cd

and Cm are the drag and added mass coefficients, respectively;

D, ṙ and r̈ are the outer diameter, velocity, and acceleration
of the structure, respectively; vs, v̇s, us, and u̇s are the wave
particle velocity, the wave acceleration, the current parti‐
cle velocity, and the current acceleration, respectively.

N is the three-dimensional normal transition matrix,
which can be mathematically expressed as

N = I− r' ⋅ r'T

r'T ⋅ r'
(24)

where I and r′ represent a 3 × 3 unit matrix and the deriva‐
tive of the absolute coordinate to the arc length, respectively.

In this study, the Newton-Raphson method (Zhang, 2020)
is utilized to calculate the equations of the static equilibrium.
The Newmark method (Zhang, 2020) is applied to solve
the equations of the dynamic equilibrium.

3.3 Numerical model of theTLP/tendon/TTR system

The TLP/tendon/TTR model system is shown in Figure 4.

Figure 4 Schematic model of TLP with tendon/TTR system

181



Journal of Marine Science and Application

The motion equation in the time domain for the TLP
model system is described by

[ M ] ẍ + [C ] ẋ + [ K ] x = F (t, x, ẋ) (25)

where [ M ], [C ], and [ K ] are the mass matrix, damping
matrix, and stiffness matrix of TLP, respectively; x, ẋ, and
ẍ are the displacement, velocity, and acceleration vectors
of TLP, respectively. F (t, x, ẋ) is the generalized force vec‐
tor. The mass matrix [ M ] can be expressed as

[ M ] = [ M0 ] + [ A] (26)

where [ M0 ] and [ A] are the natural mass matrix and added

mass matrix, respectively.
The generalized force vector F (t, x, ẋ) can be expressed

as

F (t, x, ẋ) = Fwi + Fci + Fwave + FRF (27)

where Fwi, Fci, Fwave, and FRF are the wind load, current
load, wave force, and reaction forces of tendon/TTR.

4 Results and discussion

4.1 Static analysis of tendons and TTRs

To analyze the static characteristics of the tendon/TTR
system, in the ANCF method, the tendons and the TTRs
are divided into 20 and 25 elements, respectively. Corre‐
spondingly, the length of each element of the tendons and
the TTRs is 32.2 and 33.95 m, respectively. The SESAM
software is applied to validate the ANCF model. The ten‐
dons and the TTRs are divided into 64 and 68 elements, re‐
spectively, in SESAM, where the length of each element
of the tendons and the TTRs is 10.062 and 9.986 m, respec‐
tively. The numerical method for the tendon/TTR system
used in SESAM is the finite element method.

Figure 5 shows the effective tension along the length of
the tendon/TTR system obtained by both methods. The effec‐
tive tension increases from the lower part to the upper part,
while the effective tension lines of both methods have con‐
sistent trends. For the upper part of tendons/TTRs, the cal‐
culated tension from SESAM is close to that of ANCF.
However, for the lower part, the calculated tension of the
TTR from SESAM is lower than that of the ANCF. Table 5
displays the results for the tension obtained by both meth‐
ods. The errors of the maximum tension of the tendons
and the TTRs are 1.016 × 10−6 % and 5.749 × 10−6 %, re‐
spectively, while the errors of the minimum tension are
0.018% and 3.960%, respectively. The consistency of the
results of ANCF and SESAM configuration proves the reli‐
ability of the ANCF model and the numerical algorithm in

the static deformation condition. Thus, the ANCF model
can obtain accurate results with few elements. Therefore,
each tendon and TTR is divided into 20 and 25 elements,
which are used in subsequent calculations of dynamics.

4.2 Dynamic analysis of tendons and TTRs
affected by the harmonic forced top-end motion

In the TLP system, the upper end of the tendon/TTR sys‐
tem is connected with the column and hull of the TLP. The
forced movement of the TLP is one of the main sources of
the dynamic load acting on the tendon/TTR system. Thus,

Table 5 Effective tension of tendons and TTRs for ANCF and
SESAM

Method

TD

TTR

Max

Min

Mean

Max

Min

Mean

ANCF (kN)

19 686.857

19 099.377

19 396.887

6 957.984

2 518.840

4 759.638

SESAM (kN)

19 686.857

19 095.909

19 393.638

6 957.984

2 419.091

4 664.320

Error (%)

1.016×10−6

0.018

0.017

5.749×10−6

3.960

2.002

Figure 5 Effective tension of the tendons/TTRs under static condition

182



Z. Kang, et al.: Numerical and Experimental Study on the Dynamics of the Tendon/Top Tension Riser System of a Tension-Leg Platform

the forced motion of the tendon/TTR system can be simu‐
lated by changing the displacement of the top node, which
is chosen as the harmonic oscillation in the horizontal x-
direction exerted on the top node of the tendon/TTR sys‐
tem. The specific excitation equation could be described as

x = A sinωt (28)

where A is the excitation amplitude, and ω is the excitation
frequency, which can be expressed as

ω = 2π/T (29)

where T is the excitation period, and t is the time.
The excitation amplitude and period are selected as 5.0 m

and 12.0 s, respectively. The dynamic analysis time is set
as 100 s, and the time step is 10−2 s. Figure 6 shows the com‐
parison between the tension at the top node of the tendon
and the model of SESAM. The tension of tendons No. 1
and No.3 obtained from SESAM ranges from 19.42 MN
to 25.21 MN. The errors between the maximum and the
minimum tension on tendons No. 1 and No. 3 for ANCF
and SESAM are −1.153% and −0.155%, respectively. This

finding indicates that the ANCF model is a reliable way to in‐
vestigate the tendon of the TLP system.

Figure 7 shows the comparison between the tensions at
the top node of the TTR obtained by ANCF and SESAM.
The tensions of TTRs No.1 and No.3 obtained by SESAM
range from 6.958 MN to 10.939 MN, while those of TTRs
No.1 and No.3 obtained by ANCF range from 6.928 MN
to 10.845 MN. The mean tension of TTRs No.1 and No.3
obtained by ANCF and SESAM is 10.006 and 10.082 MN,
respectively. The errors between the maximum and the
minimum tension on TTRs No.1 and No.3 for ANCF and
SESAM are −0.864% and −0.433%, respectively, while the
mean tension error is 0.754%. This finding indicates that
the ANCF model is a reliable way to investigate the TTR
of the TLP system. Table 6 presents the results for the ten‐
sion at the top node of the tendon/TTR system as obtained
by both methods. The maximum tension on the tendon sys‐
tem compared with the maximum tension on the TTR sys‐
tem from both methods is approximately 2.4 times larger.
The tension appears mainly on the tendon system under the
action of harmonic oscillations in the horizontal x-direc‐
tion. The consistency of the results of ANCF and SESAM
proves the reliability of the ANCF model. Thus, the ANCF

Figure 6 Time domain result of tension at the top node of the tendon Figure 7 Time domain result of tension at the top node of the TTR
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model can be applied to obtain accurate results with few
elements.

To study the influence of the amplitude of the top node
forced motion, the sinusoidal excitation amplitudes are set
as 2, 5, 10, and 20 m; the period is 12.0 s; and the motion
is in the x-direction. The calculation time is set to 120 s,
and the time step is 10−2 s. Figure 8 shows the effective ten‐
sion at the top node of the tendon/TTR system. The maxi‐
mum tension at the top node of the tendons/TTRs increases
with the amplitude in the same period. Figure 8(a) indi‐
cates that the maximum tension of the tendon increases from
21.17 MN to 65.96 MN when the TLP amplitude increases
from 2 to 20 m. Figure 8(b) implies that the maximum ten‐
sion of the TTR increases from 8.674 to 44.686 MN when
the TLP amplitude increases from 2 to 20 m. This finding
proves that the tension variation of the TTR is larger than
that of the tendon.

The reaction curve in each cycle presents a relatively
regular sine pattern when the excitation amplitude changes
from 2 to 20 m. If the motion period is consistent, then the
corresponding velocity and acceleration of the riser will in‐
crease with the excitation amplitude. The riser will present
the hysteresis phenomenon in motion because of its slen‐
der structural feature, which will further influence the vari‐
ation of the effective tension of the top node.

The influence of the excitation period of the top node
forced motion was also investigated. The sinusoidal excita‐
tion periods are set as 12, 16, 20, and 24 s. The amplitude is
kept at 5 m, and the motion is still in the x-direction. Figure 9
shows the time domain and the maximum tension at the
top node of the tendon/TTR system under different periods
and indicates that the overall tension amplitude decreases
with the excitation period. Figure 9(a) shows that when the
TLP periods increase from 12 to 24 s, the maximum ten‐
sion of the tendon decreases from 25.06 MN to 20.95 MN,
which shows that TLP periods decrease two times and the

maximum tension decreases 1.19 times. The oscillation am‐
plitude of tension on the tendon decreases with the increase
in the TLP periods. As shown in Figure 9(b), the maximum
tension of the TTR decreases from 10.845 to 10.109 MN
as the TLP amplitude periods increase from 12 to 24 s, in‐
dicating that the maximum tension decreases 1.07 times.
The oscillation amplitude of tension on the TTR increases
as the period increases, indicating that the variation in ten‐
sion at the top node of the tendon is more significant than
that in the TTR. Table 7 shows the tension results at the
top node of the tendon/TTR system for different TLP am‐
plitudes and periods. The maximum tension of the tendon
and TTR is 6.596 and 44.686 MN, respectively, correspond‐
ing to an amplitude of 20 m and a TLP period of 12 s.
When the amplitude is equal to 5 m and the TLP period is
12 s, the tension of the tendon and the TTR is minimum
and equal to 19.66 and 6.928 MN, respectively.

Figure 10 shows the motion trajectories of the tendon/
TTR No.1 at different time points with A = 5 m and T = 12 s.
From Figure 10, in the same period and amplitude of the
forced harmonic motion, the motion of the TTR is more in‐
tense than that of the tendon because the TTR is less stiff
than the tendon.

Figure 8 Time domain result of the top node of the tendon/TTR
with different TLP amplitudes

Table 6 Effective tension at the top node of the tendon/TTR system
for ANCF and SESAM

Method

TD1

TD3

TTR1

TTR3

Max

Min

Mean

Max

Min

Mean

Max

Min

Mean

Max

Min

Mean

ANCF (MN)

25.06

19.66

22.66

25.05

19.65

22.66

10.845

6.928

10.006

10.845

6.928

10.006

SESAM (MN)

25.21

19.69

22.77

24.96

19.42

22.50

10.939

6.958

10.082

10.939

6.958

10.082

Error (%)

−0.590

−0.155

−0.485

0.390

1.153

0.682

−0.867

−0.433

−0.760

−0.867

−0.433

−0.760
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To study the influence of the TLP motion and current
force acting on the tendon/TTR system, the current with
the velocity of 0.83 m/s is applied at the surface in the x-
direction while the TLP motion conditions are kept the
same as mentioned previously. The calculation time is set
to 120 s, and the time step is set to 10−2 s. Figure 11 shows
the tension at the top node of the tendons/TTRs in the time
domain for two cases: only TLP motion and under TLP
motion+current. The maximum tension of the tendon in
Figure 11(a) is 25.06 MN in the case of TLP motion only
and 26.09 MN in the case of TLP motion+current. The
maximum tension increased by 1.03 MN, which is 4.09%.
Figure 11(b) shows that the maximum tension of TTR is
10.845 MN in the case of TLP motion only and 11.757 MN
in the case of TLP motion+current. The maximum tension
is increased by 0.912 MN, namely, 8.41%. This finding
demonstrates that the change in tension at the node at the

Figure 9 Time domain result of the top node of the tendon/TTR with
different TLP periods

Table 7 Effective tension at the top node of the tendon/TTR
system from different TLP amplitudes and periods

Items

Tendon
T = 12 s

Tendon
A = 5 m

TTR
T = 12 s

TTR
A = 5 m

Case

2 m

5 m

10 m

20 m

12 s

16 s

20 s

24 s

2 m

5 m

10 m

20 m

12 s

16 s

20 s

24 s

Max tension (MN)

21.17

25.06

35.36

65.96

25.06

23.09

21.48

20.95

8.674

10.845

18.683

44.686

10.845

10.691

10.586

10.109

Min tension (MN)

19.67

19.66

19.68

19.69

19.66

19.66

19.67

19.67

6.952

6.929

6.940

6.958

6.929

6.939

6.946

6.949

Figure 10 Configuration of tendon No.1 and TTR No.1 at different
times
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top of the TTR is greater than that of the tendon and that
the tension at the top node experiences both the TLP and
the current load.

Figure 12 shows the tension at the top node of the ten‐
dons/TTRs from ANCF and SESAM in the case of TLP
motion+current. The tensions at the top node of the ten‐
dons/TTRs in both ANCF and SESAM are very close. The
max/min tension at the top node of the tendons/TTRs for
different environmental conditions are shown in Table 8.
The maximum tension error is 1.031% at the top node of
the TTR. Thus, the ANCF model can be applied to investi‐
gate the tension at the top node of the tendons/TTRs and
can obtain accurate results with few elements.

4.3 Calculation and analysis under regular wave
conditions

In dynamic analysis, the regular wave is 180°. The wave
period is set to 21.17 and 9.77 s, and the wave amplitude
is 1.67 m. The time for the dynamic analysis is set to 800 s,
and the time step is 10−2 s.

Figure 13 compares the six-degrees-of-freedom motions

of the TLP in the time domain for the experiment, ANCF,
and SESAM in the case of T = 21.17 s. The maximum dis‐
placement of TLP in x-, y-, and z-directions for the experi‐
ment is 0.636, 0.066, and 0.013 m, respectively. The corre‐
sponding ones for ANCF are 0.473, 0.025, and 0.034 m,
respectively, and those for SESAM are 0.581, 0.023, and
0.035 m, respectively.

The maximum rotation of TLP in roll, pitch, and yaw for
ANCF, experiment, and SESAM is small (maximum rota‐
tion is 0.032° in pitch). In general, the six-degree-of-freedom
motions of TLP in ANCF, experiment, and SESAM have a
similar trend.

Figure 12 Time domain result of tension at the top node of the
tendon/TTR from ANCF and SESAM in the case of TLP motion+
current

Figure 11 Time domain result of tension at the top node of the
tendon/TTR for ANCF in the case of TLP motion+current

Table 8 Max/min tension at the top node of the tendon/TTR from
ANCF and SESAM in the case of TLP motion+current

Items

TD

TTR

Max tension (MN)

ANCF

26.09

11.756

SESAM

26.44

12.086

Error (%)

1.339

2.730

ANCF

19.66

6.931

Min tension (MN)

SESAM

19.71

7.003

Error (%)

0.263

1.031
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Figure 14 compares the effective tension at the top node
of tendons No.1, No.2, No.3, and No.4 in the time domain
for ANCF, experiment, and SESAM. Figure 14 shows
small oscillations of four tendons in the experiment, from
18.91 MN to 20.62 MN, while those in ANCF and SESAM
are from 18.39 MN to 21.34 MN and from 17.27 MN to
21.50 MN, respectively. The maximum errors of the ten‐

sion are 4.686% and 1.532%, respectively, when compared
with the experiment and SESAM. The minimum ones are
2.828% and 0.559%, respectively.

Figure 15 compares the effective tension at the top node
of TTRs No.1, No.2, No.3, and No.4 in the time domain
for ANCF, experiment, and SESAM. This figure shows
that the amplitude of tension variation of four TTR in the

Figure 13 Motions of the TLP for ANCF, experiment, and SESAM in the case of regular wave (T = 21.17 s)
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Figure 14 Effective tension at the top node of tendons No. 1–4 for
ANCF, experiment, and SESAM in the case of regular wave (T =
21.17 s)

Figure 15 Effective tension at the top node of TTR No. 1–No. 4
for ANCF, experiment, and SESAM in the case of regular wave (T =
21.17 s)
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experiment is minimal, ranging only from 6.833 MN to
6.896 MN, while the amplitude of tension variation of four
TTR in ANCF and SESAM is from 6.126 MN to 8.264 MN
and from 6.579 MN to 8.388 MN, respectively. The maxi‐
mum tension error between ANCF and the experiment and
SESAM is 16.568% and 1.490%, respectively, while the
minimum tension error between ANCF and the experiment
and SESAM is 16.446% and 1.163%, respectively. This result
occurred because the upper end of the TTR is connected to
the TLP by the spring system to measure the stiffness during
the experiment, thus resulting in a smaller oscillation am‐
plitude of the tension. In the ANCF model and SESAM,
the upper end of the TTR is fixed with TLP, thus making
the oscillation amplitude of the tension larger. Table 9 com‐
pares the maximum tension at the top node of the tendons/
TTRs and the error values in the case of T = 21.17 s.

Figure 16 shows the tension at the top node of tendon
No.1 and TTR No.1 in the experiment, ANCF, and SESAM
in the case of T = 9.77 s. From Figure 16(a), the maximum
tension error on the tendon for ANCF and SESAM is
0.555%. The maximum tension on tendon No. 1 for the
ANCF method in the case of T = 9.77 s is 21.37 MN,
which increases by 0.16 MN compared with that in the
case of T = 21.17 s. As can be seen from Figure 16(b), the
maximum tension error of tension on the TTR for ANCF
and SESAM is 0.236%, while it is approximately equal to
20% for ANCF and the experiment. In addition, the maxi‐
mum tension on TTR No. 1 in the case of T = 9.77 s is
8.282 MN, which increases by 0.036 MN compared with
that in the case of T = 21.17 s. This finding indicates that
when the amplitude wave is constant and the impact direc‐
tion is 180° on the TLP, the maximum tension of the tendon
and TTR increases as the wave period decreases.

Figure 17 shows the movement of the tendon/TTR No.1
at different time intervals for one period of waves.

Consequently, the ANCF method can be applied to accu‐
rately simulate the motion of a TLP tendon/TTR coupled
system with fewer elements.

Table 9 Comparison of the maximum tension at the top node of the
tendons/TTRs for ANCF, experiment, and SESAM in the case of
regular wave (T = 21.17 s)

Items

TD

TTR

Number

1

2

3

4

1

2

3

4

ANCF
(MN)

21.21

21.22

21.34

21.33

8.246

8.245

8.264

8.263

Experiment
(MN)

20.35

20.62

20.34

20.56

6.886

6.889

6.896

6.894

Error
(%)

4.055

2.828

4.686

3.610

16.493

16.446

16.554

16.568

SESAM
(MN)

21.54

21.50

21.46

21.46

8.343

8.343

8.388

8.388

Error
(%)

1.532

1.302

0.559

0.606

1.163

1.175

1.478

1.490

Figure 17 Configuration of tendon No.1 and TTR No.1 at different
times

Figure 16 Effective tension at the top node of tendon No.1 and TTR
No.1 for ANCF, experiment, and SESAM in the case of T = 9.77 s
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5 Conclusion

In this study, the dynamics of the tendon/TTR system of
a TLP are investigated. The numerical model of TLP ten‐
dons and TTRs is established based on the ANCF. The
model is applied to study the static and dynamic character‐
istics of a TLP/tendon/TTR system. The calculation results
of the ANCF model are compared with the results of an
experiment and SESAM. The following conclusions are
drawn:

1) A comparison of the results of ANCF with those of
SESAM and the experiment shows that the tension at the
top node of tendons/TTRs in the numerical simulation is
in good agreement. Thus, the ANCF method in this study
is reasonable and accurate for calculating multibody struc‐
ture despite a lower element number.

2) The motion of the TTR is more intense than that of
the tendon because the TTR is less stiff than the tendon.
The tension occurs mainly on tendons. The tension of ten‐
dons/TTRs tends to increase with the increase in the TLP
amplitude, the decrease in the TLP period, or the simulta‐
neous action of the floating body and current.
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