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Abstract
This study aims to analyse and forecast the significance of input process parameters to obtain a better ENi-P-TiO2 coated
surface using artificial neural networks (ANN). By varying the four process parameters with the Taguchi L9 design, forty-
five numbers of AH36 steel specimens are coated with ENi-P-TiO2 composites, and their microhardness values are
determined. The ANN model was formulated using the input and output data obtained from the 45 specimens. The optimal
design was developed based on mean squared error (MSE) and R2 values. The experimentally measured values were
compared with their predicted values to determine the ANN model’s predictability. The efficiency of the ANN model is
evaluated with an R2 value of 0.959 and an MSE value of 34.563 4. The authors have concluded that the developed model
is suitable for designing and predicting ENi-P-TiO2 composite coatings to avoid extensive experimentation with economic
production. Scanning Electron Microscope (SEM) and X-ray diffraction analysis (XRD) are also utilised to compare the
base metal and optimal coated surface.

Keywords AH36 steel; ENi-P-nanoTiO2 composite coatings; Artificial neural networks; Taguchi DOE; Microhardness;
Mean squared error

1 Introduction

Naval and merchant vessels operate in highly corrosive
weather conditions, subjecting the ship structure and its
components to linear and angular motions which simulate
near design loading conditions. Due to its high yield
strength and increased fatigue life, marine-grade AH36
steel is preferred for shipbuilding over traditional mild
steel. This steel is used to fabricate structural components
and sea suction tubes for high-capacity pumps, propulsion
systems, air conditioning systems, and waterjet inlet ducts.
The ship and components are alternately subjected to hy‐
drodynamic slamming due to the vessel’s up and down
motion, rapid entry and exit through wave crests, and oper‐
ation against erosive sand particles. It results in the gradu‐
al deterioration of the vessel’s underwater components (Igi
et al. 2005; Anthoni et al. 2022). So fabricating the entire
marine component with the ideal properties is prohibitive‐
ly expensive. Instead, heat treatment, surface modification,
and alloying have been used to hide flaws and improve
surface properties. Surface modification by deposition is
the most practical and economical option when all of these
processes are considered due to their uniformity. Coatings
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would also improve hardness, reduce friction, increase
wear resistance, and resist corrosion (Fotovvati et al. 2019).
The electroless coating has garnered considerable attention
among the various surface coating processes due to its nu‐
merous unique advantages, including a less expensive pro‐
cess (Wen et al. 1999), the ability to deposit over complex
shapes and dimensions, and adhere to non-conductive sur‐
faces (Pancrecious et al. 2018).

Numerous researches have been conducted to investi‐
gate the various combinations of TiO2. However, the search
for ways to improve the quality of electroless coatings was
never limited to the addition of a second phase. Additional‐
ly, maximizing the benefits of nanoparticles in the electro‐
lyte depends on their dispersion stability in the bath during
the deposition process. As a result, surfactants are consid‐
ered necessary in the bath to fabricate high-performance
coatings against corrosive and wear environments. Choos‐
ing a suitable surfactant is crucial for a better deposition
with decent nanoparticle distribution and no agglomeration.
Surfactants also improve the wettability and electrostatic
attraction of the nanoparticles, increasing their stability
(Ger and Hwang 2002). The effects of surfactants (anionic/
cationic) on electroless deposits to improve mechanical
and tribological properties have been studied in several
studies. Surface properties are evaluated by comparing mi‐
crohardness measurements of the various coated surfaces.
It is a cost-effective method for determining and evaluat‐
ing a material’s overall mechanical properties. It is a non-
destructive, rapid method for determining the compatibili‐
ty of semifinished, assembled, and intermediate compo‐
nents/surfaces with the designed parameters (Zhang et al.
2011). Its precision, repeatability, and reciprocity with in‐
dentation geometry define microhardness measurement.
The microhardness is determined by the indenter’s diago‐
nal length and the sensor’s measurable ranges. Establish‐
ing the exact locus intender impression requires better
lighting, optimum resolution through precise calibration,
and a superior image. Improper lighting and magnification
caused errors (Vander Voort and Fowler 2012). Indentation
size effects also play a role in changing test results on a
material surface over a range of loads (Gerberich et al.
2002). Additionally, the relationship between the input pro‐
cess factors and the resulting output is multifaceted and
complex, making exact analytical expressions impossible
to deduce. Finally, determining the microhardness of fabri‐
cated thin deposits is a time-consuming, expensive, and
highly skilled procedure (Shozib et al. 2021). Previously,
the influence of process parameters was demonstrated and
their relationship to achieving optimal output parameters
such as microhardness, deposition rate, and coating thick‐
ness using DOE (Gadhari and Sahoo 2015; Muraliraja et al.
2014).

Machine Learning (ML) based design and production is
gaining popularity in manufacturing due to its adaptability

and efficacy. Moreover, Artificial Intelligence (AI) algo‐
rithms rely heavily on material properties, necessitating
the connection between input parameter attributes and
their target properties. (Swetlana et al. 2020). It can per‐
form multipurpose optimisation and prediction tasks with
massive datasets and many independent variables (Gol‐
naraghi et al. 2019). Machine learning is based on the fun‐
damental concept of learning the effective patterns from
the input data, and it can generate a rigorous model through
mapping. Using machine learning approaches, higher or‐
ders of magnitude can be gained in predicting any material
property by employing high-dimensional data. It is capa‐
ble of deducing unknown primary characteristics such as
hardness (Wen et al. 2019), thermal conductivity (Juneja
et al. 2019), and glass transition temperature in the field of
material science (Jha et al. 2019). Previously, ML algo‐
rithms efficiently utilised and accurately predicted materi‐
al hardness, halving experiment time and cost (Liu et al.
2017). A recent review found a significant increase in
adopting Artificial Neural Networks (ANNs) in electroless
coatings and adopted the ANN model to predict electroless
plating rate and phosphorous content (Yating et al. 2008).
Using ANN simulation, the researchers successfully de‐
signed and reported a low-constituent high-efficiency bath
(Beygi et al. 2012). Using a dual hidden layer network, the
researchers have succeeded in predicting phosphorus con‐
tent in an electroless bath (Vaghefi and Vaghefi 2011).
Similarly, the phosphorus content of coatings is estimated
and reported using a particle swarm optimization model
(Zou et al. 2020). Recent research has compared the accu‐
racy of four artificial intelligence models for predicting mi‐
crohardness in coatings. On the other hand, the process of
choosing the number of neurons in each layer and tuning
its hyperparameters is not explored and reported (Shozib
et al. 2021). However, few recent studies have begun to in‐
vestigate and demonstrate the significance of optimal hy‐
perparameters. By comparing the test results of default hy‐
perparameters with those of tuned hyperparameters (Man‐
tovani et al. 2015), the authors have proved the earlier
findings that proposed that tuning hyperparameters is far
better than picking an algorithm (Lavesson and Davidsson
2006). Even though the previous research emphasised indi‐
vidual hyperparameters and their interactions with the
ANOVA framework, The approach was limited by its in‐
ability to identify the primary tuning parameter (Van Rijn
and Hutter 2018). However, it is demonstrated unequivo‐
cally that hyperparameter tuning could significantly im‐
prove the overall performance of ANN algorithms (Probst
et al. 2019).

This research investigates the novel deposition of ENi-
P-nano TiO2 on the marine grade AH36 steel to improve
its hardness and performance against the marine environ‐
ment using Taguchi L9 orthogonal design. In electroless
coating, the quality and performance of ENi-P coatings de‐
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pend upon various process parameters. Hence, improving
the substrate hardness relies on the contribution of process
parameters like bath pH, temperature, weight concentra‐
tion of nano TiO2, and C14-SB surfactants. However, ob‐
taining higher microhardness on the fabricated coatings
can only be achieved through extensive experimentation
with various parameter combinations. Hence fabrication of
optimal coated surfaces through newer combinations with‐
out knowing their output values through the trial and error
method is not recommended due to its time consuming
and higher manufacturing cost. In such a situation, an
ANN-based algorithm is proposed to be used to fabricate
the electroless coatings. Therefore, this optimal ANN
based prediction of microhardness on Taguchi designed
ENi-P-TiO2 hopefully will contribute to a deeper under‐
standing of the significance of each input parameter to‐
wards achieving the targeted mechanical property. In addi‐
tion, the authors have tuned the hyperparameters with Py‐
thon-specific coding and formulated the optimal hidden
layer parameters with respect to the least Mean Squared
Error (MSE) values, which have not been previously re‐
ported in similar studies. As a result, the accuracy of the
developed ANN model was finally validated using experi‐
mental results. Also, the chemical composition of identi‐
fied samples was probed through Energy Dispersive Spec‐
troscopy (EDAX) and X-Ray Diffraction (XRD) analysis.

2 Materials and methodology

2.1 Base metal

The base material was marine grade AH36 steel, which
conforms to the ASTM A131 standard. The substrate’s ele‐
mental composition and mechanical parameters are listed
in Table 1 and Table 2.

According to Duren (1990), the substrate’s carbon equiv‐
alent content (CE) is deduced.

CEq = C +
Si
25

+
Mn + Cu

16
+

Ni
40

+
Cr
10

+
Mo
15

+
V
10

(1)

All the specimens were prepared with the dimension of
25 mm × 25 mm × 5.85 mm from a single steel plate that
had been officially certified for shipbuilding by the Indian
Register of Shipping. The samples were ground and pol‐
ished up to 2 000 grit SiC sheets. The glossy substrates are
subjected to a pre-treatment process that includes 10 minutes
of ultrasonic cleansing with acetone, 2 minutes of immer‐
sion in ethanol, and 1-minute soaking in a 10% sulphuric
acid for picking. Then, the samples are thoroughly cleaned
with DM water in between the pre-treatment activities and
before dipping the substrate in the deposition process.

2.2 Bath preparation and deposition

Table 3 lists the chemical composition of the ENi-P
bath. NiCl2·6H2O and NaH2PO2·H2O are used as nickel
sources and reducing agents in the Electroless electrolyte.
The complexing element is C6H5Na5O7·2H2O. Additional‐
ly, buffering agents such as ammonium chloride (NH4Cl)
and ammonia (NH3) were used to maintain a constant pH
in the deposition bath throughout the deposition process.
The ENi-P matrix was co-deposited with nano TiO2 pow‐
der (Make: Sigma Aldrich, Size-70 nm). In the electroless
bath, zwitterionic surfactant 3-(N, N- Dimethylmyristylam‐
monio) propanesulfonate, (C14-SB surfactant) propane
sulfonate is mixed to minimize surface tension between
the bath and nano TiO2 for enhanced particle absorption in‐
to the coated surface. Nano TiO2 and surfactant slurry are
agitated for 20 minutes using ultrasonic dispersion before
the full bath is stirred at 100 r/min for the deposition peri‐
od to minimise the agglomeration of nano TiO2 particles
(Gadhari and Sahoo 2016). The 45 specimens are coated
with different ENi-P-TiO2 composites per Taguchi L9 or‐
thogonal model combinations with five sets of replication
to obtain accurate ANN training and testing data. In addition,
the previously reported optimised bath loading of 0.5 dm2/L
is used to accommodate the specimen size of 25 mm ×
25 mm × 5.85 mm (Taheri 2003). The nano TiO2 powders
were weighed before adding to each electroless bath usingTable 1 Elemental analysis data of AH36

C

0.177

Ti

0.017

Mn

1.222

V

0.004

S

0.004 4

Mo

0.08

P

0.012

Ni

0.01

Si

0.392

Cr

0.03

Al

0.042

Nb

0.020

Cu

0.016

CEq

0.279 0

Table 3 Bath constituents and their parameters

Chemicals

NaH2PO2·H2O

NiCl2·6H2O

C6H5Na5O7·2H2O

NH4Cl

Deposition duration

Bath volume

Stirring rpm

Bath temperature

Bath pH

C14-SB surfactant

Nano TiO2

Brand

Merck

Ni-P-TiO2 composites

35 g/L

30 g/L

50 g/L

50 g/L

60 min

400 mL

100

80, 84, 88 ºC

4, 6, 8

0.009, 0.018, 0.027 g/L

0.25,0.50, 0.75 g/L

Table 2 Mechanical properties of AH36

YS (MPa)

432

UTS (MPa)

524

Young modulus (MPa)

200 000

Standard

ASTM A 131
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an electronic digital scale with 0.000 1 g accuracy.

2.3 Measurement of microhardness

Vicker hardness tester (Make: M/s Shimadzu (Asia Pa‐
cific) Pvt Ltd. Singapore, Model: HMV-2T) is utilised to
gauge the microhardness of each coating. All indentation
was performed with a 200 g force load at 50 µm/s and 10
second dwell time. Furthermore, all indentation was ob‐
served above 1/10th of the coating thickness, indicating
that the base metal had no contribution (Bückle 1959). The
average values of 5 readings from each coating are consid‐
ered for the specimen’s microhardness value and tabulated
in Table 3.

2.4 Experimental design and datasets

Figure 1 depicts the schematic diagram of an adopted
neural network. The model comprises three layers, 1) in‐
put layer where input data is passed through, 2) hidden lay‐
er with three layers and nodes, and 3) output layer. Each
node in the layers gets an input signal from various previ‐
ous neurons, multiples with assigned weights and bias, and
applies some activation function. In ANN, the number of
hidden layers and nodes in each layer plays a significant
role in determining the ANN’s performance. The hidden
layer size and quantity selection solely depend on the de‐
signer’s expertise and the nature of the problem (Srinivasa
Pai et al. 2008). Normalising input data between 0 to 1 is
considered the primary function in modelling the neural
network. Determination of output data is regarded as the
last step in the ANN. The former activity is for magnifying
sensitivity to achieve network accuracy. The latter deter‐
mines the actual desired values and absolute simulation
errors (Beygi et al. 2012). Finally, the error signal is esti‐
mated and backpropagated from the output layer to obtain
low loss or error signals to adjust the weights and biases.

Backpropagation with gradient descent or Adam optimis‐
ers is currently being used to train neural networks in pre‐
diction analysis and other applications (Srinivasa Pai et al.
2008).

The simulation study on input process parameters and
their response (Microhardness) was performed using Python
software and an ANN in a TensorFlow environment. Fur‐
thermore, the desired response parameter is to attain maxi‐
mal coating hardness from the experiment. As a result, the
ANN model is trained and tested using the microhardness
values obtained through the experimental design shown in
Table 3. Finally, the ANN model predicts an unknown mi‐
crohardness value for proposed coatings designed using var‐
ious newer combinations of the input parameters used to
train the network.

The initial experimental data sets are used to train the
model to understand the ANN architecture process. The
correlation-based ANN model architecture is comprised of
four critical steps. 1) Data acquisition, 2) Conceptualiza‐
tion and composition of the relevant ANN model, 3) Weights
and biases setting, and 4) Model training and validation.
Backpropagation Neural Networks (BPNNs) were used in
this simulation to predict and synthesise an optimal elec‐
troless ENi-P-TiO2 deposit on marine grade AH36.

The neural network began the training process with ran‐
dom weights and continuously adjusted the weights to
achieve the minor loss function from the training set. Addi‐
tionally, the validation function optimises the ANN archi‐
tecture by adjusting the activation function, the training
function, the number of hidden layers, and the number of
neurons in each hidden layer. Finally, the test set evaluates
the trained model’s performance and effectiveness. The
ANN hyperparameters are chosen to minimise the mean
square error. A network with an input layer with four vari‐
ables, single output, and three hidden layers are selected as
a suitable model for this prediction analysis.

Figure 1 ANN model architecture
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Table 4 summarises the raw data. First, it is utilised to
train and evaluate the ANN simulative model to predict
the proposed coating combinations target value (micro‐
hardness). Then, using the optimal values of nickel source,
reducing agents, bath loading, and stabilising agents deter‐
mined by prior research, the coating parameters were fi‐
nalised (Taheri 2003).

2.5 Bath composition analysis

Still, the process behind the electroless deposition occur‐
ring in the hypophosphite bath is not thoroughly under‐
stood. However, the arguments between the proposed
mechanism and the atomic hydrogen and electrochemical
mechanism were mainly accepted. Electroless Nickel coat‐
ing occurs in microwells, altering anodic cathodic polarity
on the substrate surface, conforming to the electrochemi‐
cal mechanism. The relevant anodic and cathodic reactions
are illustrated as follows:

H2PO2
− + H2O → H2PO3

− + 2H+ + 2e−, E = 0.50 V (2)

Ni2 + 2e− → Ni, E = − 0.25 V (3)

2H + 2e− → H2, E = 0 V (4)

H2PO2
− + 2H+ + e− → P + 2H2O, E = 0.50 V (5)

From the above equations, nickel deposition is generally
accompanied by evolving of hydrogen ions (H+), molecu‐
lar hydrogen (H2), and the oxidation of hypophosphite to
phosphate (Agarwala and Agarwala 2003; Mallory 1990;
Reidel 1991). In an electroless deposition, the predomi‐
nant properties of the coated layers are dependent on elec‐
troless bath compositions (Sahoo and Das 2011). However,
because the process’s influential variables are non-linear
and exhibit complex effects during the coating process, a
reliable neural networks analysis model in the electroless
deposition as a function of bath composition parameters is
required. The four newer combinations with the optimal

nickel source, reducing agents, and stabilisers are deter‐
mined based on previous findings by various authors and
are maintained constant throughout the deposition process
for all combinations. This experimental cum simulation
study was determined to identify the contribution effect of
very rarely studied zwitterionic surfactant and nano TiO2

powder in the composite electroless bath.
Previously, the ANN model was used to predict the plat‐

ing rate based on the nickel source, reducing agent, and
complexing agent composition of the bath. However, in
this study, the bath temperature was set between 80 and
90 ℃, and the pH range was set between 4 and 8 to achieve
the combined benefits of maximum deposition and in‐
creased phosphorous content, as demonstrated by previous
findings (Reidel 1991). Additionally, previous research es‐
tablished that nickel concentration and the Ni++/H2PO2

− ra‐
tio were the significant factors for a higher deposition rate.
Consequently, the ratio was set to an optimal value of
0.45, and the nickel chloride concentration in the bath was
adjusted to 30 g/L for the best deposition rate, as deter‐
mined by a previous report (Taheri 2003).

2.6 Process parameter and ANN model

According to Table 4, the optimal bath composition for
maximum microhardness in the ENi-P composite surface
coated with the bath temperature of 80 ℃, pH 8, 0.027 g/L
zwitterionic surfactants 0.75 g/L nano TiO2. A neural net‐
work architecture was used to model the ENi-P-TiO2 com‐
posite deposition as a function of electroless process pa‐
rameters. The four process parameters are fed to the ANN
input neuron as input data, and the corresponding micro‐
hardness values of each sample were taken as a single out‐
put parameter. The measured hardness and the correspond‐
ing input parameters are used to train the ANN model to
device the neural network to facilitate prediction analysis.
Figure 1 displays the conceived ANN architecture to predict
microhardness for ENi-P-nano TiO2 coatings. Figure 2 re‐
veals the comparable regression graphs between predicted

Table 4 Design of experiments and datasets

Run

1

2

3

4

5

6

7

8

9

Bath Temp (℃)

80

80

80

84

84

84

88

88

88

Bath pH

4

6

8

4

6

8

4

6

8

C14-SB
surfactant (g/L)

0.009

0.018

0.027

0.018

0.027

0.009

0.027

0.009

0.018

Nano TiO2 (g/L)

0.25

0.50

0.75

0.75

0.25

0.50

0.50

0.75

0.25

Microhardness HV200 (Five sets)

1

255

406

570

307

399

465

291

328

422

2

250

401

577

298

402

469

305

338

418

3

251

397

588

289

395

458

299

330

422

4

256

408

591

286

408

465

292

328

432

5

249

410

590

297

392

472

293

332

435
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and tested values distinctly. According to Table 4, the opti‐
mal bath composition for maximum microhardness in the
ENi composite surface coated with the bath temperature of
80 ℃ , pH 8, 0.027 g/L zwitterionic surfactants 0.75 g/L
nano TiO2 was identified as the optimal process parameter
composition. An ANN architecture was used to model the
deposition of ENi-P-TiO2 composites as a function of four
electroless process parameters and shown in Table 5. When
the four process parameters are fed into the ANN input
neuron, the microhardness values of each sample are taken
as one output parameter. The measured microhardness and
the corresponding input parameters are used to train the
ANN model and simulate the design to facilitate predic‐
tion analysis. As shown in Figure 1, the proposed artificial
neural network architecture is used to predict microhard‐
ness for ENi-P-nano TiO2 coatings.

An artificial neural network was developed to predict
the microhardness of ENi-P-TiO2 coatings using the Python
programming language and the Keras library. The ReLU
function is used as an activation function in this ANN
architecture. The equation depicts functions based on the
ReLU algorithm.

f ( x ) = {0.01 x for x < 0
x for x ≥ 0

(6)

2.7 Hyperparameter tuning

The various primary parameters required for the formu‐
lation of ML algorithms are deduced through training. Fur‐
thermore, unique ML algorithms are constructed so that
the initialization of the learning process necessitates the in‐
put of a few primary parameters. These parameters are
called hyperparameters (Mantovani et al. 2015). The opti‐
mal hyperparameters typically determine the learning per‐
formances of the majority of algorithms. As a result, the
hyperparameters must be fine-tuned to achieve a better
learning process. However, tuning is a costly computation‐
al process that exaggerates as the search space expands.

The various ANN hyperparameters configuration were
analysed separately, and the Keras tuner identified the opti‐
mal combination. The optimised parameters are then used
in the formulated ANN network to improve prediction ca‐
pability. Finally, the predicted microhardness values from
the trained ANN model are compared to the experimental
results to validate and assess the accuracy of the ANN
model developed for this prediction analysis.

2.8 Evaluation of ANN model

Model accuracy evaluation is necessary for machine
learning models’ configuration to determine their produc‐
tion capability. In regression studies, the mean squared error
and R2 (correlation coefficient) are used to estimate the pre‐
diction error rate and model’s effectiveness. The MSE rep‐
resents the difference between the original and predicted
values as determined by the data set’s average square dif‐
ference. The R2 value indicates how close the measured
values are to the predicted values. Members denote its per‐
centages with a value between 0 and 1. The greater the value
of R2, the more predictive capability the model does have.

3 Results and discussions

3.1 Effectiveness of ANN model

In the current implementation of the ANN model, 25%
of the derived data set is used for testing and 75% for train‐
ing. When the loss of test data increases, the model is de‐
signed to cease further interaction to avoid overfitting the
data. Due to overfitting, the current ANN model process
required 500 epochs before it was decided to stop training
due to increasing test data loss. The loss progression over
time is depicted in Figure 2 for both test and training data.
The mean square error of the loss and the mean absolute
error of the tuned ANN model are 34.563 4 and 4.45, re‐

Table 5 ANN model specifications

Sl.No.

1

2

3

4

5

6

7

8

9

10

11

Particulars

Input layer-no. of neurons

Output Layer-no. of neuron

No. of hidden layers

No. of neurons on hidden layer-0

No. of neurons on hidden layer-1

No. of neurons on hidden layer-2

Activation function

Optimizer

Error function

Train data: test data

Leaning rate, Batch size and epochs

Model details

4

1

3

320

512

32

ReLU

Adam

MSE, Least square
error

0.75: 0.25

Optimized values
adopted

Figure 2 Model loss vs. epoch
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spectively, for testing and training data.
The effectiveness of the developed ANN model was de‐

termined using the built-in simulation. Figure 3 compares
test and predicted values for randomly selected (25%) data
sets. The trend line between the test and predicted values
demonstrates unequivocally superior effectiveness of the
formulated ANN model.

3.2 Confirmation test

Conformational experimentation was used to validate
the effectiveness of the formulated ANN prediction model
with a newer set of input parameters. Hence, the newer
combination suggested by the Taguchi DOE was utilized
to analyse the effectiveness of the ANN model for un‐
known input parameters. Accordingly, Table 6 summarises
the proposed parameters and their levels for prediction
analysis. A new Taguchi L9 orthogonal array was designed
to monitor bath temperature change. The intermediate in‐
tervals of bath pH, the weight of surfactant concentration,

and TiO2 were simulated using an ANN model, and minimal
variation in their microhardness values was observed. How‐
ever, when the bath temperature was varied by two degrees
between 80° and 88°, a significant change in the microhard‐
ness value was observed. As a result, only the bath temper‐
ature is considered in the confirmation test simulation.

The substrates for confirmation test specimens are fabri‐
cated from AH36 steel with the same heat number. Therefore,
all of the chemicals used in the initial deposition and vali‐
dation coating are of the same make and batch, and the
experimental conditions are identical. Table 7 compares
the microhardness predicted by the ANN model to the mi‐
crohardness values measured on experimental validation
samples.

The ANN model proficiency was assessed based on R2

and MSE values (Golnaraghi et al. 2019), as summarised
in Table 7 for the tuned ANN model. In addition, the com‐
parison of predicted and experimental microhardness val‐
ues reveals that it is best suited for predicting hardness val‐
ues of ENi-P-nano TiO2 composites coatings. In addition,
Figure 4 depicts the comparison of regression graphs be‐
tween predicted and tested values in greater detail, along
with its R2 value and Regression formula. It is clear from
the calculated R2 value of 0.959 that the proposed ANN
prediction model can accurately predict the microhardness
of ENi-P-TiO2 coatings fabricated on AH36 steel for the
newer coating designed using a newer combination of the
four input process factors discussed in this work. However,

Figure 4 Graph between test vs. predicted microhardness values

Figure 3 Test vs. prediction values of ANN model

Table 6 Process parameters and levels for confirmational test

Sl

1

2

3

Temperature (℃)

82

84

86

pH

4

6

8

Zwitterionic
surfactant (g/L)

0.009

0.018

0.027

TiO2 (g/L)

0.25

0.50

0.75

Table 7 Comparison of microhardness values predicted vs. measured

Run

1

2

3

4

5

6

7

8

9

Temperature (℃)

82

82

82

84

84

84

86

86

86

pH

4

6

8

4

6

8

4

6

8

Zwitterionic (C14-SB)
surfactant (g/L)

0.009

0.018

0.027

0.018

0.027

0.009

0.027

0.009

0.018

Nano TiO2

(g/L)

0.25

0.50

0.75

0.75

0.25

0.50

0.50

0.75

0.25

Hardness
(predicted by ANN)

250

406

572

309

410

482

319

368

464

Measured
(actual)

221

397

559

332

392

505

305

348

428

R² = 0.959
MSE = 34.563 4
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prediction is restricted to the minimum and maximum val‐
ues of the four input variables.

3.3 Theeffectsofelectrolessbathprocessparameters

In this study, the effects and contributions of process pa‐
rameters and their significant contributions to enhancing
the hardness of the coated surface were investigated. As a
result of the information compared to Table 7, the contribu‐
tion effect of input parameters on microhardness is under‐
standable. At the same time, to comprehend the effects of
bath temperature on the microhardness of the coating, it is
necessary to compare the deviation between predicted and
achieved microhardness values of the designed coatings.
As a result, the achieved microhardness value for Run 3 in
Table 7 is 559 HV200, which is lower than the predicted val‐
ue of 572 HV200. Except for the bath temperature, all other
input parameters such as bath pH, surfactant weight addi‐
tion, and nano TiO2 are identical (i. e., bath pH 8, surfac‐
tant and TiO2 concentrations are 0.27 g/L, 0.75 g/L, respec‐
tively). However, the microhardness value for Run No. 3
in Table 7 is lower than the microhardness value for the
coating synthesised at 80 ℃ with identical remaining bath
combinations and previously used for ANN model training
and tabulated in Table 4.

Furthermore, the maximum microhardness value is ob‐
tained at 80 ℃, indicating that bath temperature is a deter‐
minant factor in achieving significantly greater microhard‐
ness in ENi-P-TiO2 composite coatings. It can be easily ob‐
served in Figure 5, which is consistent with previous find‐
ings (Beygi et al. 2012). The experimental validation data
are tabulated in Table 6, and the graphical representation
of bath pH vs. microhardness is depicted in Figure 6. The
higher microhardness value is observed on coatings syn‐
thesised at bath pH 8 only from both representations.

When the microhardness values of specimens fabricated
with pH 4 and 6 are compared, the Run No. 3, 6, and 9
from the pH 8 set have the highest microhardness, i. e.,
559 HV200 and 505 HV200, 428 HV200, respectively, than the
run fabricated with pH 4 and 6. Simultaneously, the opti‐

mal microhardness value obtained for the composite coat‐
ings and used in the training of the ANN model is pH 8.
Thus, the experimental and predicted data fully support
the current findings regarding electroless bath pH, which
is also critical in achieving the microhardness value in
ENi-P-TiO2 coatings. Typically, alkaline baths reduce the
phosphorous content of the coating. However, due to the
coating forming a single phase, the maximum bath hard‐
ness can be achieved with a low phosphorous weight con‐
tent. Additionally, an EDAX micrograph of the coatings
was used to evaluate and confirm these findings, consis‐
tent with the earlier findings (Duncan 1996).

The following findings are concerned with adding zwit‐
terionic surfactant in the electroless bath. The data men‐
tioned in Figure 7 suggests that the highest microhardness
value achieved in experimental runs 3, 6 and 9 are fabricat‐
ed with 0.027 g/L of C14-SB surfactants in the coatings. It
is due to the fact that the addition of C14-SB surfactant im‐
proves the Nickel deposition along with the deposition
of TiO2 particles (Zhang and Somasundaran 2006). There‐
fore, from the experimental results, the maximum hardness
of the coating is achieved with the addition of 0.027 g/L
zwitterionic surfactants in the electroless bath, which cor‐
roborated with the previous findings (Muraliraja et al. 2016).

3.4 Morphological analysis and phase evolvement

Figure 8(a) reveals the SEM image of the optimal coating

Figure 5 Effect of temperature vs. microhardness

Figure 7 Effect of C14-SB zwitterionic surfactant vs. microhardness

Figure 6 Effect of bath pH vs. microhardness
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of Run No. 3 (Set No. 4) from Table 3. The addition of the
zwitterionic surfactant at its CMC level resulted in the for‐
mation of globules in the deposition. In addition, the depo‐
sition surface was observed with minimal surface cracks
and better disbursing of TiO2 in the ENi-P matrix. It is due
to the formation of the monomer layer, which is inherent
in both positive and negative head groups, enhancing the
nickel deposition in the surfaces due to the combinative at‐
tractive and repulsive forces. Furthermore, the additional
attractive force present in the negative head due to Sul‐
phonic groups attracts more Ni particles towards the sub‐
strate, and a better Ni-P matrix is formed during the depo‐
sition process. Further, at the CMC level, the TiO2 is also
get deposited into the Ni-P matrix, which enhances the
hardness of the coated surface on the optimal specimen.
The same was corroborated with the earlier reports (Mu‐
raliraja and Elansezhian 2014). The EDAX micrographs
shown in Figure 8(b) also reveal Ni, P, and TiO2 content
on the coated surface.

Figure 9 shows the phase and comparative analysis of
the substrate (AH36) and the optimal ENi-P-TiO2 coating
surfaces based on XRD plots. The visible Fe7C and Fe3C
peaks are from the AH36 steel substrate material from the
combined XRD graph. Similarly, the reduced intensity of
the identical phase peaks is visible on the optimal coated
surface. The ENi-P-TiO2 deposition over the base material
surface causes a reduction in peak intensity from the avail‐
able ferrous phases from the coated surface. Because only
very thin (in microns) deposition is available, total diffrac‐
tion of the base material surface is unavoidable. The ENi-
P-TiO2 surface also showed the presence of Ni, P, and TiO2

phases, and the same can be corroborated by the available
EDAX micrographs shown in Figure 8(b). However, indi‐
vidual phase peaks are not visible due to the overlapping
of the amorphous surface and intermingling of the phases

in the coated surface due to using C14-SB surfactant in the
electroless bath.

4 Conclusions

The various process variables determine the coated sur‐
face’s elemental composition and mechanical properties in
the electroless coating. Additionally, the design and identi‐
fication of optimal surfaces fabricated with electroless Ni-
P-nano TiO2 coatings on AH36 steel surfaces require many
fabrication and analytical experiments. This paper exam‐
ined the viability of using an ANN-based prediction model
to achieve optimal ENi-P-TiO2 coating at a low cost. Fur‐
thermore, the authors also discussed hyperparameters and
utilised a separate algorithm to determine optimal values.
Observing the results of this study, it is evident that the in‐
put process factors have contributed to a significant effect
on the hardness of coated surfaces.

Furthermore, this study enables us to predict the hard‐
ness of the newer Ni-P-nano TiO2 coatings by employing
the ANN-based prediction model, and the most cost-effec‐
tive design can be manufactured economically and more
efficiently. Nevertheless, the performance of ANN-based

Figure 9 XRD plots of substrate AH36 and optimal ENi-P-TiO2 coating

Figure 8 SEM image and EDAX micrographs of the optimal ENi-P-TiO2 coating
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prediction models can be improved by providing addition‐
al details as input variables other than the discussed input
process factors, such as the elemental composition of phos‐
phorous, nickel in future research. The authors also sug‐
gested that future ANN-based prediction modelling could
include the formulation of multi-input and multi-output-
based models to achieve a more accurate prediction model
for electroless coating in the surface modification field.
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