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of transmissions, but also by the waiting time between
transmissions, which increases for any localization. The net-
work becomes more robust and less sensitive to the choice
of localization type.

Generally speaking, Equation (34) shows that from some
T, optimization with respect to the time criterion becomes
impossible, since the lifespan of the reference node tends
to 800 hours, regardless of the usage model. Dependence
of the reference node lifespan on the interval between mea-
surements for the optimal distance between nodes (chosen
as 1 700 m) for water area with low absorption coefficient 3
is shown in Figure 16. Figure 16 shows that the reference
node lifespan does not exceed 800 hours for all localiza-
tion models. This corresponds to the standby time without
packet forwarding.
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Figure 16 Reference node lifespan versus time between measurements
in the water area of S=144 km® with low absorption coefficient # when
the nodes are placed at a distance of 1 700 m from each other

Consider the solution of a real problem of designing an
optimal hybrid UWSN with a mobile gateway, the role of
which is performed by the WG, for given design parame-
ters as an example. As highlighted before, the UWSN,
measuring the physical characteristics of the medium
by bottom sensors with a frequency of once per hour,
in the water area of S=144 km’ and depth of 1 000 m
with known (low) muddiness (packet delivery probability
equal to p=0.97) is considered.

It follows from the results obtained above that the sen-
sors should be located in the nodes of the orthogonal grid
at distances =1 100 m from each other in order to provide
the required probability. Under this condition the total
number of sensors in the water area will be equal to
n*(r)= 144 km’. For energy optimization and increase in
network lifespan it is necessary to choose the “perimeter
bypass” model. In this case, the total number of sensors on
the perimeter, alternately performing the role of reference
nodes, will be equal to 44. The load of reference node can
be now calculated, which turns out to be on the average
3.27 messages per cycle for given parameters. Then, if da-
ta is collected hourly by sensors, then the last reference
node will accumulate 62.7 messages during a single wave-
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glider bypass of the perimeter (19.2 hours).

Taking into account the technical features of the modem,
let us assume that it can confidently receive/send messages
within a cone with an angle of o = 60°. From the location
of sensors, it is easy to determine that the glider at the design
speed can continuously take data from the sensors moving
along the perimeter of the water area. In this case, the WG
have an average of about 25 s to receive one message. If,
for any reason, several retries are required to receive a mes-
sage from the reference node, they must be performed within
the specified time interval.

This example of the hybrid UWSN architecture shows
that a wave glider for relatively small water areas is a prom-
ising mobile platform that effectively acts as a gateway for
retransmitting data collected in the underwater segment of
the network to data centers.

7 Conclusions

This paper analyzes the main functional characteristics
of three different localizations of sensor nodes for the mod-
el of using the UWSN with a mobile gateway, the role of
which is performed by a wave glider. The mathematical ap-
paratus, based on the probabilistic approach, allows to esti-
mate the energy characteristics of the considered UWSN
communication architectures, namely to determine the to-
tal energy costs of the network for message transmission
and the network nodes lifespan. In this case, a simple dy-
namic “neighbor-to-neighbor” protocol based on competi-
tive access to the environment is considered as an MAC
protocol in model problems.

Due to the fact that the applied problems solved by the
UWSN have different requirements for the network design
parameters, a wide enough range of changes in such pa-
rameters as: water area size (network scale); required num-
ber of sensor nodes located in a specific water area; fre-
quency of data collecting from sensors (cycle time); physi-
cal characteristics of the environment are considered to
find the optimal solution. The paper considers three mod-
els of using the WG for servicing underwater network seg-
ment: clustering model, water area “perimeter bypass” model
and “coastline bypass” model. The indicators of power ef-
ficiency and reliability depending on the above-mentioned
design parameters are studied for the nodes of the under-
water segment of the network within these models.

Analysis of the simulation results leads to the conclu-
sion that the clustering model of nodes localization has the
best performance and reliability characteristics for large-
scale networks. On the contrary, for small-scale networks,
the “perimeter bypass” model of the node localization has
the best characteristics.

It is shown that for all considered localizations there are
extremums (minimum) of dependences of the network to-
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tal energy costs on the distance between nodes. And there
are also extremums (maximum) of dependences of the ref-
erence nodes lifespan on the distance between nodes for all
considered locations, except clustering model.

These results allow determination of the optimal place-
ment of nodes for water areas with known physical charac-
teristics of the medium to obtain the best reliability and ef-
ficiency. The presented model example of designing an op-
timal UWSN with a mobile gateway for a water area of a
specific size shows that the “perimeter bypass” use model
is practically feasible, energy-efficient and reliable for the
case of data collecting by a sensor once per hour on a rela-
tively small water area of 144 km”. Under the accepted as-
sumptions, the wave glider is able to reliably serve the un-
derwater segment of the network and transmit data to the
processing center. The WG has enough time to receive the
messages accumulated by reference nodes (on average, about
25 s for every message) in the mode of continuous motion
for depths of about 1 000 m. These conclusions confirm the
fact that the WG can be used in practice as a mobile gate-
way of the UWSN with stationary bottom nodes.

The results obtained in the work show the need for fur-
ther research based on the proposed probabilistic model of
the hybrid UWSN taking into account: the spatial and un-
even placement of sensor nodes in the water area, the spa-
tially variable probability field of signal transmission.
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