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Abstract

The efficiency of a Mewis propeller duct by the analysis of ship operational data is examined. The analysis employs data
collected with high frequency for a three-year period for two siter vessels, one of them fitted with a Mewis type duct. Our
approach to the problem of identifying improvements in the operational performance of the ship equipped with the duct is
two-fold. Firstly, we proceed with the calculation of appropriate Key Performance Indicators to monitor vessels
performance in time for different operational periods and loading conditions. An extensive pre-processing stage is
necessary to prepare a dataset free from datapoints that could impair the analysis, such as outliers, as well as the
appropriate preparations for a meaningful KPI calculation. The second approach concerns the development of multiple
linear regression problem for the prediction of main engine fuel oil consumption based on operational and weather
parameters, such as ship’s speed, mean draft, trim, rudder angle and the wind speed. The aim is to quantify reductions due
to the Mewis duct for several scenarios. Key results of the studies reveal a contribution of the Mewis duct mainly in laden
condition, for lower speed range and in the long-term period after dry-docking.

Keywords Performance monitoring; Energy saving device; Regression models; Data processing; Mewis duct

1 Introduction

The shipping industry is constantly seeking ways to im-
prove the ship energy efficiency either for economic reasons
or for regulatory reasons arising from example from IMO’s
initial strategy for the reduction of Greenhouse Gas emis-
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sions by at least 50% by 2020, compared to 2008 levels
(IMO, 2018).

Several design and operational solutions have been pro-
posed. Bouman et al. (2017) and Brynolf et al. (2016) pro-
vide a detailed presentation of the energy reduction poten-
tial achieved by technical and operational solutions. The first
category concerns mainly affecting ship design such as hull
form optimisation, implementation of energy-saving devices
and waste-heat recovery, while the second category targets
solutions involving optimal operation of the ship like weather
routing, speed optimisation and preventive maintenance.

Within design solutions, a popular choice is the installa-
tion of energy-saving appliances involves installations that
are positioned at the area of the ship’s propeller, aiming to
increase its efficiency and, thus, the vessel’s overall propul-
sive performance. Such upgrades include the Kort nozzle,
the wake-equalizing duct, the Mewis duct, the Schneekluth
wake equalizing duct, the pre-swirl stator, the propeller boss
cap fin and other (e.g., Schneekluth and Bertram, 1998).

Among the above technologies, a popular choice is the
Mewis duct, which is a hull appendage with an integrated
fin system located forward of the propeller, mounted in its
inflow region. It has been introduced in the industry since
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2010, and usually used in tankers and high block coeffi-
cient ships as an energy-saving device to improve the pro-
peller’s efficiency. Its operation relies on three main princi-
ples (Schneekluth and Bertram, 1998):

- Wake field equalization: The duct strengthens and
accelerates the hull’s wake into the propeller and also pro-
duces a net forward thrust.

- Reduction of propeller hub vortex: An improved slip-
stream behind the duct significantly reduces the hub vortex
with corresponding thrust deduction, leading to improved
thrust and better inflow to the rudder.

- Contra-rotating swirl: Due individually placed fins a pre-
swirl in counter direction is generated, recovering the rota-
tional energy from the slipstream and reducing the rotational
flow losses of the propeller.

In summary, the Mewis duct provides with a better stream-
lined and directed flow into the propeller, reducing its losses
and therefore improving its efficiency. The power savings
offered vary from 2%, for multipurpose vessels, up to 8%,
for tankers and bulk carriers (e.g.,ABS 2013, IMO 2016).
Additional advantages of the Mewis duct include the low in-
stallation time (approximately 4 days), the reduction of
cavitation and vibrations as well as that it requires no ser-
vice. However, its potential is subject to various factors
that constitute the ship’s hydrodynamic profile and, there-
fore, each vessel should perform individual hydrodynamic
analysis implementing CFD and/or model tests before in-
stalling the Mewis duct to evaluate its actual efficiency.

Nevertheless, for several reasons, operators still need to
measure and verify the claimed gains during the real opera-
tion of a ship when conditions can differ extensively from the
design ones. This study aims at the evaluation of a duct’s
efficiency from a different perspective, focusing on the per-
formance assessment of the operation of the duct. In principle,
performance monitoring involves measuring various physi-
cal quantities that affect a vessel’s performance by onboard
sensors with pre-arranged frequency and for a defined
amount of time. As a result, a database that characterizes
the vessel and its operation under different scenarios and con-
ditions is created. The real-time data describe the vessel’s be-
havior under various circumstances and can, thus, be used
to evaluate the effect of these circumstances or events on
the vessel’s performance. As suggested by Hasselaar
(2010), performance monitoring offers multiple benefits as
it facilitates the assessment of the hull and engine condi-
tion, it evaluates the ship’s design by comparing the true
operational parameters with the designed ones and it opti-
mizes the sailing performance as the true, optimal and
ship-specific operation point can be found.

In the current paper, we utilize performance monitoring
to quantify the fuel savings for an Suezmax crude oil tanker
with summer deadweight of 158 000 t (called vessel 1) fit-
ted with a Mewis duct during a dry-dock. Specifically, we
utilize high-frequency data gathered before and after the

installation of the Mewis duct to assess its actual, real-op-
eration impact on the propulsive performance. It shall be
noted however that the Mewis duct is installed during a dry-
dock, as a retrofit, where hull and propeller cleaning were
also occurred. So, a question arises related to which part of
the improvement is owned to the Mewis duct and which to
the hull/propeller cleaning. In addition, there was lack of
operational data after the previous drydock. Therefore, our
analysis will also consider a sister vessel (called Vessel 2)
that did not had a duct installed and whose performance will
be monitored the same period, to provide with a solid com-
parison that underlines the long-term effect of the Mewis
duct.

An overview of the proposed procedure for the evalua-
tion of the Mewis duct efficiency is presented in Figure 1.
Firstly, real-time operational data are collected, by a variety
of sensors and measuring devices. Section 2 describes the
processing phase of the initial dataset including the appli-
cation of several filters and the identification and removal
of statistical outliers. This phase concludes with the final
dataset of the operational data to be used for the performance
analysis. Then, the analysis proceeds in two directions. Sec-
tion 3 examines duct’s effect through a set of appropriate Key
Performance Indicators (KPIs) which target at monitoring
of the vessels’ performance in time. The second approach
concerns the development of a multiple linear regression
model to provide predictions about the fuel oil consump-
tion (FOC) for different operational scenarios (Section 4).
The KPI calculation and the regression analysis are two
different approaches for evaluating the duct’s efficiency
and a discussion on their findings is provided in Section 5.

Operation monitoring =

Data collection system Initial dataset

Data processing l’
» Filtering based on
threshold values = Examined dataset

« Statistical outlier removal

4 L 4

Analysis based! e be}sed
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on KPIs el

4 L
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Figure 1 Flowchart of the proposed study

2 Data analysis
2.1 Set-up of the data collection

The basic characteristics of the examined sister vessels
are shown in Table 1. Moreover, the monitored physical
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Table 1 Basic characteristics of the examined vessels (Vessels 1 and 2)
Ship feature Value Ship feature Value
Ship type Crude oil tanker Engine’s MCR 16 860 kW
Length between particulars 264 m Engine’s rpm (@MCR) 91 r/min
Breadth (moulded) 48 m Propeller’s diameter 8.8m
Depth (moulded) 23.1 Propeller’s pitch 6.37m
Maximum draft (7 ) 17.15m Propeller’s number of blades 4
DWT@T, . 157 000 tons Service Speed 16 kn
Engine model MANB&W6S70MC-C Build in 2010

quantities, which constitute the parameters of the problem
under study, are presented in Table 2. The sampling frequency
was 15 minutes, while the total time duration monitored was
3 years for both vessels.

Table2 Monitoring parameters

Measured physical quantity Parameter name Units

Speed over ground SOG kn
Speed through water STW kn
Main engine power EP kW
Mean draft ™ m
Shaft’s revolutions RPM r/min
Wind speed WS m/s
Main Engine’s fuel oil consumption FOC' tons/day

Aft draft TA m

Fore draft TF m
Trim T™M =TA-TF m
Rudder angle RA deg

'FOC values represents the fuel consumption of the main engine.

The key time periods examined are the following:

Vessel 1:

1. Period 1A: Before the propeller polishing (about 3
months)

2. Period 1B: Between the propeller polishing and the dry-
dock (about 4 months)

3. Period 1C: After the dry dock (duct operation) (about
29 months)

Vessel 2:

1. Period 2A: Before the dry-dock (about 10 months).

2. Period 2B: After the dry-dock (about 26 months).

The main events that affect the performance are:

- Dry-dock: a repair process which includes the cleaning
of the hull. As a result, the ship’s resistance is reduced, and
its propulsion performance is improved.

- Propeller polishing (only for Vessel 1): a repair which
greatly improves the propeller’s efficiency and, thus, the
overall performance of the vessel.

- Duct installation: a fitting procedure that aims at improv-
ing the propeller’s efficiency.

@ Springer

For the analysis to be more accurate and solid, the initial
data need to be properly processed in order reduce bias and
possible outliers. By omitting values that are not in accor-
dance with most data points, a reliable dataset can be created
and used as the basis of the KPI analysis and the regression
model, whose aim is to evaluate the impact of the Mewis duct
on performance.

The data filtering is achieved through the application of
specific filters that accurately identify and reject the “unde-
sirable” parameter values. As the analysis is time-bound, it
should be noted that in case a single parameter value is
considered “undesirable” then all the other parameter values
measured at the same instance will be automatically omitted.
Despite disregarding possibly “desirable” values, due to
the large size of the initial dataset (approximately 100,000
data-points for each vessel), the remaining dataset is ade-
quate for the analysis of the examined period.

The histograms of the STW and EP variables for both
vessels are shown in Figure 2 and Figure 3, providing a di-
rect visualization of the data range of these parameters.
The examination of the histograms is essential for the first
part of the filtering procedure, as it can reveal “undesirable”
data areas.

2.2 Data pre-processing-part I: threshold values

The first part of the filtering process sets minimum thresh-
old values targeting at the exclusion of values with no physi-
cal meaning, such as negative fuel consumption, which is
the result of sensor malfunctioning. Furthermore, data related
with low ship speed values, measured during port operations
and cargo handling, are also omitted. Such data cannot accu-
rately represent the relationships among the physical quan-
tities and thus, are excluded from the dataset by using re-
spective filters. The implemented threshold values are pre-
sented in Table 3.

2.3 Data pre-processing-part ll: outlier detection

The second part of the filtering process aims at the identi-
fication and removal of statistical outliers. To achieve that,
the relationships among the physical quantities are utilized.
Firstly, the correlations among the variables are calculated,
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Figure 2 Initial data-Histograms (Vessel 1)
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Table 3 Threshold values for initial filtering

Parameter Threshold
SOG (kn) 0
STW (kn) 3
EP (kW) 1000
FOC (tons/day) 3
RPM 20

so that their co-dependency can be assessed. Afterwards,
highly correlated variables are paired and filtered accord-
ing to the following procedure (Karagiannidis and Theme-
lis, 2021):

1. Choose a primary parameter X

2. The parameter values are divided into groups (Gi) of
range v.

3. A secondary parameter Y, which is correlated with the
primary parameter X, is chosen.

4. For each Gi group of X, the mean, m,,, and the standard
deviation, oy, of the respective Y values are calculated.
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5. An outlier threshold value & is defined, which multi-
plied by o,,, designates the “outlier threshold”

6. If the inequality |¥, - my,| > k-cy, is fulfilled, then

the Y, data point is omitted, along with the rest measure-
ments of the other parameters at the same timestamp.

Finally, once the impact of each X, Y pair (filter) is eval-
uated, an optimal combination of filters, shown in Table 4,
is chosen and applied to the dataset, leading to the final da-
taset. The values of the outlier threshold & and of the range
v were selected after some experimentation keeping in mind
to use a k value for each X, Y pair, which accompanied with
an appropriate small range, will be able to capture the outlier
values.

The impact of the bipartite filtering procedure is depicted
in Figure 4. The blue data points are the ones omitted by the
thresholds set at the first part of data pre-processing while
the red data points are eliminated by the second part. Finally,
the green data points are the remaining data that form the
final, filtered dataset.

The graphs of Vessel 1 reveal the existence of 3 main oper-
ational regions, which correspond to different propulsion
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conditions due to, for example, hull and propeller fouling or
weather effect. The curves contain valuable information
concerning the vessel’s performance and thus should not
be eliminated during filtering. As far as Vessel 2 is con-
cerned, its depicted curves show no significant outlier re-
gions and, thus, the filters’ impact on its data points is lim-

Table 4 Outlier detection - Applied filters

Filermame e parameter tveshald i R
SOG-STW  SOG STW 2 0.5 kn
STW-SOG ~ STW SOG 2 0.5 kn
EP-RPM EP RPM 25 100 kW
TM-TRIM ™ TRIM 25 0.5m
TRIM-TM  TRIM ™ 25 0.5m

Table 5 Percentage (%) of data points removed at each stage

Vessel 1 Vessel 2
Part I — Threshold values 37.6 33.1
Part II — Outlier detection 13.9 15.5
Total 51.5 48.6
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ited. Table 5 presents the percentage of data removed at
each stage of the filtering process.

3 Analysis based on KPlIs

3.1 KPIs definition

Changes in the performance level of the two vessels over
the various operational periods can be monitored through
suitable Key Performance Indicators (KPIs). Having in mind
the type of the performance related with the Mewis Duct,
the following KPIs are calculated and analyzed over the
monitoring period:

- KPIa = EP/RPM? It corresponds to the propeller curve
coefficient (e.g.,Logan, 2011, Themelis et al., 2019). When
the KPI’s value decreases, the vessel’s performance increas-
es since less power is required to maintain constant shaft’s
revolutions (constant denominator) and greater rpm can be
achieved for the same level of power (constant numerator).

- KPIb = STW/FOC: It expresses the fuel efficiency
(e.g.,Petersen et al. 2012, Aldous 2015). When the KPI’s
value increases, the vessels performance also increases
since for the same amount of consumed fuel by the main
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Figure 4 Scatter plots. Blue dots correspond to the data points filtered due to threshold values (part I), while the red one to the points

identified as statistical outliers (part II). As green shown the final dataset
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engine, higher speed through water is achieved (constant
denominator) and for the same speed value less fuel is re-
quired (constant numerator). As this KPI is affected by the
ship’s loading condition, it calculated separately for two
reference conditions (ballast and laden).

Before the KPI analysis is performed, three additional
data pre-processing actions are applied to the dataset to im-
prove the KPI calculations (Figure 5). The first one aims at
reducing the variance of the draft values by keeping only
those that lay around the two reference values (ballast and
laden drafts). The second one limits the effect of the weather
on the dataset by applying filters on the wind speed and
the rudder angle. Finally, the engine power and the fuel oil
consumption are both corrected by using the Admiralty
Coefficient (Themelis et al., 2018).

The draft correction is depicted in Figure 6 for both ves-
sels. The blue points are the ones that lie within the 10%
threshold while the black ones are those that are omitted.
The reference drafts are shown in Table 6.

3.2 KPIs calculation and discussion

Once the additional filters are implemented, the two KPIs

Draft
grouping

Keep values
with:
WS<8 m/s

Find 2 reference drafts (ballast
& laden loading condition)

Data correction-Additional filters

Weather
effect

are calculated for both vessels over the examined period.
Finally, a comparison between the two vessels is performed
aiming to assess the duct’s impact on performance. The
moving means of the KPIs along with their trend lines are
shown in Figures 7-9. During the fact that the post-dry-
dock period examined exceeds two years, the results and
respective discussion are grouped by two yearly time dura-
tions, thus they will be mentioned as the 1% and 2™ year af-
ter the drydocking.

3.2.1 Discussion on KPla results

As shown in Figure 7, the initial difference between the
two vessels’ KPIa is significant. In the pre-dry-dock period
(Periods 1A and 2A) Vessel 1 receives KPIa values of around
0.045 while Vessel 2 receives values that are almost half in
size (about 0.023). In addition to that, Vessel 1’s KPIa has
an upward trend while Vessel 2°s a downward one, a fact
that causes even greater difference. Towards the end of Pe-
riod 1A, the KPIa values of Vessel 1 are more than double
those of Vessel 2. The gap between the two KPIa values
depicts the significant difference in the performance levels
of the two similar vessels and highlights the poor efficien-
cy of Vessel 1.
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Figure5 Additional filters and corrections for the KPI analysis
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Figure 6 Trim-Draft (10% filter). Black dots correspond to the omitted data points
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Table 6 Reference drafts for both vessels and loading conditions

Unit: m
Ballast Laden

Vessel 1 6.93 15.56
Vessel 2 5.16 12.86
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Figure 7 KPIa for the two vessels (moving mean & trend)

Once Vessel 1 has its propeller polished, its KPIa reduc-
es to nearly half its previous values (from 0.045 to 0.026),
managing to cover the majority of difference with Vessel
2’s KPIa. Apart from narrowing the difference, the propel-
ler polishing seems to create ground for further improve-
ment as Period 1B’s trend line is almost parallel to that of
Period 2A, indicating that the two KPIa decrease at similar
rates. As a result, the performance gap between the two
vessels is temporarily stabilized.

The two vessels initially react differently to the dry-dock
repairs. Vessel 1’s KPIa is increased from 0.026 to around
0.0275 (less than 10% increase) while Vessel 2’s is signifi-
cantly reduced (about 20%). However, this widening of
the gap between the two KPIa has a short-term effect, as
the trend line of Period 1C is downward while that of Period
2B upward. The contrast between the two trends reveals
that while the performance of Vessel 2 is gradually deterio-
rating, a result that can be expected due to the increasing
hull fouling, Vessel 1’s performance is actually improved,
despite the fouling. This contradictory pattern can be ex-
plained by the duct installation which manages to decrease
KPIa for Vessel 1 in the long-term, when the effect of the
hull cleaning repair is weakened.

During the second year after the dry-dock, Vessel 2’s
trend line seems to have stabilized at a value of 0.0215
while Vessel 1’s continues to decrease, but at a lower rate.
The decrease of Vessel 1’s reduction rate is anticipated as
the fouling is more severe. However, due to the increased
performance achieved by the duct, the KPla of Vessel 1
continues its slight decrease. As a result, the vessel’s per-
formance gap reaches an overall minimum at the end of
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the measuring period (0.0235 vs 0.0215).

The impact of the duct is revealed as time passes and
the effect of the propeller polishing and hull cleaning are
weakened. Even though it is the propeller polishing that
manages to breach the initially huge gap, it is due to the
duct that the main ground is maintained in the long-term
and a further narrowing of the difference is achieved.

3.2.2 Discussion on KPIb results

Focusing initially on the ballast loading condition
(Figure 8), Vessel 2’s fuel efficiency is higher than Vessel
1’s, reaching more than double KPIb Ballast values (0.72
vs 0.35). The trend lines of Periods 1A and 2A are both
downward, with that latter having a smaller slope which
indicates that the deterioration of performance, is slower
for Vessel 2. As a consequence, towards the end of period
1A, the difference between the two KPIb Ballast is slightly
increased (0.65 vs 0.27). By examining the laden loading
condition (Figure 9), Vessel 1’s KPIb Laden values are ini-
tially significantly low (around 0.17) while Vessel’s 2 are
higher (around 0.29), with Period 2A beginning after the
end of Period 1B (propeller polishing). The initial low val-
ues are counterbalanced by the upward trends of the Peri-
od 1A’s and Period 2A’s trend line, which cause the KPIb
Laden values to reach 0.31 and 0.43 respectively (80% in-
crease vs 40% increase). The initial performance gap be-
tween the two is narrowed due to Vessel 1’s higher increase
rate (greater slope).

Once Vessel | has its propeller polished a significant
alteration in performance is noticed. Vessel 1’s KPIb Bal-
last values are instantly increased by about 150% (from
0.26 to 0.64) causing the Period 1B’s trend line to surpass
the Period 2A’s one very quickly. In addition to that, the
Vessel 1’s trend line is steeply upward in contrast with the
Period 2A’s trend line which is downward. As a result, the
performance gap between the two vessels is widened as
time goes by, with Vessel 1’s KPIb Ballast reaching a val-
ue of 0.92 while the respective value of Vessel 2 is less
than 0.58. This significant alteration in Vessel 1’s perfor-
mance underlines the positive effect of the propeller pol-
ishing, which manages to increase fuel efficiency by a rate
of about 150% in a small period of time. In the laden con-
dition, Vessel 1’s KPIb Laden is increased to 0.5 (about
60% increase), managing to surpass Vessel 2’s values and
significantly improving fuel efficiency. However, the ef-
fect of the propeller polishing is gradually weakened, and
Period 1B’s trend line is downward. As a result, at the end
of the period, Vessel 1’s KPIb Laden values are decreased
by 30% (from 0.5 to 0.36), approaching the pre-polishing
performance level. It can be understood that while the pro-
peller polishing manages to instantly increase fuel efficiency,
and thus performance, its effect is quickly reduced.

The two KPIb Ballast initially react differently to the
dry-dock repairs (Figure 8). Vessel 1’s KPIb Ballast is sig-
nificantly increased from 0.92 to 1.43 (50% increase)
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Figure 8 KPIb for the two vessels corresponding the ballast loading
condition (moving mean & trend).

while Vessel 2’s decreases from 0.54 to 0.49 (about 10%).
However, this widening of the gap between the two KPIbs
has a short-term effect, as the trend line of Period 1C is
downward while that of Period 2B upward. By the end of
Period 1C, however, the gap remains significant (1.00 vs
0.73) as the vessels’ initial reactions to the dry-dock have
not been counterbalanced by the trends. The effect of the
dry-dock seems to last longer for Vessel 2 than it does for
Vessel 1, whose performance deteriorates towards the end
of the first post-dry-dock year. In the laden condition
(Figure 9), Vessel’s 1 KPIb Laden is increased by about
20% (from 0.36 to 0.44) while Vessel 2’s also increases
but a slower rate (10% increase, from 0.43 to 0.48). Due to
Period 1B’s downward trend and Period 2A’s upward, Pe-
riod 2B’s trend line manages to surpass Period 1C’s for a
small period of time. However, Vessel 1’s trend line is
slightly upward, achieving KPIb Laden values of around
0.475 (almost 10% increase) by the end of the first post-
dry-dock year, while Vessel 2’s trend line is downward
and the respective KPIb Laden is reduced by about 20% in
the first post dry-dock year (from 0.48 to 0.38).

During the second year after the dry-dock, in the ballast
condition, Vessel 1’s trend line continues its downward
pattern, indicating that performance is reduced as the time
passes, a phenomenon that is possibly explained by the
constantly increasing hull fouling. On the other hand, Ves-
sel 2’s trend line, despite suffering an initial drop, contin-
ues its upward trend but at a lower slope, causing the KPIb
Ballast values to increase at a lower rate. Eventually, Ves-
sel’s 2 trend line surpasses Vessel 1’s and the performance
gap between the two vessels continues to grow given their
trends. Towards the end of the measuring period, the differ-
ence between the two KPIb Ballast is about 0.3 (0.62 vs
0.89) with Vessel 1’s values returning to a similar level as
the one achieved at the beginning of Period 1B (propeller
polishing). As far as the laden condition is concerned, Vessel
2’s KPIb Laden initially increases to 0.41 and continues its
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Figure 9 KPIb for the two vessels corresponding the laden loading
condition (moving mean & trend).

decline, but at a lower rate, reaching values around 0.39 at
the end of the measuring period. On the other hand, Vessel
1’s trend line is steeply upward and manages to counterbal-
ance an initial 15% reduction of KPIb Laden values (from
0.475 to 0.415) reaching values around 0.48, greater than
those achieved during the first post-dry-dock year.

Overall, despite Vessel 1’s initial increased performance
due to the propeller polishing and the dry-dock, Vessel 2
manages to reach higher KPIb Ballast values in the long-
term. The effect of the duct is not depicted in the particular
loading condition as the deterioration of Vessel 1’s perfor-
mance, due to the hull fouling and the weakening of the
dry-dock effect, is not counterbalanced in the long run. In
the laden condition, however, Vessel 1 manages to reach
KPIb Laden values that approach the overall maximum
achieved during the propeller polishing, towards the end
of the measuring period, when the effect of the propeller
polishing and the dry-dock is severely weakened if not
complete eliminated. At the same time, Vessel 2’s KPIb
Laden follows a more anticipated pattern by initially in-
creasing after dry-docking and eventually declining due to
the weakening of the dry-dock’s impact. The difference in
the performance pattern of the two vessels can be explained
by the propeller duct which successfully manages not only
to preserve the KPIb Laden values achieved after dry-dock-
ing but also to increase them, counterbalancing the nega-
tive effect of hull fouling and achieving greater fuel effi-
ciency in the long run.

4 Fuel oil consumption prediction-A multiple
linear regression model

4.1 Introduction

A regression analysis is performed to produce a model
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that can predict the fuel oil consumption of the two vessels
in the post dry-dock era, which is divided into two parts,
one for the first post dry-dock year (DD1) and one for the
second (DD2).

The FOC-EP relationship is linear and, thus, a linear re-
gression model predicting the consumption given the shaft
power is expected to produce solid results, as shown in Al-
dous (2015). However, this study aims to create a regres-
sion model to derive predictions for the fuel oil consump-
tion through the utilization of other related variables such
as the speed through water, the mean draft, the trim, the
wind speed and the rudder angle. For the speed variable
(STW), its square value is also examined along with the
rest of the variables as it appears to better express the ob-
served FOC-STW relationship.

The regression dataset is based on the dataset produced
in the data processing section, while the data processing ac-
tions that used for the KPI’s calculation are ignored. How-
ever, a filter concerning the speed through water is applied,
omitting speed values less than 8 kn. This elimination of
slow ship speeds, which account for a very limited portion
of the dataset, causes an improvement of the regression
models and leads to better predictions of the fuel consump-
tion without defying the natural aspect of the problem
since such vessels rarely travel in speeds under 8 kn.

A population model for a multiple linear regression
(MLR) model that relates a y variable to a number p of x
variables can be written as:

yi:ﬂ0+gi+2;):1ﬁj'xij (1)

where:

-y, : the i-th observation of the dependent variable.

- x; : the i-th observation of the j-th independent vari-
able.

- B, : the regression intercept term.

- B; : the slope coefficient of the j-th independent vari-
able.

- ¢, : the error term of the i-th observation (normal distri-
bution).

Table 7 Regression metrics — Description

It can be understood that the model relies on the assump-
tion that there is a linear relationship between the indepen-
dent variable and the predictors. Each f coefficient repre-
sents the change in the mean response, £ ( y), per unit in-
crease in the associated predictor variable when all the oth-
er predictors are held constant. The intercept term, S, rep-
resents the mean response, £ (), when all the predictors
are zero.

The MLR model that makes predictions for the y vari-
able can be written as:

yi=by+ zj: lbj'xij 2

where:

. )//\, : the predicted/fitted value of the i-th observation of
the dependent variable y.

- x; : the i-th observation of the j-th independent vari-
able.

- b, : the sample estimates of the ; coefficients and are
calculated as follows:

For each observation a residual (error) term is calculat-
ed:

&=y, (3)
4.2 Regression metrics

The regression analysis involves the calculation and in-
terpretation of some statistical quantities that are briefly
presented in Tables 7 and 8.

4.3 Correlations

As part of the regression model’s preparation, the corre-
lations among the examined variables (predictors) are cal-
culated and presented in Tables 9 and 10. High correlation
among the predictors may cause multicollinearity and as
a result, models that use highly correlated predictors are
avoided. Multicollinearity occurs when a predictor of the
model can be linearly predicted from the other indepen-

Metric Symbol Description
Coefficient of determination R Explains how much of the variation in the response can be explained by the
variation in the independent variables.
Variance Inflation Factor VIF Quantifies the severity of multicollinearity; the percentage to which the variance is
inflated for each coefficient due to multicollinearity.
Standard Deviation S Standard deviation of the distance between the observed and the fitted values.
, Assesses the size of the bias introduced into the responses by the presence of a
Mallow’s C, G,

model that lacks important predictors (underspecified model).
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Table 8 Regression metrics — Calculation

Metric Symbol

Calculation

Coefficient of determination ~ R?

Z(yi _)31')2 <1

0<R=1- - <
Z(y,—ﬁ)

For each coefficient, a regression model is calculated with the rest of the variables as the predictors.

The coefficient of determination R,2 is also calculated.

Variance Inflation Factor VIF 1

VIF, = ——

1 -R;
S _77

Standard Deviation S S = \/ z(nz'flz) z=y -7
Calculated in best subsets analysis for each examined model j. The number of variables of the
examined model is k, and its standard deviation . S, is the standard deviation of the unique model
Mallow’s C C that combines all the predictors.
P P §2_ g2
Co=k+1+L"N(n-k-1)
all
Table 9 Predictors’ correlations (Vessel 1 — DD2) 4.4 Best subsets

STW STW* TM WS RA
STW 1
STW*  0.997 1
™  0.198 0.167 1
WS 0.033 0.016 0.379 1
RA  0.055 0.062 -0.264 -0.141 1
TRIM -0.217 -0.187 -0.855 -0.372 0.189 1
FOC 0.725 0.714 0.529 0494 -0.119 -0459 1

TRIM FOC

Table 10 Predictors’ correlations (Vessel 2 — DD2)

STW STW* TM WS RA
STW 1
STW>  0.997 1
T™ 0444 0412 1
WS  -0205 -0208 -0.124 1
RA  -0.016 -0.008 -0.264 -0.040 1
TRIM -0.440 -0.433 -0.592 0.077 0.227 1
FOC 0.766 0.760 0.613 -0224 -0.174 -0434 1

TRIM FOC

dent variables with a substantial degree of accuracy. The
presence of collinearity causes the coefficients of the model
to change erratically in response to small changes in the data.
While the phenomenon does not reduce the reliability of the
model and its predicting strength within the sample dataset,
it may produce a regression model that gives invalid results
about individual predictors and cannot distinguish which
variables are redundant with respect to others. The effect
of multicollinearity is measured by the Variance Inflation
Factors (VIFs).

The best subsets analysis aims at identifying the most suit-
able regression model by comparing all the possible mod-
els, using a specified set of predictors. Despite the fact that
the unique model that combines all the available variables
is by definition the best in terms of R’, models with fewer
parameters may provide insignificantly smaller R*. As a re-
sult, an efficient model with less variables is often chosen
as it offers greater flexibility, reduces the possibility of
multicollinearity and avoids overfitting that may occur at
high R* values when the model is overly customized to fit
the peculiarities of the random noise of the sample.

For different number of variables the best subset, in
terms of R’, is presented in Table 11, Table 12, Table 13
and Table 14.

Table 11  Best subsets (Vessel 1 — DDI1)

Variables R’ G S STW STW> TM TRIM WS RA

1 70.06 31944 4.589 N

2 83.09 11460 3.449 N N
38928 1726 2.747 v oy N

4 89.89 758 2.667 N N N

5 9030 114 2612 ¥ v V4 4

6 9037 7 2603 ¥ v NV V4 4 4

It can be observed that Vessel 1°s regression models have
greater R” values than Vessel 2’s which cannot surpass the
70% threshold that is easily achieved by almost all Vessel
1’s models. As a result, Vessel’s 1 dataset provides better
FOC predictions than Vessel 2’s.

Speed through water squared is the most important inde-
pendent variable of the FOC regression models as it solely
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Table 12 Best subsets (Vessel 1 — DD2)

Variables  R? C, S STW STW? TM TRIM WS RA

1 50.94 39417 5.850 N

2 7427 9121 4.237 N N

3 80.52 1003 3.686 NN N

4 81.14 208 3.628 v o4V

5 8121 119 3621 ¥ NV NV N

6 8130 7 3613 ¥ NV NV N A Y

Table 13 Best subsets (Vessel 2 — DD1)

Variables  R* C S STW STW? TM TRIM WS RA

p

1 4423 13674 6.820 N

2 6330 1835 5.533 NN

3 6422 1264 5.463 NN N

4 6522 643 5386 vV ooV

5 66.16 64 5313 N N
6 6625 7 5306 v N N NV A Y

Table 14 Best subsets (Vessel 2 — DD2)

Variables  R? C, S STW STW? TM TRIM WS RA

1 5778 7946 6.531 N

2 68.61 1020 5.632 N

3 68.90 835 5.606 N N

4 69.54 424 5548 N N
5 69.96 156 5.510 N N N N
6 7020 7 548 v N NV VA 4

any of the other predictors. As a result, it is chosen as a pre-
dictor of the regression.

The addition/subtraction of the rudder angle variable (RA)
to/from a model has little impact on the calculated statisti-
cal quantities, a fact that clearly indicates its statistical in-
significance to the regression analysis. This conclusion per-
fectly agrees with the low correlation between the RA and
FOC variables. This effect has been strengthened due to the
inclusion in the dataset of ship speed values above 8 kn.

The 3-variable model that is chosen (STW>-TM-WS) pro-
vides satisfactory R*values, compared with the maximum
possible ones that are achieved by the 6-variable model, with-
out including many predictors, a choice that may cause over-
fitting or lead to an unnecessarily complicated model. The
model used by Safaei et al. (2019), utilizes the speed through
water, the displacement and the wave height to predict the
fuel oil consumption of 4 VLCCs, achieving high R’val-
ues. Similarly, the current model combines 3 physical quan-
tities that characterize sailing conditions; the vessel’s speed,
its loading condition (expressed by the mean draft rather than
the displacement) and the weather conditions (expressed
by the wind speed). The chosen predictors are lowly corre-
lated and, thus, the risk of multicollinearity is avoided.

4.5 Regression models

The basic characteristics of the four 3-variable regres-
sion models are presented in Table 15, Table 16, Table 17
and Table 18.

Table 15 Regression model characteristics (Vessel 1 — DD1)

explains a lot of the variation of the predicted fuel oil con-
sumption, something depicted by the big R* values of the
single-variable models. While STW is an equally important
parameter, it is not used in the chosen model in order to avoid
multicollinearity.

The fuel oil consumption is correlated more with the
mean draft (TM) than with the trim (TRIM). This relative
advantage of TM is shown in the above models; when only
one of two variables can be picked, mean draft is always
preferred over trim. Taking the above into account along
with the fact that mean draft and trim are highly correlated
(multicollinearity), the chosen regression model shall con-
tain the mean draft variable but not the trim one.

The addition of the wind speed variable (WS) signifi-
cantly increases R* and reduces the C, and S values for
Vessel 1’s models. As a result, WS is the second more sig-
nificant variable and is chosen right after the speed vari-
ables. However, its impact is less significant on Vessel 2’s
models, for which the TM variable is more crucial. Over-
all, WS introduces the impact of the weather to the models
and manages to improve their prediction without causing
multicollinearity since it is not significantly correlated with
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Term Constant ™ WS STW?
Coefficient re;_)llag.el ;v;th rep?gi ;v1th reploa;e(:) ;wth reploa.cze1 \17v1th
VIF - 1.027 1.020 1.030
R’ 89.276%

C, 1726
S 2.747

Table 16 Regression model characteristics (Vessel 1 — DD2)

Term Constant ™ WS STW?

. repl ith repl ith repl ith repl ith
— T
VIF - 1.205 1.171 1.032
R 80.524%
Cp 1003
S 3.686

The constant term is in all cases negative, and its abso-
lute value is reduced by almost 50% from Vessel 1’s mod-
els to Vessel 2’s. On the other hand, while a unit change of
Vessel 2°s mean draft causes about one-unit change of the
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Table 17 Regression model characteristics (Vessel 2 — DD1)

Term Constant ™ WS STW?
. replace with replace with replace with replace with
Coefficient "_g 58 1.015 ~0.267 0.179
VIF - 1.133 1.114 1.018
R 64.218%
1254
p
S 5.463

Table 18 Regression model characteristics (Vessel 2 — DD2)

Term Constant ™ WS STW?
. replace with replace with replace with replace with
Coefficient =7 579 1.132 -0.143 0.171
VIF - 1.207 1.047 1.242
R’ 68.898%
835
P
S 5.606

fuel consumption, Vessel 1°’s TM has about half the impact
of FOC. Finally, despite a slight gradual reduction of STW?
coefficients from the first case (Vessel 1-DD1) to the last
(Vessel 2-DD?2), all values are close to each other.

Despite the variations described above the most notable
difference between the two vessels’ model is the coeffi-
cients concerning wind speed. Vessel 1’s models have pos-
itive WS coefficients (around 0.3) while Vessel 2’s nega-
tive ones. This change of sign reflects both a physical phe-
nomenon and a statistical one. It can be implied that through-
out the measuring period, Vessel 2 experienced more jour-
neys/travel hours of favorable winds that aided the vessel’s
navigation while Vessel 1 had fewer hours of fair winds.
As a result, the increase of wind speed is a favorable phe-
nomenon for Vessel 2’s navigation as it reduces the amount
of fuel needed to reach a certain speed, whereas such in-
crease has a opposite effect on Vessel 1, forcing it to increase
the fuel consumption in order to overcome the added wind

FOC predicted vs FOC observed (Vessel 1-DD1 :R2=89.28%)
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Figure 10 Regression fitting for DD1

resistance. Despite the possible validity of the above as-
sumption, for its proper assessment an additional physical
quantity is needed: the wind speed’s (relative) direction. If
the direction of the wind speed is to be provided, then a more
proper evaluation of the above assumption can be conduct-
ed by introducing another predictor to the regression mod-
els and assessing its effect on the response variable. How-
ever, the data for the wind direction are not available for
the examined vessels so such an assessment cannot be made.
Instead, despite the sign contradiction, the discussed 3-vari-
able model is used for both vessels in this preliminary re-
gression analysis. Due to the larger amount of fitting of Ves-
sel 1’s models (higher R? values), it can be assumed that in
a more complete and solid model, the WS coefficient would
be positive.

Except for the above inconsistency, the chosen model
has an adequate performance. The calculated Variance Infla-
tion Factors of the selected predictors are low (just above 1),
suggesting that there are no multicollinearity problems in
the models as the independent variables are not significantly
correlated.

The fitting of the models for the DD1 period is show in
Figure 10 for both vessels.

4.6 Case study

For the selected 3-variable regression model, a case study
is performed in order to evaluate and compare the FOC
predictions between the two examined periods (DD1 &
DD2) as well as between the two vessels (Vessel 1 & Ves-
sel 2). Four different cases are examined with each case
concerning a different wind speed and loading condition
(expressed by the mean draft).

-Case 1: WS=0m/s & TM =T,

-Case 2: WS=0m/s & TM =T,

laden

-Case3: WS=10m/s & TM =T

ballast

-Case4:WS=10m/s & TM =T,

laden

The first part of the case study is concerned with the
comparison of fuel oil consumption values between the

allast

FOC predicted vs FOC observed (Vessel 2-DD1:R2:64.22%)
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two examined periods (DD1 & DD2) for both vessels. Pre-
dictions are provided by the selected regression model whose
predictors’ values differ from case to case (WS & TM). Six
different characteristic speeds through water are examined:
STW = 10-15 kn. In addition, vessel 1 encountered wind
speeds up to 10 m/s for the approximately 35% of its time
duration while for vessel 2 the respective value is approxi-
mately 55%.

The second part of the case study is concerned the com-
parison of fuel oil consumption values between the two
vessels (Vessel 1 & Vessel 2) for each examined period. In
contrast with the previous part, the second part does not fo-
cus on a specific speed through water value. Instead, the
FOC-STW curve of each vessel is produced by the respec-
tive regression model for Case 1 and Case 2. The vessels’
curves are plotted in common in Figurell and compared
over time (DD1 & DD2) for a range of STW values. Only
Cases 1 and 2 are examined at the second part due to the
contradiction between the WS coefficients’ sign (positive
for Vessel 1 and negative for Vessel 2). Therefore, a com-
parison involving the wind speed between the two vessels
cannot be supported.

4.6.1 Part A:DD1 vs DD2
The predicted FOC values are shown in Table 19, for
Vessel 1, and in Table 20, for Vessel 2.

Table 19 Case study Part A: Predicted FOC values — Vessel 1

Case 2 Case 3 Case 4

STW Case 1

(kn)  DD1 DD2 DDI DD2 DDI DD2 DDI DD2

0 8.47 1090 1290 1623 11.48 14.15 1591 19.48
29% 26% 23% 22%

. 1291 15.03 17.33 20.37 15.92 18.28 20.34 23.61
16% 18% 15% 16%

b 17.76 19.56 22.19 24.89 20.77 22.81 2520 28.14
10% 12% 10% 12%

i 23.04 24.48 2747 29.81 26.05 27.73 30.48 33.06
6% 9% 6% 8%

14 2874 29.79 33.17 35.12 31.76 33.04 36.18 38.37
4% 6% 4% 6%

s 34.87 3550 39.29 40.83 37.88 38.75 4230 44.08
2% 4% 2% 4%

As it can be observed both Vessel 1 and Vessel 2 con-
sume less fuel oil when travelling at lower speeds, a pre-
diction that is in accordance with the real-time operation
expectations. Furthermore, in each case, the predicted
FOC is greater for DD2 than for DD1. However, the in-
crease becomes significantly smaller as the speed rises, lead-
ing to insignificant differences (1-7%) for STW = 14-15 kn.

Through comparison of equal-draft cases for Vessel 1 it
can be understood that while wind speed generally increas-
es FOC (positive coefficient) it has no significant effect on
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Table 20 Case study Part A: Predicted FOC values-Vessel 2

STW Case 1 Case 2 Case 3 Case 4
(kn)  pDD1 DD2 DDI DD2 DDI DD2 DDI DD2
14.46 15.73 22.28 24.45 11.79 14.30 19.61 23.02

10 9% 10% 21% 17%
18.22 19.33 26.03 28.05 15.55 17.89 23.36 26.61
8 6% 8% 15% 14%
0 22.33 2327 30.15 31.99 19.66 21.83 27.48 30.55
4% 6% 11% 11%
3 26.80 27.55 34.62 36.27 24.13 26.11 31.95 34.83
3% 5% 8% 9%
" 31.63 32.17 3945 40.89 28.96 30.74 36.78 39.46
2% 4% 6% 7%
s 36.82 37.14 44.63 45.85 34.15 35.70 41.96 44.42
1% 3% 5% 6%

the relative DD1 - DD2 differences, which mainly depend
on STW and TM. Another observation is that greater drafts
(laden condition) cause about a “+2%" increase in the afore-
mentioned gap for all speed except the lowest one. Over-
all, while the duct’s long-term effect is not depicted by the
predicted FOC values, the stabilization of the values be-
tween DD1 and DD2, expressed by the percentage differ-
ence, for the high speeds indicates an increased perfor-
mance that may be related to the Mewis duct. However,
this is an assumption that cannot be positively verified due
to the high level of uncertainty that lies within the 2-6%
difference.

For Vessel 2, while the increase of draft leads to greater
FOC values, wind speed has an opposite effect that is ex-
pressed by the negative coefficient of the WS variable. Wind
speed seems to significantly increase the relative differ-
ence of FOC between DD1 and DD2 while TM has a more
limited effect. The assumption made for Vessel 1 seems to
be invalid if the patterns of Vessel 2 are taken into consid-
eration; while the consumption is higher in the DD2 peri-
od, the relative difference is gradually reduced as speed is
increased for both vessels. This similarity does not allow for
the relative reduction to be attributed to the Mewis duct.

4.6.2 Part B: Vessel 1 vs Vessel 2

As shown in Figurell, for both cases, Vessel 1 is predict-
ed to consume less fuel oil than Vessel 2 for both periods.
The difference in FOC between the vessels is greater for
lower speeds and reduces as speed increases, reaching a
minimum at 15 kn. Both vessels’ FOC values increase dur-
ing DD2, however, Vessel 2’s increase is smaller, causing
the difference between the fuel consumption of the vessels
to drop during the second post dry-dock year. For Case 2
consumptions are generally greater, a fact that is expected
due to the added cargo weight. The difference in consump-
tion between the two vessels is greater than the one in the
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ballast condition, underlining Vessel 1’s added perfor-
mance advantage in increased drafts which can be attributed
to the Mewis duct.

5 Conclusions

The paper attempts to evaluate the energy savings of an
energy-saving device, the Mewis propeller duct, through
the utilization of a practical performance monitoring frame-
work. Two sister vessels are monitored for a three-year pe-
riod, during which one had a Mewis duct installed. The
key idea was to assess the duct’s effect by performing a
comparison between the pre-duct and the post-duct era as
well as between the two sister vessels for the same period.
The study approaches the problem via two routes; a Key
Performance Indicators (KPI) analysis and a MLR model.

The first part of the paper was devoted to the prepara-
tion of the database to be utilised by both methods. Such a
pre-processing step aims at detecting outliers and elimi-
nate them without discarding desirable data that provide
valuable information. Moreover, the data filtering process
targeted the identification of time periods corresponding to
sea-travel passages, as well as of no significant effect of
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weather conditions and the ruder operation, to limit the
analysis within conditions allowing the assessment of the
propulsive efficiency. This procedure, while belonging to
the initial steps of performance monitoring evaluation meth-
ods, should be considered of vital importance as it is mea-
surements and the true physical relationships among the
quantities. The analysis with the KPIa revealed that Vessel
1 significantly improved its performance when her propel-
ler polished and approach the performance of Vessel 2.
This propeller’s polishing is indeed a popular industry
measure to improve propulsive efficiency. After the occur-
rence of dry-dock, Vessel 2 experienced a performance in-
crease for almost 1 year period, while for the remaining time
was remained approximately constant. However, in the long-
term the effect of the Mewis duct on Vessel 1 was identi-
fied. Specifically, when the effects of propeller polishing
and hull cleaning fade in time, Vessel 1 shows an improv-
ing performance trend that is attributed to the only event
with long-term impacts, the Mewis duct fitting. On the oth-
er hand, the analysis with KPIb resulted in similar findings
for the laden condition, where after dry-dock Vessel 2 ex-
periences a steady deteriorating performance, whereas Ves-
sel 1 shows on the contrary an improvement. The examina-
tion for the ballast condition did not reveal any significant
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improvement due to the Mewis duct. As a result, it can be
deduced that in greater drafts, which occur for loaded ships,
the effect of the Mewis duct is enhanced.

As mentioned earlier, the second approach to the problem
was through the development of MLR models utilizing op-
erational data after the drydock periods and again proceed-
ing with a relative comparison among the two vessels. Af-
ter a best subset analysis and based on the findings of Part
B and specifically the derived FOC-STW curves, it is re-
sulted that for lower ship’s speed range and for the laden
condition the effect of the Mewis duct is more pronounced
as Vessel 1 consumed less fuel than Vessel 2 for both peri-
ods (DD1 and DD2) and assuming no-wind effect. Finally,
the effect of the weather conditions on the efficiency of such
an energy saving device was considered a more complex
problem to be examined. Given the fact that no wave data
were available, the wind speed values kept for analysis cor-
respond to weather conditions of low severity limiting the
outcomes only to such conditions. However, by not includ-
ing time instances with excessive ship motions or signifi-
cant added resistance values, the analysis avoids involving
complex interactions and effects on the system.
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