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Abstract
Oblique surface waves incident on a fixed vertical porous membrane of various geometric configurations is analyzed here.
The mixed boundary value problem is modified into easily resolvable problems by using a connection. These problems are
reduced to that of solving a couple of integral equations. These integral equations are solved by a one-term or a two-term
Galerkin method. The method involves a basis functions consists of simple polynomials multiplied with a suitable weight
functions induced by the barrier. Coefficient of reflection and total wave energy are numerically evaluated and analyzed
against various wave parameters. Enhanced reflection is found for all the four barrier configurations.

Keywords Free surface gravity waves; Reflection coefficient; Singular integral equation; Galerkin approximation; Linear
waves; Vertical porous membrane barrier

1 Introduction

Free surface water wave scattering problems involving
various kind of structures play an important role in science
and engineering. Thin vertical barriers are one such struc‐
ture that attracted lot of attention due to their potential in
developing rich mathematical solution methods to the asso‐
ciated boundary value problems. Dean (1945) derived ana‐
lytical solution of the two-dimensional normally incident
water wave problem with a submerged thin vertical rigid
barrier by using the complex variable technique. Then, us‐
ing integral equation procedure, Ursell (1947) studied wa‐
ter wave scattering problem involving a surface piercing
rigid barrier. Scattering of gravity waves by a vertical bar‐
rier with finite number of gaps in it was discussed by
Lewin (1963), Mei (1966) and Evans (1970). Lewin

(1963) and Mei (1966) solved the problem by converting
the original problem into a Riemann-Hilbert problem. Ev‐
ans (1970) used the method of complex variables to obtain
the solution of the problem. Mandal and Chakrabarti
(2000) proposed various solution methods to obtain the so‐
lutions of the wave scattering problems involving different
rigid barrier configurations.

Later, porous barriers gained attention due to its reflec‐
tion and dissipative characteristics. Chwang (1983) intro‐
duced porous wave maker theory by involving resistance
effects. Then, the condition on the porous barrier has been
modified by including inertial effects as well (Yu and
Chwang 1994). Further, flexible breakwaters attracted lot
more attention due to their structural flexibility. These
kind of breakwaters are used in deep sea activities. Inci‐
dent wave interaction on a flexible barrier that is hinged at
the bottom of the sea and moored at the surface was ana‐
lyzed by Lee and Chen (1990). Also, Williams et al.
(1991) investigated flexible floating breakwater that was
anchored to the sea floor with a buoy at the free surface.

Kim and Kee (1996) and Cho and Kim (1998) have
studied wave interaction with a horizontal tensioned flexi‐
ble membrane by utilizing the eigenfunction expansion
method. Selvan and Behera (2020) have used the same
method to handle the effect of a floating circular porous
elastic membrane on surface gravity waves. Later, Cho
and Kim (2000) discussed interaction of incident waves
with a horizontal porous flexible membrane by using the
multi-domain boundary element method. Yip et al. (2001)
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have investigated the oblique wave scattering problem in‐
volving finite number of floating membranes in finite wa‐
ter depth. Then, Suresh Kumar et al. (2007) have analysed
wave scattering by a vertical flexible porous membrane in
a two-layer fluid of finite depth, using an orthogonality re‐
lation along with the least-square approximation. Karmak‐
ar and Guedes Soares (2012) have analyzed the perfor‐
mance of the multiple vertical surface-piercing porous
membrane barriers in water of finite depth by applying the
least-square approximation method. Mandal et al. (2016)
studied oblique wave scattering problem involving the
multiple flexible porous barriers in a two-layer fluid of fi‐
nite depth. Using eigenfunction expansion method, Koley
and Sahoo (2017) have investigated the oblique wave scat‐
tering problem involving different configurations of a ver‐
tical flexible porous membrane.

A single term Galerkin's method has been used by Evans
and Morris (1972) to handle obliquely incident waves on a
surface piercing rigid barrier and they found closed upper
and lower bounds for the scattering quantities. Also, scatter‐
ing of oblique incident surface waves by a finite length thin
submerged vertical plate as well as a complete barrier with
a gap in it has been handled by Mandal and Das (1996) and
Das et al. (2018a, 2019). They used one or two term Galer‐
kin method to find the scattering quantities analytically. Fur‐
ther, Galerkin method with many terms is utilized to solve
oblique scattering problem involving a partially immersed
and a submerged solid barrier by Das et al. (2018b).

A flexible porous tensioned membrane is considered
here with all four type of configurations such as partially
immersed, submerged barrier extending infinitely down‐
wards, submerged barrier with a finite length and a com‐
plete membrane with a gap in it. Free surface waves inci‐
dent obliquely on the barrier from either side are consid‐
ered. This defines two solution velocity potentials for the
original problem. The upper-half plane problems for the
two velocity potentials are reduced to problems in a quar‐
ter-plane. These quarter plane problems are connected
with auxiliary potentials through a couple of integral rela‐
tions. Then, the auxiliary potentials are handled by the
Galerkin's method with one or multi-term approximation.
Further, lower and upper bounds for the scattering quanti‐
ties are obtained. Formulation of the boundary value prob‐
lem and its solution method is described in Section 2. In
Section 3, numerical results are discussed for each of the
barrier configuration by choosing a suitable weight func‐
tion in the approximation. Finally, few conclusions are
drawn in Section 4.

2 Mathematical formulation and method of
solution

A mixed boundary value problem is considered in the

Cartesian coordinate system (x, y, z) with the positive y-ax‐
is measured vertically downwards and the horizontal xz-
plane is the undisturbed free surface. The fluid is occupied
in the domain y >0 and −∞<x, z<∞ . The vertical porous
membrane is placed in the fluid region at x=0, y∈B and
−∞<z<∞ in which B takes one of the following: (0,a), (b,
∞), (0, a) ∪(b, ∞) and (a, b). The fluid is considered to be
inviscid, incompressible and the flow is in irrotational mo‐
tion. Incident surface waves come from x=∞ and make an
angle β with the xy- plane. Under the assumptions of the
linearised water wave theory, time-harmonic fluid motion

is described by the velocity potential Re{ϕ1 ( x,y )eipze− iωt},
where p=Ksinβ, K=ω2/g in which ω is frequency of the in‐
cident wave, g is the acceleration of gravity and t is time.
The same wave motion is also described, when the inci‐
dent waves come from x=−∞ and make an angle π-β with

the xy- plane, by the velocity potential Re{ϕ2 ( x, y )eipzeiωt}.
Then, the spacial velocity potentials ϕj(x, y), j=1, 2 satisfy

∂2ϕj

∂x2
+
∂2ϕj

∂y2
− p2ϕj = 0, − ∞ < x < ∞, y > 0 (1)

The free surface boundary condition is

∂ϕj∂y + Kϕj = 0 on y = 0 (2)

In addition, ϕj(x, y), j=1, 2 satisfy the conditions

|∇ϕj|➝0 as y➝∞ (3)

and

|∇ϕj|~r− 1/2 as r➝0 (4)

where r is the local radius from the edge point of the barri‐
er. The schematic diagram for the oblique wave scattering
problem is shown in Figure 1.

The displacement of the horizontally oscillating mem‐
brane is represented as

Figure 1 Free surface with submerged flexible porous membrane
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η j ( y, t ) = Re [ νj ( y )e( − 1) jiωt ] , j = 1, 2

where νj(y) is the deflection amplitude of the membrane.
Assume that the absolute value of the deflection ampli‐

tude is small as compared to the incident wave length. The
boundary condition on the flexible porous membrane (Yu
and Chwang 1994) is given by

∂ϕj∂x (0±, y ) = ( −1) jé
ëiΓK (ϕj (0+, y ) − ϕj (0−, y ) )

− iωνj ( y )ùû , j = 1, 2, y ∈ B (5)

where Γ=Γ1+i Γ2 is the non-dimensional complex porous
effect parameter in which Γ1 is the resistance effect and Γ2

is the inertial effect.
The fluid flow is continuous in the gap x=0, y ∈ B̄ =

(0, ∞ ) \ B. That is,

ϕj (0−, y ) = ϕj (0+, y ), y ∈ B̄

The radiating conditions are described as

ϕj ( x, y )~
ì
í
î

ϕ0 ( − x, y ) + Rϕ0 ( x, y ), x➝ ( − 1) j + 1∞,

Tϕ0 ( − x, y ), x➝ ( − 1) j∞,
j = 1, 2

where ϕ0(−x, y)=e−i K x cosβ−K y is the incident wave potential
and R, T are amplitudes of the reflected, transmitted waves.
Also, the deflection amplitude νj(y), j=1, 2 of the mem‐
brane satisfies the following condition

d2νj

dy2
+ α2νj = (iωρ/T ) [ ϕj (0+, y ) − ϕj (0−,y ) ] ,

j = 1, 2, y ∈ B

In the above, T is tension in the membrane, ρ is the density
of water. The membrane frequency parameter may be de‐

fined as α=ω ms /T , where ms=ρsds is the uniform mass

with ρs and ds being the uniform mass density and the
thickness of the membrane, respectively.

By utilizing the above equation in Equation (5), the
boundary condition on the barrier Equation (5) is obtained
as

é

ë

ê
êê
ê ∂2

∂y2
+ α2ù

û

ú
úú
ú ∂ϕj∂x (0±, y )

= ( −1) jiΓK
é

ë

ê
êê
ê∂2ϕj (0+, y )

∂y2
− ∂2ϕj (0−, y )

∂y2

ù

û

ú
úú
ú

+( −1) j ( iΓK + ρ/ms )α2 [ ϕj (0+, y ) − ϕj (0−, y ) ] ,

j = 1, 2, y ∈ B (6)

2.1 Reduction to quarter-plan problems

In view of the continuity of the horizontal velocity of
the fluid across x=0, the original velocity potentials ϕj, j=1,
2 that are defined in the upper-half plane may be modified
into a new potential functions ψj, j=1, 2 in the quarter-
plane. This is done by choosing (Lamb 1932)

ϕj ( x, y ) =

ì
í
î

ϕ0 ( − x, y ) + ϕ0 ( x, y ) + ψ j ( x, y ) if ( −1) j x < 0

− ψ j ( − x, y ) if ( −1) j x > 0, if j = 1, 2

(7)

The potential functions ψj defined in the domain (−1)j+1 x >
0, j=1, 2 satisfy Equations (1)‒(4). By applying Equation
(7) to the Equation (6), the boundary condition on the bar‐
rier becomes

é

ë

ê
êê
ê ∂2

∂y2
+ α2ù

û

ú
úú
ú ∂ψ j∂x (0, y ) + 2iΓK

é

ë

ê
êê
ê∂2ψ j (0, y )

∂y2
+ K 2ϕ0 (0, y )

ù

û

ú
úú
ú

+2α2 ( iΓK + ρ/ms ) [ψ j (0, y ) + ϕ0 (0, y ) ]= 0 if y ∈ B, j = 1, 2

(8)

In addition, the boundary condition in the gap and the radi‐
ation condition become

ψ j (0, y ) + ϕ0 (0, y ) = 0 for y ∈ B̄, j = 1, 2 (9)

and

ψ j ( x, y )➝ ( R − 1)ϕ0 ( x, y ) as ( −1) j x➝ − ∞, j = 1, 2

with a note that T=1−R.

2.2 Connection between wave potentials

A well defined connection, similar to the one in Ashok
et al. (2020), between the flexible porous wave potential ψj

(x, y), j=1, 2 and the auxiliary potential χj(x, y), j=1, 2 is in‐
troduced as

é

ë

ê
êê
ê ∂2

∂y2
+ α2ù

û

ú
úú
úψ j (u, y ) + iKΓ ∫

0

x ∂2Cj (u,y )

∂y2
du

+α2 ( iKΓ + ρ/ms ) ∫
0

x

Cj (u, y )du

= χ j ( x, y ), ( −1) j + 1 x > 0, j = 1, 2 (10)

where Cj(u, y)=ϕ0(u, y)+ϕ0(−u, y)+∑m = 1

2 ψm ( ( −1) j + m u, y ).

The auxiliary potential functions χj(x, y), j=1, 2 satisfy
Equations (1)‒(4). By differentiating the connection Equa‐
tion (10), one obtains
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é

ë

ê
êê
ê ∂2

∂y2
+ α2ù

û

ú
úú
úψ j x ( x, y ) + iKΓ

∂2Cj ( x, y )

∂y2

+α2 ( iKΓ + ρ/ms )Cj ( x, y )

= χ j x ( x, y ), ( −1) j + 1 x > 0, j = 1, 2 (11)

where the variable suffix denotes derivative. By setting x=0
in Equation (11) and by applying the equation Equation (8), it
may be obtained that

χ j x (0, y ) = 0, y ∈ B, j = 1, 2 (12)

Also, by setting x=0 and by using the equation Equation (9)
in the connection Equation (10), one finds the condition as
given by

χ j (0, y ) = ( − α2 − K 2 )ϕ0 (0, y ), y ∈ B̄, j = 1, 2 (13)

Further, the radiation condition for χj(x, y), j=1, 2 may be
specified as

χ j ( x, y )~Rjϕ
0 ( x, y ) + Tjϕ

0 ( − x, y ), ( −1) j + 1 x➝∞ (14)

where Rj and Tj are constants. By applying the far-field be‐
haviour in each term of the differential form of the connec‐
tion Equation (11), a pair of relations is obtained as

R1 = T2 =
é

ë

ê
êê
ê(1 + Γ ) ( K 2 + α2 ) − iα2 ρ

Kms

ù

û

ú
úú
ú R − α2 − K 2 (15)

and

T1 = R2 =
é

ë

ê
êê
ê − Γ (α2 + K 2 ) +

iα2 ρ
Kms

ù

û

ú
úú
ú R (16)

Thus, the problem for the wave potential ψj(x, y) with j=1,
2 has been decomposed into two solvable auxiliary poten‐
tial problems with the aid of the connection Equation (10).
Hence, the solution of the auxiliary potential ψj(x, y) may
be found in terms of the wave potentials χj(x, y) as in
Ashok et al. (2020). The approximate solution of the wave
potentials χj(x, y) j=1, 2 is obtained by the Galekin approxi‐
mation method which in turn helps to find the estimated
value of the reflection coefficient |R|.

2.3 Galerkin method

The general solution of the potential function χ1(x,y) sat‐
isfying Equations (1) ‒ (3) and Equation (14) is given by
(Manam et al. 2006)

χ1 ( x, y ) = R1ϕ
0 ( x, y ) + T1ϕ

0 ( − x, y )

+∫
0

∞

A (γ ) B (γ, y )e-γ1 xdγ, x > 0 (17)

where R1, T1 are unknown constants, A(γ) is an unknown

function, B (γ, y ) = γcosγy − Ksinγy and γ1= γ2 + p2 .

Let

g ( y ) =
∂χ1∂x (0, y ) and h ( y ) = χ1 (0, y ) if y > 0

By utilizing the general solution Equation (17) in the
above functions g(y) and h(y), it may be obtained that

g ( y ) = i ( R1 − T1 )Kcosβe− Ky

− ∫
0

∞

γ1 A (γ ) B (γ, y )dγ if y > 0 (18)

and

h ( y ) = ( R1 + T1 )e− Ky + ∫
0

∞

A (γ ) B (γ, y )dγ if y > 0 (19)

Then, the Havelock’s inversion theorem (Havelock 1929)
is applied to the above pair of equations to get

i ( R1 − T1 )cosβ = 2 ∫
B̄

g (u )e− Kudu (20)

A (γ ) =− 2
π

1
γ1 (γ2 + K 2 ) ∫B̄

g (u ) B (γ, u )du (21)

( R1 + T1 ) = 2K ∫
B
h (u )e− Kudu (22)

and

A (γ ) =
2
π

1
(γ2 + K 2 ) ∫B

h (u ) B (γ, u )du (23)

By substituting A(γ) from Equations (21) and (23) in the
equations Equations (19) and (18) and then using the con‐
ditions (12) and (13), it may be obtained that

∫
B̄

g (u )C ( y, u )du =
π
2

( R1 + T1 + α2 + K 2 )e− Ky, y ∈ B̄ (24)

and

∫
B
h (u ) D ( y, u )du =

π
2

iKcosβ ( R1 − T1 )e− Ky, y ∈ B

(25)

where

C ( y, u ) = lim
ε➝0+ ∫0

∞ B (γ, u ) B (γ, y )
γ1 (γ2 + K 2 )

e− εγdγ

and
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D ( y, u ) = lim
ε➝0+ ∫0

∞ γ1 B (γ, u ) B (γ, y )

γ2 + K 2
e− εγdγ

Now, by defining the functions

G (u ) =
2g (u )

π ( R1 + T1 + α2 + K 2 )
and

H (u ) =
2h (u )

iπKcosβ ( R1 − T1 )

and then, by making use of G(u) and H(u) in Equation (24)
and Equation (25), one obtains that

∫
B̄
G (u )C ( y, u )du = e− Ky, y ∈ B̄ (26)

and

∫
B

H (u ) D ( y, u )du = e− Ky, y ∈ B (27)

Then, the Equations (20) and (22) are modified as

∫
B̄
G (u )e− Kudu = F (28)

and

∫
B

H (u )e− Kudu =
R1 + T1

π2 K 2 F ( R1 + T1 + α2 + K 2 )
(29)

where

F =
icosβ ( R1 − T1 )

π ( R1 + T1 + α2 + K 2 )

The Equation (15) and Equation (16) are used in the above
to find

F =

α2 + K 2 − é

ë

ê
êê
ê ù

û

ú
úú
ú(1 + 2Γ ) (α2 + K 2 ) − 2iα2 ρ

Kms

R

iπRsecβ (α2 + K 2 )
(30 )

In a similar manner, the same estimation of the constant
F in terms of the reflection amplitude R can be obtained
for the problem of the auxiliary potential function χ2(x,y),
by the aid of the Equations (15) and (16).

2.4 Bounds for F

Multi-term Galerkin approximation method is used to
find the functions G(u) and H(u) in the Equations (26) and
(27) (Das et al. 2018b). We first define the symmetric and
linear inner products as

f, g =∫
B

f (u ) g (u )du, and f, g =∫
B̄

f (u ) g (u )du

Then, we define a pair of operators C and D as

(Ch ) ( y ) = C ( y, u ), h (u )

and ( Dg ) ( y ) = D ( y, u ), g (u )

Note that the operators C and D are linear, positive semi-
definite and self-adjoint. To obtain the function G(u) in
Equation (26), we take the multi-term Galerkin approxima‐
tion as given by

G ( y ) ≈ ∑
n = 0

N

an gn ( y ), y ∈ B̄ (31)

where gn(y), n=0,1,…, N may be chosen appropriately for
a particular barrier position.

By making use of Equation (31) in Equation (26), and
multiplying the function gm(y) before integrating over B̄,
we get the linear system of equations

∑
n = 0

N

an Amn = Gm0, m = 0, 1,…, N (32)

where

Amn = (Cgn ) ( y ), gm ( y )

and Gm0 = e− Ky, gm ( y )

The constants an, n=0, 1,… , N are found by solving the
above system of equations. By following Evans and Mor‐
ris (1972), it is seen that

G ( y ),e− Ky ≥ ∑
n = 0

N

an gn ( y ), e− Ky

By substituting the equation Equation (28) in the above in‐
equality, one obtains that

F ≥ Fl

where

Fl =∑
n = 0

N

anGn0 (33)

Further, the function H(u) in Equation (27) can be found
by considering the multi-term Galerkin approximation

H ( y ) ≈ ∑
n = 0

N

bnhn ( y ), y ∈ B (34)

where hn(y), n=0,1,…,N is chosen appropriately for a par‐
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ticular barrier problem. By substituting Equation (34) in
Equation (27) and multiplying the function hm(y) before in‐
tegrating over B, we obtain the linear system of equations
for the unknowns bn, n=0, 1,…, N as given by

∑
n = 0

N

bn Bmn = Hm0, m = 0, 1,…, N

where

Bmn = ( Dhn ) ( y ), hm ( y ) and Hm0 = e− Ky, hm ( y )

Again, by following Evans and Morris (1972), it is seen
that

H ( y ), e− Ky ≥ ∑
n = 0

N

bnhn ( y ), e− Ky

By utilizing the Equation (29) in the above inequality, with
the use of the far-field Equations (15) and (16), it is ob‐
tained that

F ≤ Fu

where

Fu =
R − 1

π2 K 2 R∑n = 0

N bn Hn0

(35)

By modifying the relation Equation (30), the reflection
coefficient is obtained as

R =
(α2 + K 2 )

iπFsecβ (α2 + K 2 ) +
é

ë

ê
êê
ê ù

û

ú
úú
ú(1 + 2Γ ) (α2 + K 2 ) − 2iα2 ρ

Kms

where Fl≤F≤Fu. The upper and lower bounds for the reflec‐
tion coefficient may now be found as

|Rl| ≤ |R| ≤ |Ru|

where

Rl =
(α2 + K 2 )

iπFusecβ (α2 + K 2 ) +
é

ë

ê
êê
ê ù

û

ú
úú
ú(1 + 2Γ ) (α2 + K 2 ) − 2iα2 ρ

Kms

and

Ru =
(α2 + K 2 )

iπFlsecβ (α2 + K 2 ) +
é

ë

ê
êê
ê ù

û

ú
úú
ú(1 + 2Γ ) (α2 + K 2 ) − 2iα2 ρ

Kms

The upper bound Ru is computed first and then use it in

the Equation (35) to estimate the lower bound Fu which is
matched with the lower bound Fl. In the computation, it is
found that these bounds for F are numerically matched up
to few decimals.

3 Numerical results for various barrier positions

The dimensionless membrane mass and tension parame‐

ters δ1=
ms

ρl
and ε1=

T
ρgl2

are used in the numerical computa‐

tion while fixing the value of the length of the porous
membrane l=2 m and the density of the sea water ρ =
1 025 kg/m3. Also, the membrane parameter value α =
0.062 46 is obtained by fixing the incident wave frequency
ω=1.75 s−1, δ1=0.01 and ε1= 0.4 . Energy identity |E|=|R|2+
|T|2=1 is verified throughout the computation for the imper‐
meable membrane barrier (Γ =0). The porous membrane
barrier becomes the solid barrier when Γ=0 and α=0. It is
seen that the reflection curves are matching with the ones
in already published works when Γ=0 and α=0 are fixed
for all the four barrier configurations.

3.1 Surface piercing finite membrane

In this case, the position and the gap are at B=(0,a) and
B̄= (a,∞), respectively. The function G(y) has been taken
(Das et al. 2018b) as

G ( y ) ≈ e− Ky

(
y
a

)2 − 1

∑
n = 0

N

an (
y
a

)n if y ∈ (a,∞ )

where an, n=0,1,…, N are unknown constants and

gn ( y ) =
e− Ky

(
y
a

)2 − 1

(
y
a

)n, y ∈ (a,∞ ), n = 0,1,…, N

The nature of the edge behaviour of the membrane is con‐
sidered for taking the weight function gn(y), n=0,1,… ,N.
Now, we calculate the analytic results for a two-term
Galerkin approximation (N=1). Consider g0(y) and g1(y).
Then, by solving the system Equation (32) to obtain Fl as

Fl = a0G00 + a1G10

where

a0 =
G00 A11 − G10 A01

A00 A11 − A01
2

, a1 =
G00 A01 − G10 A00

A01
2 − A00 A11

and Gi0=a Ki(2Ka), i=0, 1 in which Ki(2Ka), i=0, 1 are
modified Bessel functions. It is observed that B01=B10 from
symmetry of the kernel of the integral equations. Further,
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the constants A00, A01 and A11 are known as

A00 = ∫
0

∞ P2 (γa )
γ1 (γ2 + K 2 )

dγ , A01 = ∫
0

∞ P (γa )Q (γa )
γ1 (γ2 + K 2 )

dγ

and

A11 = ∫
0

∞ Q2 (γa )
γ1 (γ2 + K 2 )

dγ

where

P (γa ) = ∫
a

∞ e− Ku B (γ, u )

(
u
a

)2 − 1

du and

Q (γa ) = ∫
a

∞ e− Ku B (γ, u )

(
u
a

)2 − 1
( )u

a
du

Also, H(y) can be taken as

H ( y ) ≈ 1 − (
y
a

)2∑
n = 0

N

bn (
y
a

)n, if y ∈ (0, a )

where bn, n=0,1,… ,N are unknown constants. The weight
functions hn(y), n=0,1,…, N are given by

hn ( y ) = (
y
a

)n 1 − (
y
a

)2 if y ∈ (0, a )

The same procedure is applied for the two-term Galer‐
kin approximation, as mentioned above, to obtain the up‐
per bound Fu. It is numerically verified that both the upper
and lower bounds are matching up to few decimals to esti‐
mate the value of the reflection coefficient |R|.

The reflection coefficient |R| and the total energy |E| =
|R|2+|T|2 are calculated against the angle of incidence β. In
Figures 2 and 3, estimation of the reflection coefficient |R|
and the total energy |E| are depicted versus the angle of in‐
cidence β for various values of the wavenumber Ka with
the membrane frequency parameter α =0.062 46 for both

cases of porous as well as impermeable membranes. It
may be observed, from Figures 2 and 3, that enhanced re‐
flection and enhanced dissipation occur at smaller incident
angles for shorter waves. The angle at which wave reflec‐
tion gets its resonant peak increases with a decrease in the
incident wave number. The reflection peak increases as
length of the barrier increases, this is due to larger barrier
reflect more waves. Also, complete reflection occurs at
these incident angles in the case of the impermeable mem‐
brane.

Reflection and energy curves are plotted against the an‐
gle of incidence for various values of the membrane fre‐
quency parameter α in Figures 4 and 5. For smaller values
of α, there is neither enhanced reflection nor enhanced en‐
ergy loss for all angles of wave incidence. Reflection de‐
creases gradually with an increase in the angle of inci‐
dence for all values of the membrane frequency parameter.
For smaller values of incidence, reflection is higher for the
porous membranes with lesser tension. Also, mass of the
membrane barrier increases when the reflection increases
for shorter waves. This is because of barrier with higher
mass reflect better. As expected, energy dissipation is high‐
er for membranes with lower tension at smaller angles of
wave incidence. However, enhanced reflection and total
wave energy dissipation occur for porous membranes. Re‐
flection or energy dissipation peaks happen at larger inci‐
dent angles with a decrease in the tension of the porous
membrane.

Reflection and energy curves are depicted against the
angle of incidence β for different values of the porous effect
parameter Γ when the values of α=0.062 46 and Ka=0.4
are fixed in Figure 6. It is seen from Figure 6(a) that reflec‐
tion in general is better for small incident angles when
both the resistance and the inertial effects are present in
the porous barrier. Further, all the reflection curves have
peaks that are due to the flexible nature of the barrier and
they occur within 50° to 75° . Also, enhanced reflection is
evidently complete for the impermeable membrane. En‐
hancement of the energy dissipation may be seen from
Figure 6(b) around a particular angle of wave incidence for

Figure 2 Graph of |R| and |E| versus β for different values of Ka with Γ=1 and α=0.062 46
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all the values of the porous effect parameter. In Figure 7, re‐
flection and energy curves are plotted against the angle of
incidence β for various values of the porous effect parame‐
ter Γ when α=0 and Ka=0.4. Overall reflection significant‐
ly decreases again for the resistance as well as the inertial
effects for small angles of wave incidence on the porous
solid barrier. Figure 7(a) also shows that porosity alone
will not cause enhanced reflection by the barrier since there
is no evidence of the enhanced reflection in the absence of
flexibility in the barrier. Also, as seen from Figure 7(b), en‐

ergy dissipation is evidently caused mainly from the iner‐
tial effects of the porous barrier. The smaller reflection is
noted for the porous membrane barrier due to the fact that
the porous barrier allows the water to pass through it.

3.2 Submerged membrane of infinite length

The membrane position and gap are at B=(b, ∞) and B̄=
(0, b) respectively. Again, the multi-term Galerkin approxi‐
mation is used and G(y) (Das et al. 2018b) is set as

G ( y ) ≈ 1

1 − (
y
b

)2

∑
n = 0

N

an (
y
b

)n if y ∈ (0, b )

where an, n=0,1,…,N are unknowns to be determined and
the weight functions gn(y), n=0,1,…, N are

gn ( y ) =
1

1 − (
y
b

)2

(
y
b

)n if y ∈ (0, b )

Again, the nature of the edge behaviour of the mem‐
brane is considered for choosing the weight function gn(y),
n=0,1,… ,N. Then, two-term Galerkin approximation (N=
1) is used to solve the linear system Equations (32). The

Figure 3 Graph of |R| versus β for different values of Ka with Γ=0
and α=0.062 46

Figure 5 Graph of |R| and |E| versus β for different values of α with Γ=1 and Ka=0.4

Figure 4 Graph of |R| and |E| versus θ for different values of α with Γ=1 and Ka=0.4

58



R. Ashok et al.: Oblique Wave Scattering Problems Involving Vertical Porous Membranes

lower bound Fl can be obtained as Fl=a0 G00+a1G10, where

a0 =
G00 A11 − G10 A01

A00 A11 − A01
2

, a1 =
G00 A01 − G10 A00

A01
2 − A00 A11

G00 = ∫
0

b e− Ky

1 − (
y
b

)2

dy and G10 = ∫
0

b

(
y
b

)
e− Ky

1 − (
y
b

)2

dy

In the above, the constants A00, A01 and A11 are

A00 = ∫
0

∞ S2 (γb )
γ1 (γ2 + K 2 )

dγ , A01 = ∫
0

∞ S (γb )T (γb )
γ1 (γ2 + K 2 )

dγ

and

A11 = ∫
0

∞ T 2 (γb )
γ1 (γ2 + K 2 )

dγ

where

S (γb )=∫
0

b B (γ, u )

1−( u
b

)2

du and T (γb )=∫
0

b B (γ, u )

1−( u
b

)2
( )u

b
du

Now, H(y) can be taken as

H ( y ) ≈ e− Ky (
y
b

)2 − 1∑
n = 0

N

bn (
y
b

)n if y ∈ (b, ∞ )

where bn, n=0,1,… ,N are unknown constants. The weight
functions hn(y), n=0,1,…, N are given by

hn ( y ) = e− Ky (
y
b

)n (
y
b

)2 − 1 if y ∈ (b, ∞ )

Moreover, the upper bound Fu is obtained by using the
same procedure explained in the two-term Galerkin ap‐
proximation method.

The reflection coefficient |R| and the total energy |E| =
|R|2+|T|2 are evaluated against the wavenumber Kb and the
angle of incidence β for the submerged barrier extending
infinitely downwards.

In Figure 8, numerical estimation of the reflection coef‐
ficient |R| and the total energy |E| are plotted against the an‐
gle of wave incidence β for different values of the wave‐
number Kb when Γ=1 and α=0.062 46. These curves are al‐
so shown in Figure 9 for the non porous membrane with
the same flexibility. It is observed from Figure 8 that the
reflection and the energy dissipation curves have resonant

Figure 6 Graph of |R| and |E| versus β for different values of Γ with α=0.062 46 and Ka=0.4

Figure 7 Graph of |R| and |E| versus β for different values of Γ with α=0 and Ka=0.4
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enhancement for all the incident wave numbers. Since the
present barrier is the complementary nature of the previ‐
ous case in the subsection 3.1, the resonant peaks at which
enhanced reflection occurs move from lower to higher
wave incident angles when the incident waves on the barri‐
er become longer to shorter. This is exactly opposite to the
results of the previous complementary case. Similar obser‐
vation can be made for the energy dissipation curves with
the change in the incident wavenumber. Flexibility alone
causes the total reflection from the submerged non-porous
membrane as seen from Figure 9. Thus, longer waves
should incident the membrane by higher oblique angles to
get better or complete reflection while shorter waves could
incident the membrane by smaller oblique angles for a sim‐
ilar enhanced reflection.

In Figure 10, reflection and energy curves are depicted
against the angle of wave incidence for various membrane
frequency parameter values when the wavenumber Kb=0.4
and Γ=1 are fixed.The reflection peaks move towards high‐
er oblique wave angles as the membrane frequency param‐
eter increases. Similar behaviour is seen in the surface
piercing membrane case as well. This shows that only flex‐
ibility nature of the barrier, not a type of the barrier, causes
the enhanced reflection. The reflection and energy curves
are also plotted against the wavenumber for different mem‐

brane frequency parameter values when the angle of
oblique incidence β=30° and Γ=1 are fixed in Figure 11.
However, reflection peaks move towards shorter incident
waves as the membrane frequency parameter increases.
This suggests longer waves must incident on a high ten‐
sioned membrane and shorter waves must incident on a low
tensioned membrane to get better resonant reflection. Re‐
flection peak is attained for shorter and moderate waves for
smaller mass of the membrane barrier. Similar observations
can also be made from the energy curves in Figure 11.

Figure 8 Graph of |R| and |E| versus β for different values of K b with Γ=1 and α=0.062 46

Figure 10 Graph of |R| and |E| versus β for different values of α with Γ=1 and Kb=0.4

Figure 9 Graph of |R| versus β for different values of Kb with Γ=0
and α=0.062 46
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Reflection and energy curves are also depicted against
the angle of incidence for various porous effect parameter
values when the wavenumber Kb=0.4 and α=0.062 46 are
fixed in Figure 12. By comparing these curves with the
ones in Figure 6, it may be concluded that the reflection
and the energy dissipation is mostly caused by the flexible
nature of the membrane. Enhanced reflection becomes a
complete one for the impermeable barrier at a particular in‐
cident wave angle as observed in the case of surface pierc‐
ing membrane barrier. Figure 13 shows reflection and ener‐
gy curves for the solid porous barrier. They are qualitative‐

ly comparable with the ones in Figure 7.

3.3 Submerged membrane of finite length

In this case, the membrane position and the gap are at
B=(a,b) and B̄=(0,a)∪(b,∞) respectively. The Galerkin ap‐
proximation for G(y) is specified as G(y)≈∑n = 0

N an gn(y),

where an, n=0,1,… ,N are unknown constants and gn(y),
n=0, 1,… , N are the weight functions. The nature of the
edge conditions of the porous membrane is considered to set
gn(y) as

Figure 11 Graph of |R| and |E| versus Kb for different values of α with Γ=1 and β=30°

Figure 12 Graph of |R| and |E| versus β for different values of Γ with α=0.062 46 and Kb=0.4

Figure 13 Graph of |R| and |E| versus β for different values of Γ with α=0 and Kb=0.4
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gn ( y ) =

ì

í

î
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ï
ï
ï

ï
ïï
ï
ï
ï

(
y
a

)n a
a − y

if y ∈ (o,a )

e− Ky (
y
b

)n b
y − b

if y ∈ (b, ∞ )

Here, we obtain the analytic results by using a single
term Galerkin approximation (N=0). Consider g0(y). Then,
by solving the linear system Equation (32), we obtain a0=
G00/A00. By using a0 into Equation (33) and get Fl=G00

2/A00

where

G00 = ∫
0

a

e− Ky a
a − y

dy + ∫
b

∞

e− 2Ky b
y − b

dy

and

A00 = ∫
0

∞ X 2 (γab )
γ1 (γ2 + K 2 )

dγ

with

X (ξab ) =

∫
0

a

B (γ, u )
a

a − u
du + ∫

b

∞

e−Ku B (ξ, u )
b

u − b
du

Likewise, a single term Galerkin approximation for the
function H(y) is specified as

H ( y ) ≈ 1
b

( y − a ) (b − y )∑
n = 0

N

bn (
y
b

)n if y ∈ (a, b )

Again, the edge behaviour of the membrane is considered
to set hn(y), n=0,1,…, N as

hn ( y ) =
1
b

( y − a ) (b − y ) (
y
b

)n if y ∈ (a, b )

Then, the upper bound Fu is obtained by using a single
term Galerkin method. Thus, the reflection and the trans‐

mission coefficients are attained between two close
bounds and the numerical results are obtained for the scat‐
tering quantities against various parameters.

The reflection coefficient |R| and the total energy |E| =
|R|2+ |T|2 are calculated against the non-dimensional wave‐
number Kb as well as the angle of incidence β for a sub‐
merged barrier of finite length. Numerical estimation of
the reflection and the energy curves are plotted against the

wavenumber Kb for various μ=
a
b

values when β=30° and

Γ=1 are fixed in Figure 14. For the fixed barrier length pa‐
rameter μ, wave reflection and energy loss reach maxi‐
mum for waves with a moderate wavelength. The measure
of these quantities are remained uniform for moderate to
short incident waves. For fixed larger wavenumber, the
length of the barrier decreases as reflection decreases. It is
due to shorter waves interaction with smaller barriers.

In Figures 15 and 16, the reflection coefficient and the to‐
tal wave energy are depicted against the wavenumber for
different values of the membrane frequency parameter
when the oblique angle of incidence β=30° is fixed, in both
cases of the porous and the non-porous membranes, respec‐
tively. Reflection increases in general when the tension in
the membrane increases for all membrane lengths. Further,
enhanced reflection takes place for a specific smaller length
of the membrane due to the flexible nature of the barrier.
Both reflection and dissipation of wave energy maintain uni‐
formly high for moderate to longer membranes. Similar ob‐
servations can be made, from Figure 16, in the case of the
impermeable tensioned membrane. However, impermeable
membranes with higher tension cause significantly higher
reflection in comparison with the porous ones.

In Figure 17, the reflection coefficient and the total ener‐
gy are depicted against the incident wave angle for various
Γ values when Kb=0.2 and α =0.062 46 are fixed. From
Figure 17, it may be observed that the enhanced reflection
and the enhanced energy loss occur in between 30° to 50°
and the curves reach minimum in the vicinity of 90° .
Again, this is due to the flexible nature of the submerged
membrane. Complete reflection is possible at a specific in‐

Figure 14 Graph of |R| and |E| versus Kb for different values of μ with β=30° and Γ=1
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cident wave angle for the impermeable tensioned mem‐
brane. This resonant reaction from the barrier is absent
when one considers solid porous membrane, as shown in
Figure 18. Again, reflection and energy curves for the
solid membrane are qualitatively similar to the ones in
Figures 7 and 13.

3.4 Complete membrane with a gap

In this case, the membrane position and the gap are at B=

(0, a) ∪ (b, ∞) and B̄= (a, b), respectively. The multi-term
Galerkin approximation for the function G(y) can be taken
by

G ( y ) ≈ a

( y − a ) (b − y )
∑
n = 0

N

an (
y
b

)n if y ∈ (a, b )

where an, n=0, 1,… , N are unknown constants. The edge
behaviour of the membrane is considered to set the weight
functions gn(y), n=0,1,…, N as

gn ( y ) =
a

( y − a ) (b − y )
(

y
b

)n if y ∈ (a, b )

Likewise, consider H(y)≈∑n = 0

N bn hn(y), where bn, n=0,

1,… , N are unknown constants and the edge behaviour of
the membrane is considered to choose hn(y), n=0, 1,… , N
as

hn ( y ) =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

(
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)n 1 − (
y
a

) if y ∈ (0, a )

e− Ky (
y
b

)n (
y
b

) − 1 if y ∈ (b, ∞ )

Figure 17 Graph of |R| and |E| versus β for different values of Γ with μ=0.5, Kb=0.2 and α=0.062 46

Figure 15 Graph of |R| and |E| versus Kb for different values of α with μ=0.05, β=30° and Γ=1

Figure 16 Graph of |R| versus Kb for different values of α with μ=
0.05, β=30° and Γ=0
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The same procedure is used to obtain the bounds for the
scattering quantities as given in the previous case and the
details are not included here. Graphs of the reflection coef‐
ficient and the total energy are depicted by considering pa‐
rameter values as mentioned in the case of the submerged
membrane with a finite length.

In Figure 19, estimated values of the reflection coefficient
|R| and the total energy |E| are computed against the wave‐

number Kb for different μ=
a
b

values when β=30° and Γ= 1

are fixed. When a particular frequency of waves incident on
the tensioned or the non-tensioned porous membrane with a
gap in it, reflection and energy dissipation curves get reso‐

nant enhancement for a specific length of the gap.
Graphs of the coefficient of reflection and the total ener‐

gy are given in Figures 20 and 21 against the wavenumber
for various α values when the porous and the impermeable
barrier, respectively, are obliquely incident by waves that
make an angle β=30°. They reveal that these curves attain
resonant peaks when waves of certain frequency incident
on the tensioned membrane barrier with a particular gap
length. These peaks move towards higher values of Kb
with a decrease in the tension value of the membrane. It is
remarked that resonant reflections become a complete one
for the impermeable membrane with a gap.

Figure 18 Graph of |R| and |E| versus β for different values of Γ with μ=0.5, Kb=0.2 and α=0

Figure 19 Graph of |R| and |E| versus Kb for different values of μ with β=30° and Γ=1

Figure 20 Graph of |R| and |E| versus Kb for different values of α with μ=0.05, β=30° and Γ=1
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Finally, reflection and total energy curves are plotted in
Figure 22 against the incident angle for various Γ values
when μ=0.5, Kb=0.2 and α=0.062 46 are fixed. They re‐
veal that the resonant peaks of these curves are attained at
high incident angles as compared to the ones in Figure 17
for the case of the submerged membrane of finite length.
Again, enhanced reflection is almost complete when the
membrane becomes non-porous. In addition, solid porous
barrier will not have any resonant reactions from the inci‐
dent waves. Also, the reflection and the energy curves in
Figure 23 for the solid porous barrier with a gap are com‐
parable qualitatively with those in other barrier configura‐
tions.

4 Conclusions

The present work is concerned with the scattering prob‐
lem of water waves obliquely incident on four types of the
vertical porous membranes such as surface piercing, sub‐
merged but finite length, submerged but infinite length and
complete one with a finite gap. The original problem is de‐
composed into a pair of resolvable problems for the auxil‐
iary potentials. These problems are solved by the Galerkin
method with a one term or a two term approximation.
Closed upper and lower bounds are obtained for the scat‐

tering quantities by choosing a suitable weight function in
all the four barrier configurations. Then, the graphs of the
reflection and the total energy are plotted against various
parameters such as the non-dimensional wavenumber and
the angle of wave incidence. Enhanced reflection and en‐
hanced energy dissipation are found in all the four barrier
configurations and they are sensitive to the incident wave
angles as well as the membrane parameters. This is useful
in the design of removable breakwaters such as vertical
membranes by adjusting the length of the membrane suit‐
ably chosen so as to attain maximum reflection in order to

Figure 21 Graph of |R| and |E| versus Kb for different values of α
with μ=0.05, β=30° and Γ=0

Figure 22 Graph of |R| and |E| versus β for different values of Γ with μ=0.5, Kb=0.2 and α=0.062 46

Figure 23 Graph of |R| and |E| versus β for different values of Γ with μ=0.5, Kb=0.2 and α=0
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mitigate harmful effects of the incident waves.

Founding Information Supported by DST with Grant No. MTR/
2019/000561
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