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Abstract
Using linear water wave theory, three-dimensional problems concerning the interaction of waves with spherical structures
in a fluid which contains a three-layer fluid consisting of a layer of finite depth bounded above by freshwater of finite
depth with free surface and below by an infinite layer of water of greater density are considered. In such a situation time-
harmonic waves with a given frequency can propagate with three wavenumbers. The sphere is submerged in either of the
three layers. Each problem is reduced to an infinite system of linear equations by employing the method of multipoles and
the system of equations is solved numerically by standard technique. The hydrodynamic forces (vertical and horizontal
forces) are obtained and depicted graphically against the wavenumber. When the density ratio of the upper and middle
layer is made to approximately one, curves for vertical and horizontal forces almost coincide with the corresponding
curves for the case of a two-layer fluid with a free surface. This means that in the limit, the density ratio of the upper and
middle layer goes to approximately one, the solution agrees with the solution for the case of a two-layer fluid with a free
surface.

Keywords Three-layer fluid; Wave scattering; Submerged sphere; Hydrodynamic forces; Vertical and horizontal forces;
Linear water wave theory; Density-stratified three-layer fluid; Submerged spherical structure; Underwater sphere

1 Introduction

The study of wave propagation problems concerning ful‐
ly submerged or semi-immersed structures of spherical
shape within the fluid has been essential and received im‐
mense importance in the literature for their utilization as
wave power devices or as a spherical hull in submerged ve‐

hicles and others. Havelock (1955) initiated the study of
spheres in the fluid, who investigated the radiation by a
half-immersed heaving sphere in deep water and solved
the problem considering the velocity potential as a summa‐
tion of wave source potentials of three-dimension and har‐
monic wave-free potentials taken in a linear combination.
This method was used by Evans and Linton (1989) in the
water of finite depth to study scattering and radiation by
submerged horizontal cylindrical structure. Extending this
in a similar approach, Linton (1991) dealt with the case of
a submerged spherical object. The multipole expansion
method has made a prime place in the study of various hy‐
drodynamic characteristics of different geometries that are
complaint to separable solutions of Laplace's equation.
This method was practised initially by Ursell (1950) to
study waves considering the presence of a submerged long
horizontal circular cylinder in the water of infinite depth.
Srokosz (1979) used the method of multipoles for the radi‐
ation problem of water waves by a sphere, considering it
as a wave power absorber fully submerged in deep water
under a free surface. Many researchers, including Das and
Mandal (2008; 2010) have worked on problems of hydro‐
dynamic concerns, analysing fixed rigid spherical struc‐
tures. Das and Thakur (2013) analysed the problem of wa‐
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ter wave scattering in the presence of a submerged sphere
considering a thin ice-cover as an elastic plate in the water
of uniform finite depth, and that in a two-layer fluid was
investigated by Das and Thakur (2014), applying the meth‐
od of multipoles. Such studies emphasize spherical shape
devices of wave energy in oceans of polar regions. Most
of the research works are concerned with completely im‐
mersed spherical objects. There are rare researchers on
spheroids, a more complex geometry (cf. Wu and Taylor
(1987; 1989), Chatjigeorgiou (2013), Chatjigeorgiou and
Miloh (2015; 2017), and others.)

Geophysical flows of oceans and atmosphere have an
essential feature of density inhomogeneity, due to which
there can be significant effects in the dynamics of the flow.
Density stratification in the fluid flows of nature and indus‐
trial processes are due to the differences in salinity, the
concentration of several solutes, temperature, and their
combination. Estuaries or fjords have fresh river water
flowing over oceanic saline water. Even though almost all
fluids in the earth are stratified, the effects of density strati‐
fication of seawater were not considered in the initial re‐
searches, and an assumption of fluids of uniform density
was usual. A general theory of propagation of water waves
in a density stratified fluid of two layers with a free sur‐
face was developed by Linton and McIver (1995), consid‐
ering the presence of long horizontal cylindrical structures
in either of the two layers. This study was motivated by
the model of underwater pipe bridges across the stratified
fluid of Norwegian fjords where the freshwater of around
10m depth flows over the saltwater. Extending this re‐
search, Cadby and Linton (2000) investigated the three-di‐
mensional scattering and radiation problem in the presence
of a submerged sphere in any of the two layers, using the
multipole expansion method. Interesting flows of polar
oceans were studied considering the more general class of
problems of the density stratified two-layer fluid with ice
cover or floating thin elastic plate (cf. Das (2008; 2015),
Das and Mandal (2006; 2007)). In the same fluid structure,
the radiation of water waves by a sphere was investigated
by Das and Mandal (2010). Recently, Sahu and Das
(2021) studied the hydrodynamic forces on a submerged
circular cylinder in two-layer fluid with an ice-cover.

We also know that based on the layered density struc‐
ture, the ocean has three horizontal depth zones, namely,
the mixed layer, pycnocline, and deep layer. Severe densi‐
ty changes take place in pycnocline. The density gradients
may occur by the gravitational settling of sediments or so‐
lar heating of the surface water and also as a result of mini‐
mal mixing forces of wind and wave action, which is more
often in the summer months. In recent years, the study of
stratified fluid dynamics has drawn more attention, under‐
standing the vital effect of inhomogeneity of density in
ocean engineering applications (cf. Liu et al. (2020); Wang
et al. (2021) and others). In a three-layer fluid model with

a free upper surface and two interfaces, the water wave
propagates with three possible modes of linear water
waves, each with different wavenumbers. This fact makes
the model mathematically difficult to handle. Each of the
three modes may correspond to the oscillations confined
mainly to the upper, middle and lower layer of fluid, re‐
spectively. In interaction with the body in the wave field
of stable but arbitrary density ratio, the wave energy may
have a chance of transferring from one mode to another.
Hence, this model is considered a more accurate realiza‐
tion of the two-layer fluid model. There are published re‐
search works in three-layer fluid with some fascinating re‐
sults to understand wave interaction with different geomet‐
rical configurations for some particular interests. The wa‐
ter wave in a three-layer system containing rigid horizon‐
tal walls above the top layer and below the bottom layer of
fluid was investigated by Michallet and Dias (1999). Tay‐
lor (1931) studied the linear stability of a three-layer fluid.
The trapped modes of wave in such fluid in a channel with
a fully immersed cylinder in the lower layer fluid was dis‐
cussed by Chakrabarti et al. (2005). Also, Chen and Forbes
(2008) studied steady periodic waves considering shear in
the middle layer of the three-layer fluid. Problems of wave
structure interaction in the three-layer fluid were discussed
by Mondal and Sahoo (2014). Less work has been done in
this regard. Das (2016) investigated the scattering of water
waves by horizontal cylindrical structure in a three-layer
fluid. Recently, oblique wave scattering in the three-layer
fluid was studied by Das and Majumder (2020) using the
method of multipoles expansion. Newly, Das and Sahu
(2021) investigated wave radiation by a sphere in a three-
layer fluid.

Solution of relevant fluid mechanics problems is para‐
mount to understand flows of interest in oceanography
and construct advanced necessary off-shore structures
like submerged sphere-city, called ocean spiral. In Naval
hydrodynamics, experimental and numerical tools are
used to study the flow field around marine vessels. Un‐
derwater models of spherical robots are analysed for their
various utilisation in ocean phenomena (cf. Amran and
Isa 2020). Studies of autonomous underwater vehicles
(AUVs) of spherical structure is of major use for mine ex‐
ploration (cf. Fernandez et al. 2018 and others). Lately,
Gu et al. (2021) used a heaving spherical wave energy
converter (WEC) as a point absorber to test their pro‐
posed controller. Freshly, Samayam et al. (2021) consid‐
ered an oscillating sphere close to a plane boundary to in‐
vestigate direct numerical simulation (DNS) of flow in‐
duced by it. Most of their review reveals that ignoring the
effects of density stratification, fluid is taken to be of uni‐
form density. The submerged spherical structure in a
three-layer fluid can be studied to inspect vital problems
regarding interesting ocean hydrodynamic phenomena,
making the investigation more realistic. This three-dimen‐
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sional body can resemble spherical submarines, various
wave energy devices, subsurface storage tanks, or fuel
bladder of spherical geometric configuration in the
ocean. Moreover, the spheroidal structures of vehicles
fixed within the ocean are also being studied. The scatter‐
ing of water waves in a three-layer fluid in the presence
of a submerged sphere in any one of the three layers is ex‐
amined here. The focus is on the quantity of wave energy
reflected and transmitted due to the obstruction of the in‐
cident wave by the spherical structure and thus calculat‐
ing the resultant vertical and horizontal forces. This infor‐
mation is essential for the stable and efficient construc‐
tion of immersed bodies having sphere shapes in the
ocean. The method of multipole expansions is employed
to express the velocity potentials in spherical harmonics
that describe the motion in either of the three layers. Ap‐
plying the structural boundary conditions of the surface
of the submerged sphere, the problem is reduced to a sys‐
tem of linear algebraic equations. These equations are
truncated and simultaneously solved using numerical
methods. Finally, the vertical and horizontal exciting forc‐
es on the sphere are obtained respectively for the heave
and sway motions of the submerged body. These forces
for the structure submerged in either lower, middle or up‐
per layer are depicted graphically against the wave num‐
ber in several figures, varying the submersion depth of
the sphere. The curves are almost similar to those of Cad‐
by and Linton (Cadby and Linton 2000) when the densi‐
ties of the upper and the middle layer of the three-layer
fluid are nearly equal, as the fluid represents only two
layers.

2 Mathematical formulation

It is concerned with irrotational motion in three super‐
posed non-viscous incompressible fluids under the action
of gravity and neglecting any effect due to surface tension
at the interfaces. H and h are the depths of the upper and
the middle layer respectively, while the lower layer is infi‐
nitely deep. The densities of the upper, middle and lower
layers are ρ1, ρ2 and ρ3 ( ρ3 > ρ2 > ρ1 ) respectively. Carte‐
sian co-ordinates are chosen such that ( x, z ) plane coin‐
cides with the undisturbed interface between the middle
and lower layer (ML). The y- axis points vertically up‐
wards with y = 0 as the mean position of the interface of
ML, y = h ( > 0 ) as the mean position of the interface of
the upper and middle (UM) and y = H + h ( > 0) as the
mean position of the linearized free surface. Under the usu‐
al assumptions of linear water wave theory, a velocity po‐
tential can be defined for waves in the form

Ф ( x, y, z, t ) = Re{ϕ ( x, y, z )e− iωt}

where ϕ ( x, y, z ) is a complex valued potential function, ω
is the angular frequency.

The upper fluid, h < y < h + H, will be referred to as re‐
gion I, the middle fluid, 0 < y < h, will be referred to as re‐
gion II, while the lower fluid, y < 0, will be referred to as
region III (cf. Figure 1(a), 1(b), 1(c)).

The potential in the upper fluid will be denoted by ϕI

and that in the middle and lower fluids by ϕII, ϕIII respec‐
tively, ϕI , ϕII and ϕIII satisfied Laplace's equation (cf. Das
and Sahu 2021)

∇2ϕI = ∇2ϕII = ∇2ϕIII = 0 (1)

Linearized boundary conditions on the interfaces and at
the free surface are

ϕI
y = ϕII

y on y = h (2)

s1 (ϕI
y − K ϕI ) = ϕII

y − K ϕII on y = h (3)

ϕII
y = ϕIII

y on y = 0 (4)

s2 (ϕII
y − K ϕII ) = ϕIII

y − K ϕIII on y = 0 (5)

where s1 =
ρ1

ρ2
( < 1 ) and s2 =

ρ2

ρ3
( < 1 )

(ϕI
y − K ϕI ) = 0 on y = h + H (6)

where K = ω 2 g. The boundary conditions (2) and (4) are

obtained from the continuity of normal velocity at the in‐
terface between UM and ML respectively, while the condi‐
tions (3) and (5) are obtained from the continuity of pres‐
sure at the interface between UM and ML respectively.

Also, condition at large depth is

∇ϕIII → 0 as y → − ∞ (7)

Now the total potential function can be decomposed in‐
to two parts:

ϕ = ϕinc + ϕs (8)

where ϕinc is the incident wave potential function and ϕs is
scattering potential function which must satisfy Equation
(1) to (7) and also the body boundary condition

∂ϕs∂r = − ∂ϕinc∂r on r = a (9)

and behave as an outgoing wave far from the sphere. With‐
out loss of generality, it can be assumed that the incident
wave is from x =−∞ so that α inc = 0.
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3 Scattering by a submerged sphere

The centre of the sphere of radius a is taken as (0, f, 0 )
so that for f < 0 and a > f, the sphere is in the lower layer

and for f > 0 and a < min (h − f, f ) , f < h, the sphere is

in the middle layer and f > 0 and a < min(H + h −
f, f ) , h < f < h + H, the sphere is in the upper layer. Polar

co-ordinates (r, θ, α ) are defined by

x = r sin θ cos α, y = f − r cos θ, z = r sin θ sin α (10)

so that r = a denotes the surface of the sphere.

3.1 Sphere in the lower layer

A solution of Laplace’s equation in the spherical polar
co-ordinate system (r, θ, α ) and singular at r = 0 is
r− n − 1 P m

n (cos θ ) cos mα, n ≥ m ≥ 0, where P m
n are associ‐

ated Legendre functions. This has the integral representa‐
tion, valid for y > f

P m
n (cos θ )

rn + 1
cos mα =

cos mα

( )n − m ! ∫0

∞

kne− k ( )y − f Jm(kR)dk (11)

where Jm are Bessel functions and R = ( x2 + z2 )1 2. Let the
multipole potentials ϕjm

n cos mα, j = I, II, III, m = 0, 1 be

the singular solutions of the Laplace’s equation and satisfy
(2)‒ (6) and behave as outgoing waves as R → ∞ which is
the radiation condition. The multipole potentials
ϕIm

n , ϕIIm
n , ϕIIIm

n are obtained as (cf. Das and Sahu 2021)

ϕIm
n =

an + 1

( )n − m !
∮ ∞0 kn ( A(k ) eky + B (k ) e− ky )Jm(kR)dk (12)

ϕIIm
n =

an + 1

( )n − m !
∮ ∞0 kn (C (k ) eky + D (k ) e− ky )Jm(kR)dk

(13)

ϕIIIm
n = ( a

r ) n + 1

P m
n (cosθ ) +

an + 1

( )n − m !
∮ ∞0 kn E (k ) eky Jm(kR)dk (14)

where

A(k ) = 4
(k + K ) K 2ekfe− 2k (h + H )

( )1 − s1 ( )1 − s2 H (k )
(15)

B (k ) = 4
K 2ekf

( )1 − s1 ( )1 − s2 h (k )
(16)

C (k ) =

2
K ( )k + K ekf{ ( )k + Kσ1 e− 2k (h + H ) − ( )k − K e− 2kh }

( )1 − s2 H (k )
(17)

(a) Sphere submerged in the lower layer

(b) Sphere submerged in the middle layer

(c) Sphere submerged in the upper layer

Figure 1 Schematic diagrams of a sphere submerged in either layer
of the three-layer fluid
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D (k ) = 2
Kekf{ }( )k + K e− 2kH − ( )k − Kσ1

( )1 − s2 h ( )k
(18)

E (k ) = ekf [ (k + Kσ2 ){(k + Kσ1 ) e− 2k ( )h + H − (k − K ) e− 2kh}
− (k − K ) {(k + K )e− 2kH − (k − Kσ1 ) }]

k + K
H (k )

(19)

where σ1 =
1 + s1

1 − s1

, σ2 =
1 + s2

1 − s2

and

H (k ) = (k − K )h (k ) , (20)

h (k ) = (k + K ){(k + Kσ1 ) e− 2kH − (k − K )}e− 2kh

− (k − Kσ2 ) { (k + K ) e− 2kH − (k − Kσ1 ) } (21)

Since the equation H (k ) = 0 has exactly three positive
real roots K, k1and k2 (k2 > k1 ) (say), the path of integra‐
tion is indented to pass beneath the poles of the above
three integrands at k = K, k = k1 and k = k2.

The far-field forms of the multipoles, in the lower layer,
is given by (cf. Das and Sahu 2021)

ϕIIIm
n ~ ( )− i

m + 1
an + 1

( )n − m ! ( 2π
R )

1
2 (K

n − 1
2 EKeiKR + Ky

+k
n − 1

2
1 Ek1eik1 R + k1 y + k

n − 1
2

2 Ek2eik2 R + k2 y )e
− i

π
4 (22)

as R → ∞. Here EK, Ek1 and Ek2 are the residues of E (k )
at k = K, k = k1 and k = k2 respectively, given by

EK = 2K 3 ( )1 + σ1 (1 + σ2 )eKfe− 2K (h + H )

h ( K )
(23)

Ekj = ekj f [ (kj + Kσ2 ){ (kj + Kσ1 ) e− 2kj( )h + H

− (kj − K ) e− 2kjh} − (kj − K )
{ }( )kj + K e− 2kj H − ( )kj − Kσ1 ]

(kj + K )

H'( )kj

, j = 1, 2 (24)

Using the result

e±k ( )y − f Jm(kR) = (±1)m∑q = m

∞ (±kr )q

(q + m )!
P m

q (cos θ ) (25)

(14) can be expressed as

ϕIIIm
n = ( a

r ) n + 1

P m
n (cos θ ) +∑s = m

∞ Am
nsr

s P m
s (cos θ ) (26)

where

Am
ns =

an + 1

( )n − m !( )s + m !
∮ ∞0 kn + s E (k ) ekfdk (27)

3.1.1 Incident wave train of wavenumber K
First we consider an incident plane wave of wave num‐

ber K and amplitude A on the free surface y = h + H
whose potential can be expanded in spherical plolar co-or‐
dinates and get

ϕinc =− igA
ω

eK ( y − h − H )eiKR cos α

=− igA
ω

eK ( )f − h − K∑m = 0

∞ ϵmim cos mα (28)

∑s = m

∞ ( Kr )s

( s + m )!
P m

s (cos θ ) (29)

where ϵ0 = 1, ϵm = 2 for m ≥ 1.
For the scattering problems considered, we write

ϕS =− igA
ω ∑m = 0

∞ ∑n = m1

∞ cm
n ϕ

m
n cos mα (30)

where m1 = max (m,1) and ϕm
n is given (in the lower fluid

layer) by (26).
If we then apply the boundary condition (9) and use the

orthogonality of the associated Legendre functions and al‐
so the functions cos mα we can derive an infinite system of
equations for the sets of coefficients cm

n , n ≥ m1 for each
m ≥ 0, which is

cm
s − s

s + 1∑n = m1

∞ Am
nsc

m
n =

ϵmim s ( )Ka
s

( )s + 1 ( )s + m !
eK ( )f − h − H ,

s ≥ m1 (31)

These system can be solved by truncation.
The hydrodynamic force on the body in the ith mode of

motion can be written as Fi(t ) = Re { fie
− iωt }, where fi is

found by integrating the dynamic pressure times the appro‐
priate component of the normal over the body surface. In
other words,

fi = iρ3ω ∫
SB

ϕni ds

where SB is the body boundary and ni is the component of
the inward normal to the body in the ith mode of motion.

The vertical and horizontal exciting forces on the sphere,
f̄ 0

K and f̄ 1
K can be obtained as

f̄ 0
K =− 4

3
Πa2 ρ3 gA(KaeK ( )f − h − H + c0

1 +∑
n = 1

∞

A0
n1 c0

n) (32)
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and

f̄ 1
K =− 4

3
Πa2 ρ3 gA(iKaeK ( )f − h − H + c1

1 +∑
n = 1

∞

A1
n1 c1

n) (33)

These can be simplified using (31) with s = 1 giving

| f 0
K | =

|

|

|
||
|
|
| f̄ 0

K

a2 ρ3 gA

|

|

|
||
|
|
|
= 4π | c0

1 | (34)

and

| f 1
K | =

|

|

|
||
|
|
| f̄ 1

K

a2 ρ3 gA

|

|

|
||
|
|
|
= 4π | c1

1 | (35)

The constants c0
1 appearing in (34) and c1

1 appearing in
(35) can be obtained numerically by solving the linear sys‐
tem (31) after truncation.

3.1.2 Incident wave train of wavenumber kj , j=1,2
Now, we consider the case of an incident plane wave of

amplitude A on the interface y = h for k1 and y = 0 for k2

and the wavenumber kj described by

ϕIII
inc =− igAK

ωkj

ekj y + ikj R cos α, j = 1, 2 (36)

The analysis is very similar to that given above for an
incident wave of wavenumber K. We use the same expan‐
sion for ϕS as before, Equation (30), but denote the un‐
known coefficients by d m

n and we obtain the infinite sys‐
tem of equations

d m
s − s

s + 1 ∑n = m1

∞

Am
nsd

m
n =

ϵmim sKa ( )kja
s − 1

( )s + 1 ( )s + m !
ekj f,

s ≥ m1, j = 1, 2 (37)

for each m ≥ 0.
The expressions for the vertical and horizontal exciting

forces are

| f 0
kj
| =

|

|

|
||
|
|
| f̄ 0

kj

a2 ρ3 gA

|

|

|
||
|
|
|
= 4π | d 0

1 |, j = 1, 2 (38)

and

| f 1
kj
| =

|

|

|
||
|
|
| f̄ 1

kj

a2 ρ3 gA

|

|

|
||
|
|
|
= 4π | d 1

1 | j = 1, 2 (39)

The constants d 0
1 appearing in (38) and d 1

1 appearing in
(39) can be obtained numerically by solving the linear sys‐
tem (37) after truncation.

3.1.3 Numerical results
To study the numerical results the density ratios s1 and

s2 are both taken to be 0.95. Figures 2 to 7 depict the
time-independent and non-dimensional vertical and hori‐
zontal exciting forces on the sphere submerged in the
lower layer, plotted against the wavenumber Ka for the
incident wave of wavenumbers K, k1 and k2.We have cho‐
sen h/a and H/a as 2, when the sphere is submerged in the
lower layer for various immersion depths f/a =−1.1,−1.5,
−2 and −3, shown using four distinct curves. f/a =−1.1
represents the immersion depth of the sphere almost
close to the interface y = 0, between the lower and the
middle layer. The curves corresponding to other values of
f/a represent the sphere submerged deeper below the in‐
terface. It is noted that the forces in all of these figures in‐
crease with the increase in Ka and attain a maximum af‐
ter which they decrease with further increase in Ka. Natu‐
rally, the forces increase as the submersion depth of the
sphere decreases when the surface of the sphere comes
nearer to the interface y = 0 ( f/a =−1.1) and consequent‐
ly, to the free surface. The forces have similar behaviour
as those of Cadby and Linton (2000), when the sphere is
submerged in the lower layer, though here, in three-layer
fluid the forces are higher and even the increase in forces
becomes larger with the increase in submersion depths.
Again, the range of forces is more here than that of Cad‐
by and Linton (2000), where the fluid was considered of
two layers.

Also, the Tables 1 and 2 corresponding to heaving and
swaying spheres show the values of vertical and horizontal
forces in the two-layer fluid (paper of Cadby and Linton
(2000)) and the present paper of three-layer fluid. For all
data we consider s1 = 0.99, depth of the upper layer in
two-layer fluid being 4, h/a = 2 and H/a = 2 in three layer
fluid and f/a =−2 for both the cases. Thus it may be noted
that for s1 = 0.99, the density ratio of the upper and mid‐
dle layer, then the density of the upper and middle layer
are almost same and we see that the three-layer fluid be‐
comes two-layer fluid. For this case it is observed that
from the Tables 1 and 2 the values of the vertical and hori‐

Figure 2 Vertical forces f 0
K plotted against Ka in lower layer
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zontal forces almost coincide with the corresponding val‐
ues for a two-layer fluid.

The vertical and horizontal exciting forces for an inci‐
dent wave of wavenumber K are shown in Figures 2 and 3.
They are very similar. Figures 4 and 5 depict the vertical
and horizontal exciting forces respectively, for the incident
wave of wavenumber k1 and Figures 6 and 7, depict the
same respectively, for the incident wave of wavenumber
k2, where in both the cases, vertical exciting forces are
slightly greater than horizontal exciting forces. For Figures 4
and 5, the forces are much smaller than those of Figures 2
and 3, and the forces of Figures 6 and 7 are smaller than
those of the previous figures.

Table 1 Vertical exciting forces for the sphere in lower layer fluid

Ka

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Case of two-layer fluid
(Cadby and Linton 2000)

0.377 856

0.227 311

0.102 709

0.041 266 4

0.015 541 1

0.005 617 94

0.001 974 26

0.000 679 608

0.000 230 284

0.000 077 066 6

Case of three layer fluid

0.377 845

0.227 306

0.102 707

0.041 265 6

0.015 540 9

0.005 617 85

0.001 974 23

0.000 679 598

0.000 230 28

0.000 077 065 4

Figure 7 Horizontal forces f 1
k2

plotted against Ka in lower layer

Table 2 Horizontal exciting forces for the sphere in lower layer fluid

Ka

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Case of two-layer fluid
(Cadby and Linton 2000)

0.377 871

0.227 327

0.102 719

0.041 271 2

0.015 543 1

0.005 618 72

0.001 974 56

0.000 679 723

0.000 230 327

0.000 077 082 4

Case of three layer fluid

0.377 861

0.227 321

0.102 717

0.041 270 4

0.015 542 8

0.005 618 63

0.001 974 53

0.000 679 713

0.000 230 323

0.000 077 081 3

Figure 6 Vertical forces f 0
k2

plotted against Ka in lower layer

Figure 4 Vertical forces f 0
k1

plotted against Ka in lower layer

Figure 5 Horizontal forces f 1
k1

plotted against Ka in lower layer

Figure 3 Horizontal forces f 1
K plotted against Ka in lower layer
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3.2 Sphere in the middle layer

For the problem involving a sphere in the middle layer,
one needs to construct the multipoles which are singular at
y = f > 0. Suitable multipoles are obtained as (cf. Das and
Sahu 2021)

ϕIm
n =

( − 1)m + nan + 1

(n − m )!
∮ ∞0 kn ( AM(k ) eky

+ BM(k ) e− ky )Jm (kR )dk (40)

ϕIIm
n = ( a

r ) n + 1

P m
n (cos θ ) +

( − 1)m + nan + 1

(n − m )!

∮ ∞0 kn (CM(k ) eky + DM(k ) e− ky )Jm (kR )dk (41)

ϕIIIm
n =

( − 1)m + nan + 1

(n − m )!
∮ ∞0 kn EM(k ) eky Jm (kR )dk (42)

where

AM(k ) = 2 ( )k + K Ke− 2k ( )h + H

( )1 − s1 H ( )k

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú( )− 1

n + m( )Kσ2 − k ekf

− ( )k − K e− kf

(43)

BM(k ) = 2
K

(1 − s1 )h (k )

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú( )− 1

n + m( )Kσ2 − k ekf

− (k − K )e− kf
(44)

CM(k ) =
( )k − K e− 2kh − ( )k + Kσ1 e− 2k ( )h + H

H ( )k

×é
ë

ù
û(k + K ) { }( )k − K e− kf − ( )− 1

n + m( )Kσ2 − k ekf

(45)
DM(k ) =

( )− 1
n + m( )k + K ekf{ }( )k − K e− 2kh − ( )k + Kσ1 e− 2k ( )h + H

h (k )

− (k − K )e− kf{ }( )Kσ1 − k + (k + K )e− 2kH

h (k )

(46)

EM(k ) = e− kf + CM(k ) − DM(k ) (47)

and the path of integration is indented to pass beneath the
poles of the above three integrands at k = K, k = k1 and
k = k2.

The polar expansions of the multipoles, similar to the
case when sphere is in the lower fluid, are

ϕIIm
n = ( a

r ) n + 1

P m
n (cos θ ) +∑s = m

∞ Bm
nsr

s P m
s ( )cos θ (48)

where

Bm
ns =

( − 1)m + nan + 1

(n − m )!( s + m )!
∮ ∞0 kn + s (CM(k ) ekf

+( − 1)m + s DM(k ) e− kf )dk (49)

3.2.1 Incident wave train of wavenumber K
An incident wave of wavenumber K on the free surface

has the same form in the middle layer as in the lower layer
given by (28). The total Potential ϕS can be expanded us‐
ing (30), but it now uses the multipole expansions devel‐
oped for the middle layer, (48). Thus the coefficients cm

n

satisfy the infinite system of equations

cm
s − s

s + 1∑n = m1

∞ Bm
nsc

m
n =

ϵmim s ( Ka )s

( )s + 1 ( )s + m !
eK ( f − h − H ),

s ≥ m1 (50)

and the non-dimensional vertical and horizontal forces for
a sphere in the middle layer fluid through the equations

| f 0
K | =

|

|

|
||
|
|
| f̄ 0

K

a2 ρ2 gA

|

|

|
||
|
|
|
= 4π | c0

1 | (51)

and

| f 1
K | =

|

|

|
||
|
|
| f̄ 1

K

a2 ρ2 gA

|

|

|
||
|
|
|
= 4π | c1

1 | (52)

3.2.2 Incident wave train of wavenumber kj , j=1,2
For this problem ϕII

inc is given, in the middle fluid, by

− igAK
ωkj

g j
2 ( y )eikjcos α , j = 1, 2, where

g j
2( y) =

( )kj − Kσ2 ekj y + ( )kj − K e− kj y

K ( )1 − σ2

, j = 1, 2 (53)

The polar expansion of ϕII
inc is given by

ϕII
inc =− igA

ω ∑m = 0

∞

ϵmim cos mα∑
s = m

∞ ( )kjr
s

( )s + m !
M1(kj ) P m

s (cos θ ) ,

j = 1,2 (54)

where ϵ0= 1, ϵm= 2 for m ≥ 1, where

M1(kj ) = 2
( )kj − Kσ2 ekj( )f − h + ( )− 1

m + s( )kj − K e− kj( )f + h

kj( )1 − σ2

,

j = 1, 2

For each m ≥ 0 the coefficients d m
n , in the expansion ϕS

satisfy the infinite system of equations
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d m
s − s

s + 1 ∑n = m1

∞

Bm
nsd

m
n =

ϵmim s ( )kja
s

( )s + 1 ( )s + m !
M1(kj ) , s ≥ m1,

j = 1, 2 (55)

for each m ≥ 0.
Also, the expressions for the non-dimensional vertical

and horizontal exciting forces are

| f 0
kj
| =

|

|

|
||
|
|
| f̄ 0

kj

a2 ρ2 gA

|

|

|
||
|
|
|
= 4π | d 0

1 |, j = 1,2 (56)

and

| f 1
kj
| =

|

|

|
||
|
|
| f̄ 1

kj

a2 ρ2 gA

|

|

|
||
|
|
|
= 4π | d 1

1 | j = 1,2 (57)

The constants d 0
1 appearing in (56) and d 1

1 appearing in
(57) can be obtained numerically by solving the linear sys‐
tem (55) after truncation. Here the linear system (55) is
truncated up to five terms. This provides an accuracy up to
five decimal places, because if the system is truncated up
to five or six terms, there is practically no change in the
numerical results.

3.2.3 Numerical results
When the sphere is submerged in the middle layer, the

vertical and horizontal exciting forces are represented with
four curves corresponding to the various submersion
depths of the sphere f/a = 1.1, 1.7, 2.3 and 2.9 and the den‐
sity ratios s1, s2 are both taken to be 0.95. Here we have
chosen, h/a and H/a both as 4. In all the figures, the forces
are higher when the surface of the sphere is closer to either
interface y = 0 or = h ( f/a = 1.1, 2.9 ). Figures 8 and 9
portray that the vertical and horizontal exciting forces as‐
sociated with the incident wave of wavenumber K are of
similar characteristics. Figures 10 and 11 depict the verti‐
cal and horizontal exciting forces respectively, for the inci‐
dent wave of wavenumber k1. The maximum of vertical
exciting forces occurs at higher values of Ka than that of
horizontal exciting forces. Again, in this case, the maxi‐
mums for vertical exciting forces are higher than those of
horizontal exciting forces. This same nature is also noted
for the vertical and horizontal exciting forces associated
with the incident wave of wavenumber k2, as shown in
Figures 12 and 13.

For the sphere submerged in the middle layer, all the
forces increase with the increase in Ka, and after attaining
the maximum, they decrease with further increase in Ka,
but only some horizontal forces corresponding to particu‐
lar submersion depths of the sphere, associated with the in‐
cident wave of wavenumber k1, become zero which again
increase and after reaching a local maximum, they de‐

crease as Ka further increases. The forces for the sphere
near to the interface y = 0, between the lower and middle

Figure 8 Vertical forces f 0
K plotted against Ka in middle layer

Figure 9 Horizontal forces f 1
K plotted against Ka in middle layer

Figure 10 Vertical forces f 0
k1

plotted against Ka in middle layer

Figure 11 Horizontal forces f 1
k1

plotted against Ka in middle layer
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layer ( f/a = 1.1), is the highest for the incident wave of
wavenumber k1 (Figures 10, 11), whereas those for the
sphere near to the interface y = h, between the upper and
the middle layer ( f/a = 2.9), is the highest for the incident
wave of wavenumber k2 (Figures 12, 13) as it is associated
with this interface. From Figures 12 and 13, we also ob‐
serve that for the incident wave of wavenumber k2, the
maximum of vertical and horizontal exciting forces occurs
for larger waves (smaller wavenumbers) compared to those
for the incident wave of wavenumber K (Figures 8, 9), but
compared to those for the incident wave of wavenumber k1

(Figures 10, 11), the maximum of vertical exciting forces
for the incident wave of wavenumber k2 occur for slightly
smaller values of Ka and those for horizontal exciting forc‐
es occur for slightly larger values of Ka.

Also, the tables 3 and 4 corresponding to heaving and
swaying spheres show the values of vertical and horizontal
forces in the two-layer fluid (paper of Cadby and Linton
2000) and the present paper of three-layer fluid. For all data
we consider s1 = 0.99, depth of the upper layer in two-layer
fluid being 6, h /a = 3 and H /a = 3 in three-layer fluid and
f /a = 1.7 for both the cases. Thus, it may be noted that for
s1 = 0.99, the density ratio of the upper and middle layer,
then the density of the upper and the middle layer are almost
same and we see that the three-layer fluid becomes two-layer
fluid. For this case it is observed that from the tables 3 and 4
the values of the vertical and horizontal forces almost coin‐
cide with the corresponding values for a two-layer fluid.

3.3 Sphere in the upper layer

For the problem involving a sphere in the upper layer,
one needs to construct the multipoles which are singular at
y = f > 0. Suitable multipoles are obtained as (cf. Das and
Sahu 2021)

ϕIm
n = ( a

r ) n + 1

P m
n (cos θ ) +

( − 1)m + nan + 1

(n − m )!
∮ ∞0 kn ( AU(k ) eky

+BU(k ) e− ky )Jm (kR )dk (58)

ϕⅡm
n =

( − 1)m + nan + 1

(n − m )!
∮ ∞0 kn (CU(k ) eky +

DU(k ) e− ky )Jm (kR )dk (59)

ϕⅢm
n =

( − 1)m + nan + 1

(n − m )!
∮ ∞0 kn EU(k ) eky Jm (kR )dk (60)

where

Table 3 Vertical exciting forces for the sphere in middle layer fluid

Ka

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Case of two-layer fluid
(Cadby and Linton 2000)

0.516 574

0.448 846

0.284 237

0.160 359

0.084 881 5

0.043 130 5

0.021 302 5

0.010 305 0

0.004 906 59

0.002 307 21

Case of three layer fluid

0.516 515

0.448 833

0.284 214

0.160 393

0.084 887 9

0.043 138 7

0.021 301 8

0.010 304 8

0.004 906 59

0.002 307 77

Figure 13 Horizontal forces f 1
k2

plotted against Ka in middle layer

Figure 12 Vertical forces f 0
k2

plotted against Ka in middle layer

Table 4 Horizontal exciting forces for the sphere in middle layer fluid

Ka

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Case of two layer fluid
(Cadby and Linton 2000)

0.515 021

0.448 747

0.284 252

0.160 384

0.084 899 4

0.043 140 5

0.021 307 7

0.010 307 7

0.004 907 93

0.002 307 88

Case of three layer fluid

0.515 032

0.448 795

0.284 233

0.160 384

0.084 890 5

0.043 142

0.021 309 1

0.010 308 7

0.004 907 64

0.002 307 84
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AU(k ) =

( )k + K ( )k − K e− kfe− 2kH{ }− ( )k + Kσ1 e− 2kh + ( )k − Kσ2

H ( )k

+( − 1) n + m(k + K ) e− 2k ( )h + H ekf

×
(k − Kσ1 ) (k − Kσ2 ) − (k + K ) ( )k − K e− 2kh

H (k )
(61)

BU(k ) = [ ( − 1) n + m(k + K ) e− 2kHekf

+(k − K ) e− kf + 2kh ] ( )k − Kσ2 − ( )k + Kσ1 e− 2kh

h ( )k
(62)

CU(k ) =− 2Ks1 (k − Kσ2 )

( )− 1
n + m( )k + K e− 2k ( )h + H ekf + (k − K )e− kf

(1 − s1 )H (k )
(63)

DU(k ) =

−2Ks1
( )− 1

n + m( )k + K e− 2k ( )h + H ekf + (k − K )e− kf

(1 − s1 )h (k )
(64)

EU(k ) = CU(k ) − DU(k ) (65)

and the path of integration is indented to pass beneath the
poles of the above three integrands at k = K, k = k1 and
k = k2.

The polar expansions of the multipoles, similar to the
case when sphere is in the lower fluid, are

ϕIm
n = ( a

r ) n + 1

P m
n (cos θ ) +∑s = m

∞ C m
nsr

s P m
s ( )cos θ (66)

where

C m
ns =

( − 1)m + nan + 1

(n − m )!( s + m )!
∮ ∞0 kn + s ( AU(k ) ekf

+ ( − 1)m + s BU(k ) e− kf )dk (67)

3.3.1 Incident wave train of wavenumber K
An incident wave of wavenumber K on the free surface

has the same form in the upper layer as in the lower layer
given by (28). The total Potential ϕS can be expanded us‐
ing (30), but it now uses the multipole expansions devel‐
oped for the upper layer, (66). Thus the coefficients cm

n sat‐
isfy the infinite system of equations

cm
s − s

s + 1 ∑n = m1

∞

C m
nsc

m
n =

ϵmim s ( Ka )s

( )s + 1 ( )s + m !
eK ( f − h − H ) ,

s ≥ m1 (68)

and the non-dimensional vertical and horizontal forces for
a sphere in the upper layer fluid through the equations

| f 0
K | =

|

|

|
||
|
|
| f̄ 0

K

a2 ρ1 gA

|

|

|
||
|
|
|
= 4π | c0

1 | (69)

and

| f 1
K | =

|

|

|
||
|
|
| f̄ 1

K

a2 ρ1 gA

|

|

|
||
|
|
|
= 4π | c1

1 | (70)

3.3.2 Incident wave train of wavenumber kj , j=1,2
For this problem ϕI

inc is given, in the upper fluid, by

− igAK
ωkj

g j
1( y) eikjcos α, j = 1, 2 where

g j
1( y) = 2

( )kj + K e− kj( )2h + 2H − y + ( )kj − K e− kj y

( )1 − s1 ( )1 − σ2 { }( )kj + K e− 2kj H − ( )kj − Kσ1

,

j = 1, 2 (71)

The polar expansion of ϕI
inc is given by

ϕI
inc =− igA

ω ∑m = 0

∞

ϵmim cos mα∑
s = m

∞ ( )kjr
s

( )s + m !
M2(kj ) P m

s ( )cos θ

j = 1, 2 (72)

where ϵ0= 1, ϵm= 2 for m ≥ 1, where

M2 (kj ) =

2
( )kj + K e− kj ( − f + 2h + 2H ) + ( − 1)m + s (kj − K )e− kj ( f + h + H )

(1 − s1 ) (1 − σ2 ) { }( )kj + K e− 2kj H − ( )kj − Kσ1

j = 1, 2

For each m ≥ 0 the coefficients d m
n , in the expansion ϕS

satisfy the infinite system of equations

d m
s − s

s + 1 ∑n = m1

∞

C m
nsd

m
n =

ϵmim s ( )kja
s

( )s + 1 ( )s + m !
M2(kj ) , s ≥ m1,

j = 1, 2 (73)

for each m ≥ 0.
Also, the expressions for the non-dimensional vertical

and horizontal exciting forces are

| f 0
kj
| =

|

|

|
||
|
|
| f̄ 0

kj

a2 ρ1 gA

|

|

|
||
|
|
|
= 4π | d 0

1 |, j = 1, 2 (74)

and
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| f 1
kj
| =

|

|

|
||
|
|
| f̄ 1

kj

a2 ρ1 gA

|

|

|
||
|
|
|
= 4π | d 1

1 | j = 1,2 (75)

The constants d 0
1 appearing in (74) and d 1

1 appearing in
(75) can be obtained numerically by solving the linear sys‐
tem (73) after truncation. Here the linear system (73) is
truncated up to five terms. This provides an accuracy up to
five decimal places, because if the system is truncated up
to five or six terms, there is practically no change in the
numerical results.

3.3.3 Numerical results
The vertical and horizontal exciting forces on the sphere

submerged in the upper layer of the three-layer fluid with
the submersion depths f/a = 5.1, 5.7, 6 and 6.8, are depict‐
ed by four curves for each f/a. To analyze this case also, we
have chosen h/a and H/a both as 4. It is observed that the
maximum for vertical and horizontal exciting forces are
similar for an incident wave of a particular wavenumber.

The vertical and horizontal exciting forces for the inci‐
dent wave of wavenumber K, k1 and k2 are shown by
Figures 14, 15; 16, 17; and 18, 19 respectively. For the in‐
cident wave of wavenumber K, the forces are higher when
the sphere is near to the free surface ( f/a = 6.8). Howev‐
er, for the incident waves of wavenumbers k1 and k2, the
forces increase with the decrease in f/a. Hence, the forces
are high when the surface of the submerged sphere comes
closer to the interface y = h ( f/a = 5.1). Both the vertical
and horizontal exciting forces are higher for the incident
wave of wavenumber K (Figures 14, 15) than those for the

incident wave of wavenumbers k1 (Figures 16, 17) and k2

(Figures 18, 19). For the incident wave of wavenumbers k1

and k2, the vertical exciting forces may attain the maxi‐
mum at a slightly smaller value of Ka than those of hori‐
zontal exciting forces.

Also, the Tables 5 and 6 corresponding to heaving and
swaying spheres show the values of vertical and horizontal
forces in the two-layer fluid (paper of Cadby and Linton
2000) and the present paper of three-layer fluid. For all da‐
ta we consider s1 = 0.99, depth of the upper layer in two-

layer fluid being 6, h /a = 3 and H /a = 3 in three-layer flu‐
id and f /a = 5.7 for both the cases. Thus, it may be noted

Figure 17 Horizontal forces f 1
k1

plotted against Ka in upper layer

Figure 16 Vertical forces f 0
k1

plotted against Ka in upper layer

Figure 15 Horizontal forces f 1
K plotted against Ka in upper layer

Figure 14 Vertical forces f 0
K plotted against Ka in upper layer

Figure 18 Vertical forces f 0
k2

plotted against Ka in upper layer
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that for s1 = 0.99, the density ratio of the upper and mid‐
dle layer, then the density of the upper and the middle lay‐
er are almost same and we see that the three-layer fluid be‐
comes two-layer fluid. For this case it is observed that
from the Tables 5 and 6 the values of the vertical and hori‐
zontal forces almost coincide with the corresponding val‐
ues for a two-layer fluid.

In all three cases, it is noted that the maximum of the
forces for the incident wave of wavenumbers k1 and k2, oc‐
cur for larger waves (smaller wavenumbers) than those for
the incident wave of wavenumber K. Thus, it is observed
that when the densities of the upper and middle layer are
taken as almost the same, that is when s1 is almost equal to
1, the three-layer fluid behaves similar to two-layer fluid
with free surface and both the vertical and horizontal excit‐
ing forces are somewhat similar to the vertical and hori‐
zontal exciting forces as represented by Cadby and Linton
(2000) for two-layer fluid. Here due to the presence of
more layer of the fluids, the curves for both vertical and
horizontal forces are somewhat different from the curves
for the same in the upper layer cases in the two-layer fluid
given by Cadby and Linton (2000). They are oscillatory
in nature. This may be attributed to interaction of the
boundary of the sphere, free surface and interfaces be‐
tween upper and middle layer as well as middle and lower
layer.

4 Conclusion

We have examined the interaction between the incident
waves with the sphere submerged in either layer of a three-
layer fluid. The middle layer is of finite depth and is
bounded above by an upper layer of finite depth with free
surface and the lower layer extends infinitely downwards.
In such a situation propagating waves can exist at three dif‐
ferent wavenumbers for any given frequency. The method
of multipoles expansion is used to solve the scattering
problems for the sphere situated entirely within either of
the layer of three-layer fluid. Numerical results for the ver‐
tical and horizontal forces for the sphere are obtained. The
hydrodynamic forces are depicted graphically against the
wavenumber as a number of figures when the sphere is
submerged in either of the layers. When the density ratio
of the upper and middle layer is made to approximately
one, curves for vertical and horizontal forces almost coin‐
cide with the corresponding curves for the case of a two-
layer fluid with a free surface. This means that in the limit,
the density ratio of the upper and middle layer goes to ap‐
proximately one, the solution agrees with the solution for
the case of a two-layer fluid with a free surface.
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