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Abstract
A fully Lagrangian algorithm for numerical simulation of fluid-elastic structure interaction (FSI) problems is developed
based on the Smoothed Particle Hydrodynamics (SPH) method. The developed method corresponds to incompressible
fluid flows and elastic structures. Divergence-free (projection based) incompressible SPH (ISPH) is used for the fluid
phase, while the equations of motion for structural dynamics are solved using Total Lagrangian SPH (TLSPH) method.
The temporal pressure noise can occur at the free surface and fluid-solid interfaces due to errors associated with the
truncated kernels. A FSI particle shifting scheme is implemented to produce sufficiently homogeneous particle
distributions to enable stable, accurate, converged solutions without noise in the pressure field. The coupled algorithm,
with the addition of proposed particle shifting scheme, is able to provide the possibility of simultaneous integration of
governing equations for all particles, regardless of their material type. This remedy without need for tuning a new
parameter, resolves the unphysical discontinuity beneath the interface of fluid-solid media. The coupled ISPH-TLSPH
scheme is used to simulate several benchmark test cases of hydro-elastic problems. The method is validated by comparison
of the presented results with experiments and numerical simulations from other researchers.

Keywords Smoothed particle hydrodynamics; Incompressible SPH; Total Lagrangian SPH; Fluidelastic structure interaction;
FSI particle shifting scheme

1 Introduction

The analysis of multi-physics problems is important in
various areas of engineering. Fluidstructure interaction
(FSI) is such a multi-physics problem where the effect of
the fluid on the structure could result in a significant struc‐
tural deformation. This deformation affects the pressure
and velocity of the fluid. Fluid-structure interaction prob‐

lems are analyzed in numerical methods using two distinct
approaches, a “direct” approach and a “partitioned” ap‐
proach. In the first approach, the fluid and structure rela‐
tions are expressed and solved simultaneously, done by
Langer and Yang (2018). In the second approach, first, the
fluid equations are solved for the determination of stress
(traction or pressure) on solid boundaries, and then the cal‐
culated stress is used as a boundary condition for the gov‐
erning equations of the structure to determine the deforma‐
tion of the solid media. In fact, in the “partitioned” ap‐
proach, the information is transmitted from one media to
another, so that the governing equations for both media
converge simultaneously (Rao and Wan 2018; Salehizadeh
and Shafiei 2021).

The main drawback in solving such problems with the
standard Lagrangian Finite Element Method (FEM) is that
severe mesh distortions, which accompany large deforma‐
tions, lead to inaccurate results. In the case of the fluid-
structure interaction, the coupling of fluid and structure
media is usually obtained by Arbitrary Lagrangian-
Eulerian (ALE) formulations for the fluid region, while
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the structure is modeled with the fully Lagrangian for‐
mula, such as Aldlemy et al. (2020). Although re-meshing
techniques and ALE formulations can overcome the mesh
distortion issue, the remapping of state variables creates
difficulties with history-dependent materials and the accu‐
racy of results is questionable. Also, precision definition of
the interface and free surfaces requires a particular remedy
(Aldlemy et al. 2020).

In the last decades, the mesh-free methods have been
proposed to simulate fluid-structure interaction problems,
which use a fully Lagrangian formulation to describe fluid
flow and structure displacement(Idelsohn et al. 2008a;
2008b; Nasar et al. 2019). These methods allow the mo‐
tion of the boundary of fluid-structure interaction to be de‐
termined without any special algorithm, such as the re-
meshing stage (He et al. 2018). Several studies have been
carried out on the development of fluid-structure interac‐
tion solvers using Lagrangian mesh-free methods. The par‐
ticle modeling capability in the simulation of the breaking
wave impact on a moving float is observed using Moving
Particle Semi-implicit (MPS) by Koshizuka et al. (1998).
Also, Lee et al. (2010) Described the MPS method for
simulating the interaction of violent free-surface flow with
structures. Khayyer et al. (2018b) coupled a fluid model
based on MPS method with an MPS-based structure. They
simulated the dam breaking with an elastic gate problem,
experimented by Antoci et al. (2007) and hydro-elastic
slamming of a marine panel.

On the other hand, the Smoothed Particle Hydrodynam‐
ics (SPH) method has been developed as a mesh-free La‐
grangian method by Lucy (1977) and Gingold and
Monaghan (1977) to solve astronomical physics problems.
This method has been used in simulating various applica‐
tion problems such as turbulent flows (Kazemi et al. 2017;
2020), free-surface flows (Zheng et al. 2017; Salehizadeh
and Shafiei 2019) and multi-material interactions (Sale‐
hizadeh and Shafiei 2021).

Due to potential advantages of SPH method, a consider‐
able number of studies have been conducted for develop‐
ment of hydroelastic FSI solvers by coupling a SPH-based
fluid model either with a mesh-based structure model such
as SPH-FEM (Hermange et al. 2019), SPH-SFEM (Zhang
et al. 2021b), SPH-ESFEM (Long et al. 2020) and SPH-
NMM (Xu et al. 2019). On the other hand, different FSI
solvers based on pure particle methods have been devel‐
oped. Zhang et al. (2021a) presented an open source SPH
code named SPHinXsys to treat various FSI problems in‐
cluding the dam break through an elastic gate. Sun et al.
(2021) developed a FSI-SPH model that is effective to
solve some challenging FSI problems in three-dimensional
space.

The traditional SPH solver was formulated based on a
weakly compressible fluid, which relates the pressure to
the variation of density through an artificial equation of

state, referred as “weakly compressible” approach
(WCSPH), described by Liu and Liu (2003). The standard
WCSPH suffers from the computational error of density
variation causes non-physical oscillations of pressure that
can produce numerical instability (Lee et al. 2008). On the
resolving of high-frequency pressure oscillations, exten‐
sive prevention measures have been proposed. Huang et
al. (2018) employed a artificial diffusive term (δ -SPH
model), proposed by (Antuono et al. 2010), to treat wave
interactions with structure in field of ocean engineering.
This approach requires a small time step with regard to the
“sound speed”, which is at least ten times higher than the
maximum velocity of fluid, thus increasing computation
time. To prevent such issues, the concept of “truly incom‐
pressible fluid” was achieved for SPH method. The Incom‐
pressible smoothed particle hydrodynamics method
(ISPH) is a two-step method that first calculates the pre‐
dicted velocity, and then the predicted values are corrected
using the pressure derived from the solution of the Poisson
equation to apply a divergence-free velocity field, done by
Cummins and Rudman (1999).

The ISPH method can be accurate and effective in re‐
ducing the pressure fluctuations in the simulation of the
fluid-solid interaction problems. Rafiee and Thiagarajan
(2009) coupled the ISPH method for a fluid with an SPH-
based structure. In their model, the fluid and solid pres‐
sures were determined by solving the pressure Poisson
equation (PPE) with a simple scheme. They assumed that
the pressure time variations are negligible between two
computational time steps, which is not reasonable.
Khayyer et al. (2018a) presented an enhanced ISPH-SPH
coupled method for simulating fluid-structure interaction.
They used a dynamic stabilizer scheme, introduced by Tsu‐
ruta et al. (2013), for fluid that involves additional calcula‐
tions to determine parallel and normal vectors of predicted
relative distances. Recently, their model have been demon‐
strated to be capable of reproducing hydroelastic FSI cor‐
responding to composite structures (Khayyer et al. 2021).

The SPH method is applied to simulate the structural dy‐
namics, such as in the Libersky et al. (1993) and Gray et
al. (2001) studies. Antoci et al. (2007) used the WCSPH
method to solve hydro-elastic problems. The original for‐
mulation of WCSPH method suffers from a series of insta‐
bilities and low accuracy issues when applied to solid me‐
chanics (Swegle et al. 1995; Rabczuk and Belytschko
2004). The first issue SPH suffered from was the so-called
“tensile instability” which leads to particle sticking and nu‐
merical fracture. To reduce the effects of tensile instabili‐
ties in solving such problems, several treatments have
been proposed such as normalizing kernel functions (John‐
son and Beissel 1996) and applying artificial stress (Gray
et al. 2001). Nevertheless, some techniques add numerical
parameters that need to be carefully selected. To eliminate
instabilities related to rank deficiency in particle-based
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FSI modeling, Rabczuk et al. (2010) applied stress point
integration (Rabczuk and Belytschko 2004) into FSI for
fracturing shell structures. The stress-points implemented
in mesh-free methods require a background grid for nodal
integration; hence the method is not truly mesh-free. In the
stability analysis of numerical mesh-free methods, Be‐
lytschko et al. (2000) found tensile instability to be caused
by the use of Eulerian kernel functions. They proposed a
fully Lagrangian particle method in which the initial con‐
figuration is considered as a reference, the smoothing ker‐
nel function and its derivatives are calculated based on the
initial distribution of the particles, making Lagrangian ker‐
nel functions. In the present study, a totally Lagrangian for‐
mulation proposed by Lin et al. (2015) is used to the simu‐
lation of two-dimensional elastic structures. It can directly
impose the interaction values such as force and velocity to
the structure particles in the interaction with the fluid. The
performance of the structure model is validated by simulat‐
ing a cantilever beam under the concentrated force and the
dynamic response of a free oscillating plate. The numeri‐
cal results are compared to their analytical solution. Sun
et al. (2019) introduced a coupled FSI-SPH solver by
combining a multi-phase δ-SPH scheme and a Total-
Lagrangian SPH (TLSPH) solver for elastic structures. In
their study, the numerical results of TLSPH demonstrated
sufficient accuracy and therefore, this structural solver
could be further implemented in the FSI simulations. Re‐
cently, Zhan et al. (2019) and O’Connor and Rogers
(2021) developed a GPU-accelerated coupled total La‐
grangian and weakly compressible SPH (TL-WC SPH) ap‐
proach for 3D fluid-structure interaction modeling.

The temporal pressure noise due to irregular particle dis‐
tribution through clustering or stretching, leads to numeri‐
cal instability. It also causes inaccurate behavior of fluid
and structure in interaction with each other. A study con‐
ducted by Xu et al. (2009), enhanced particle uniformity
by shifting particles slightly away from the streamlines.
The hydrodynamic properties are modified after they are
shifted to account for their new spatial positions by using
Taylor expansion. Their method provides a stable and con‐
verged solution for fluid flow problems especially at rela‐
tively high Reynolds numbers. However, this algorithm
works inaccurately in the simulation of free-surface flows
due to errors associated with the truncated kernels. Lind et
al. (2012) proposed a relation based on the reference con‐
centration gradient to control normal diffusion for free-
surface particles. This remedy requires the setting of the
constant parameters that encounter numerical challenges
in long-term simulations. To achieve an accurate and con‐
sistent implementation of particle shifting for free-surface
flows, Khayyer et al. (2017) proposed a so-called Opti‐
mized Particle Shifting (OPS) scheme through a careful
implementation of only tangential shifting for free-surface
and free surface vicinity particles.

In this research, for the first time, a novel FSI algorithm
is introduced such a way that the proposed FSI particle
shifting method added to FSI coupling scheme based on
ISPH approach in order that the interaction term is ob‐
tained and then imposed on the particles. This algorithm
improves the interface behavior between fluid and struc‐
ture. To the best of our knowledge, this is the first applica‐
tion of the particle shifting treatment scheme, together
with the coupled algorithm into the context of simulations
of FSI problems by combining an ISPH scheme and a
Total-Lagrangian Particle (TLP) solver for deformable
elastic structures. The developed SPH coupling method
was used to simulate the interaction of fluid-elastic struc‐
tures for various problems and was compared and vali‐
dated with experimental results. The considered problems
of fluid-structure interaction in this paper include the de‐
flection of an elastic plate due to the hydrostatic weight of
water column, done by Fourey et al. (2017), the dam-
breaking flow through an elastic gate, done by Antoci et
al. (2007), breaking dam flow on a hypo-elastic baffle, ex‐
perimented by Liao et al. (2015), the deflection of an elas‐
tic baffle due to fluid sloshing in a rolling tank, experi‐
mented by Idelsohn et al. (2008a).

2 Numerical procedure

In the SPH formulation, the particle approximation of
variable A(r) is determined by a summation of particles in‐
side the support domain of the particle located at ra:

A( )ra =∑
b

Vb A(rb )W (| r ab
|, h) (1)

where Vb is the volume of particle b, h is the smoothing
length which represents the discretization scale of SPH ap‐

proximations and | rab | = |ra − rb| is the distance between

particles a and b. In this paper, the cubic B-spline kernel is
used for all cases, reviewed by Liu and Liu (2003). A
smoothing length of h=1.2Δx is typically used, where Δx

is the initial particle spacing. Hereafter W (| r ab
|, h) will be

simply written as Wab.
The SPH discretization of gradient, divergence and La‐

placian operator for an arbitrary scalar function f or tensor
function F are, respectively, calculated as:

∇f
a

=∑
b

Vb( fb − fa ) (Ba ⋅ ∇Wab ) (2)

∇ ⋅ F a =∑
b

Vb(Fb − Fa ) ⋅ (Ba ⋅ ∇Wab ) (3)
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∇2 f
a

= B̂a:∑
b

2Vb eab∇Wab( fa − fb

|| rab

− eab ⋅ ∇f
a ) (4)

where ∇aWab =
1
h
∂W
∂ || rab

eab is the kernel function gradient

with respect to ra, eab =
rab

|| rab

is the unit vector between

two particles a and b; B is the corrective tensor for kernel
function gradient, introduced by Bonet and Lok (1999):

Ba =
é

ë
êêêê∑

b

Vb(rb − ra ) ⊗ ∇Wab

ù

û
úúúú
− 1

(5)

and B̂a is a renormalization tensor for the second deriva‐
tive given by Fatehi and Manzari (2012):

B̂a:
é

ë
êêêê∑

b

Vb rabeabeab∇Wab + B̂̄a

ù

û
úúúú =− I (6)

where

B̂̄a = (∑b

Vb eabeab∇Wab) ⋅ Ba ⋅ (∑b

Vb rabrab∇Wab) (7)

and⊗defines the dyadic product of two vectors.

2.1 The projection-based incompressible SPH
algorithm

In the SPH method, the Navier-Stokes equations are
solved in the projection-based framework, as expressed in
the Lagrangian form:

∇ ⋅ u = 0 (8)

du
dt

=− ∇p
ρ

+ ∇ ⋅ [ (v + vt )∇u] + g + as → f (9)

where u is the velocity field, ρ is the fluid density, p is
pressure, v is kinetic viscosity, g is the gravity acceleration
and vt is the eddy viscosity due to spatial filtering. In Eq.
(9), the acceleration as → f is due to the interaction force on
the fluid by the structure. We used the eddy viscosity ap‐
proach based on the sub-particle scale turbulence model
presented by Gotoh et al. (2000):

νt = (csΔ) 2

2ε̇ij:ε̇ij (10)

where ε̇ij is the strain rate tensor; cs is the Smagorinsky
constant which is considered to be 0.1 for all simulations

and Δ is the filter width, which is defined to be the SPH
kernel smoothing length h. The ISPH method has been in‐
troduced by Cummins and Rudman (1999) and has been
further developed by other researchers (Shao and Lo 2003;
Hu and Adams 2007; Lind et al. 2012). In this approach,
both the mass conversation equation and the equation of
state are replaced by a Poisson equation, which is deter‐
mined using the projection method. In general, to deter‐
mine an intermediate velocity field, the momentum equa‐
tion is solved without the effect of a pressure gradient.
Then a Poisson equation for pressure is obtained by setting
the divergence of intermediate velocity equal to the diver‐
gence of pressure gradient. The final velocity at the end of
the time step is achieved in such a way that it results in in‐
compressible conditions.

The ISPH solver in its original formulation suffers from
the density error accumulation and errors in velocity diver‐
gence field. Several studies have been conducted to pre‐
vent such issues. Shao and Lo (2003) proposed an algo‐
rithm by imposing invariant density instead of zero veloc‐
ity divergence that, despite its stability, is not accurate. Hu
and Adams (2007) developed an iterative algorithm by si‐
multaneously enforcing invariant density and zero velocity
divergence that, despite its stability and accuracy, is very
time-consuming. Xu et al. (2009) presented a new method
to prevent the instability resulting from the intense cluster‐
ing of particles. In their method, at the end of each time
step, the particles are shifted away from the streamline
leading to the uniform distribution of particles. Lind et al.
(2012) proposed a generalized version of this scheme to al‐
low extended applications to free-surface flows. Skillen et
al. (2013) proposed a new method in the ISPH simulations
for reducing the temporary disturbances caused by free
surface effects. Their method provided a smoothing Pois‐
son equation using a proposed relationship for adjacent
free-surface particles. Also, the standard GPU implementa‐
tion have been presented for the ISPH simulations, where
the pressure Poisson equation is also solved on the GPU
(Chow et al. 2018).

Here a first-order time marching scheme is applied,
where both the density and mass of particles are constant;
The particle positions are predicted using current velocity
field:

r ∗a = r n
a + un

aΔt (11)

The intermediate velocity field is calculated based on
the momentum equation, regardless of pressure gradient
term at the position r ∗a:

u∗a = un
a + Δt [ g + μ∇2u ] (12)

where
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µ∇2u = B̂a:∑
b

Vb eab∇Wab( μ̄e
ab

ρa

un
a − un

b

|| rab

− eab ⋅ μ̄e
ab

ρa

∇u
a )

(13)

In which μ̄e
ab = ( ρave

a + ρbve
b ) and νe = ν + νt. The pres‐

sure p at time n+1 can then be obtained from the pressure
Poisson equation (PPE), written as:

∇ ⋅ 1
ρ
∇pn + 1

a

=
1
Δt
∇ ⋅ u*

a (14)

The SPH discretized form of Eq. (14) is calculated as:

∑
b

2
Vb

ρa

rab ⋅ ( )Ba ⋅ ∇Wab

|| rab

2 ( pn + 1
a − pn + 1

b )

=
1
Δt∑b

Vb(u*
b − u*

a ) ⋅ (Ba ⋅ ∇Wab ) (15)

Skillen et al. (2013) proposed a suitable method for ob‐
taining a smoothing pressure field at the free-surface. By
identifying the particles on the free-surface and adjacent to
the free-surface, a variable correction coefficient is used
which leads to effect of free-surface gradually. The free-
surface particles are detected by calculating the divergence
of the position vector of particles. By detecting the free-
surface particles, these particles are given a zero pressure
over a time step (Dirichlet condition in the Poisson equa‐
tion of pressure). After the discretization of the Eq. (15),
the Poisson equation of pressure is rewritten in the follow‐
ing form:

Aaa pn + 1
a +∑

b

αa Aab pn + 1
b = αa Ba (16)

where Aab are the Poisson’s coefficients of pressure and the
summation is applied to all particles located in the support
domain of the particle a. It is noted that the calculation of
new pressures (pn+1) requires a limited number of iterations
to reach the smoothing converged pressures. The coeffi‐
cient appearing in Eq. (16) is proposed by Skillen et al.
(2013) for the implementation of the effect of free surface
conditions, which follows:

αa =

ì

í

î

ï
ïï
ï

ï
ïï
ï

1.0 ∇ ⋅ r ≥ 1.6

0.5
é

ë
êêêê

ù

û
úúúú1 − cos ( )∇ ⋅ r − 1.4

1.6 − 1.4
1.4 < ∇ ⋅ r < 1.6

0 ∇ ⋅ r ≤ 1.4

(17)

Then, by calculating the pressure of particles, the veloc‐
ity at the end of the time step is determined from the inter‐
mediate velocity and the negative version of pressure gra‐

dient:

un + 1
a = u*

a − Δt
ρ
∇pn + 1

a

= u*
a − Δt

ρa
∑

b

Vb( pn + 1
b − pn + 1

a ) (Ba ⋅ ∇Wab ) (18)

In the end, the position of the particles is updated as fol‐
lows:

r n + 1
a = r n

a + Δt ( un
a + un + 1

a

2 ) (19)

In order to stabilize the simulation and form a uniform
distribution of particles, after the particle positions are ad‐
vanced in time by Eq.(19), following Xu et al. (2009), the
particles are shifted slightly, then the hydrodynamic vari‐
ables are corrected by the Taylor series approximation:

A′a = Aa + (∇A) a
⋅ δraa′ + O (δr 2

aa′) (20)

where A is a general variable; a and α′ are the particle’s old
position and new position respectively; δraa′ is the displace‐

ment vector between the particle’s new position and its old
position. By modifying the particle shifting magnitude, ζ,
in relation to the particle convection distance and the parti‐
cle size, the position shift reads:

δraa′ = Δra = CζRa (21)

where C is a constant in the range of 0.01−0.1; ζ is the
shifting magnitude which is equal to the maximum particle
convection distance |u |

max
Δt, with |u |

max
the maximum

particle velocity, and Δt the time step; Ra is solved by fol‐
lowing equation:

Ra =∑
b = 1

Na r̄ 2
a

r 2
ab

nab (22)

where Na is the number of neighboring particles around
particle a, is the distance between particle a and particle b,
and nab is the unit displacement vector between particle a
and b; r̄a is the average particle spacing in the neighbor‐
hood of a, and reads:

r̄a =
1

Na
∑
b = 1

Na

|| rab (23)

Lind et al. (2012) observed that due to the motion of
free-surface particles, the distance of particle displacement
would be much greater than the smoothing length which
results in an irrational error; therefore, an upper limit for
the particle shifting distance was defined as 0.2 h. The in‐
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complete kernel support and increased kernel interpolation
error in free-surface regions, lead to error in determination
of the displacement vector of particles.

According to Khayyer et al. (2017), in the area near the
free surface, the shifting distance of the fluid particles was
forced to be equal to zero in the normal direction of the
free surface. To achieve a reliable physical particle shifting
for free-surface and nearby particles, the particle shifting
displacement vector for these particles is modified by
Khayyer et al. (2017) as follows:

δraa′ = Δra( I2 × 2 − na ⊗ na ) (24)

where Δra is obtained by Eq.(21). For the free-surface par‐
ticles, the normal vector is determined by:

na = − ∇Ψa

||∇Ψa

(25)

where

∇Ψa =∑
b

Vb(Ba ⋅ ∇Wab ) (26)

Figure 1 shows the particle shifting process for a free
surface particle. The particles as depicted in Figure 2, are
determined in the simulation as internal particles, particles
adjacent to the free surface, free-surface particles and
splash particles based on the divergence of the position vec‐
tor of particles. At first, the free-surface particles are deter‐

mined based on the divergence of position vector ∇ ⋅ r < x
and the normal vector is obtained for them. Then the adja‐
cent particles to the free surface are determined based on
the establishment of two criteria of the divergence of posi‐

tion vector x < ∇ ⋅ r and the spatial distance | ra′b | < h (a′
nearest neighbor particle in the free surface to the particle b)
and the normal vector of the nearest neighbor particle located
on the free surface is assigned to these particles. Splash par‐
ticles have the divergence of position vector ∇ ⋅ r < x which
do not have any neighboring particles in their support do‐
main. By detecting free-surface and nearby particles and
also splash particles, the internal particles are distin‐
guished. It should be noted that for splash particles, the
correction coefficient is zero. In the present study, the

Figure 2 Particle status identification to calculate the vector of particle displacement

Figure 1 The particle shifting process for a free-surface particle
(Khayyer et al. 2017)
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value of x was chosen to be 1.4.
Within discontinuous regions on the surface of the struc‐

ture, the large displacements lead to instability, which re‐
sult in forming jamming clumps due to disrupt of the fluid
particles adjacent to the surface of the structure. To solve
this problem, a novel method is proposed to shift the fluid
particles adjacent to the surface of the structure. An inter‐
mediate boundary layer is characterized in the fluid do‐
main on surface of the structure as shown in Figure 3.

When the fluid particles are located in this intermediate
boundary layer, these particles are displaced based on a
predefined nonlinear function. This method results in a
preserved solution with smoothing the velocity field. Relo‐
cation of fluid particles located in the intermediate bound‐
ary layer is executed using an exponential function.

δraa′|new ⋅ na = δraa′ ⋅ na + d
é

ë

ê

ê
êê
ê

ê
exp ( − || δraa′ ⋅ na

|| d ) − 1
ù

û

ú

ú
úú
ú

ú
(27)

where δraa′ ⋅ na is prescribed displacement vector by Eq.

(21) in local normal direction n of the boundary surface
and d is a flow dependent vector in local normal direction
n. Considering a large depth for the intermediate boundary
layer, |d|, enhance the stability of the solution with increas‐
ing the number of particles within the layer that need to be
relocated. Applying this relocation is determined with de‐
fining limits for |d|. If the value of δraa′|n is assumed to be

equal to |u |
max
Δt and δraa′|new is limited to the shifting dis‐

tance proposed in Eq.(21) in local normal direction n, Eq.
(27) becomes:

C |u |
max |ΔtRa

n
= umaxΔt + d

é

ë

ê
êê
ê
ê
ê
exp ( − ||u

max
Δt

|| d ) −1
ù

û

ú
úú
ú
ú
ú

(28)

By applying second order Taylor series to scalar form of
Eq. (28), it becomes:

||u
max
Δt

|| d
= 2C

|
|
|||| |ΔRa

n

|
|
|||| (29)

where C is a constant parameter in the range of 0.01‒0.1,

limits for |d| can be determined:

5 ≤
|| d ⋅ |

|
||||

|
|
|||| |Ra

n

||u
max
Δt

≤ 50 (30)

Finally, the hydrodynamic variables of modified at the
new position as follows:

uf
a = ua + Δua = ua + δraa′ ⋅ ∇u a (31)

pf
a = pa + Δpa = pa + δraa′ ⋅ ∇p

a
(32)

2.2 Total lagrangian formulation for elastic
structures

The Total Lagrangian SPH (TLSPH) method is applied by
Lin et al. (2015) to model the elastic structures; in this formu‐
lation, the density is considered constant and to solve the mo‐
mentum equation in the reference framework, the first Piola-
Kirchhoff stress tensor P s replaces the Cauchy stress tensor
σ. Therefore, Eq.(9) is given in the following form:

dus

dt
=

1
ρs

∇0 ⋅ P s + αf → s (33)

In the above equation, αf → s is the acceleration due to
the interaction force on the structure from the fluid side.
The relation between P s and σ is as follows:

P s = | F |σF− 1 (34)

It is necessary to obtain first-order consistency to avoid
numerical errors caused by the truncated kernel function
on the structure. For this purpose, the shape tensor is deter‐
mined by Rabczuk et al. (2004) to reproduce the SPH ker‐
nel gradients correctly, as follows:

Ka =∑
b = 1

Nb

Vb( Xb − Xa ) ⊗ ∇0Wab (35)

where ∇0Wab is the gradient of kernel function corresponds
to particles a and b in their initial configuration as the sub‐
script 0 has indicated, and X is a coordinate in the refer‐
ence configuration. Nb represents the number of structure
particles in the support domain of particle a. The deforma‐
tion gradient tensor F is approximated as follows:

Fa = ( dx
dX )

a

≃ ∑
b = 1

Nb

Vb(xb − xa ) ⊗ K − 1
a ∇0Wab (36)

where x is coordinate vectors in the current configuration.
The Cauchy stress σ ij (i and j represent coordinate vectors)
based on Eulerian strain εij is determined in two dimen‐
sions by Hooke’s law for an isotropic elastic material:

Figure 3 Definition of intermediate boundary layer in fluid domain
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For the plane-strain problem and,
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For the plane-stress problem. Accordingly, vs is Pois‐

son’s ratio and, Es is Young’s moduli. The Eulerian strains

are defined using the deformation gradient tensor:

εa = F − T
a Ea E T

a (39)

Regarding non-linear geometric behavior, the Green-

Lagrange strain tensor is used, as follows:

Ea =
1
2 (LT

a + La + LT
a La ) (40)

In the above relation, the displacement gradient tensor

is based on the displacement vector:

La = ( dU
dX )

a

≃ ∑
b = 1

Nb

Vb(Ub − Ua ) ⊗ K − 1
a ∇0Wab (41)

The TLSPH scheme suffers from rank-deficiency of

zero energy modes due to its particle arrangement nature.

Therefore, the discrete form of Eq. (33) is written in the

initial configuration using the first Piola-Kirchhoff stress

tensor and the interaction acceleration term.

dua

dt
=

1
ρs
∑
b = 1

Nb

Vb(P s
a K − 1

a ∇0Wab + P s
b K − 1

b ∇0Wab ) + αf → s(42)

In the present study, the 4th-order Runge-Kutta scheme

as a multi-stage method is used to integrate the momentum

equation (Eq. (42)) in time. This time integration scheme

is fully explicit and is expressed as:

x( )n + 1 = x( )n +
Δt
6

é
ëkr1 + 2 (kr2 + kr3 ) + kr4

ù
û (43)

u( )n + 1 = u( )n +
Δt
6

é
ëku1 + 2 (ku2 + ku3 ) + ku4

ù
û (44)

where kum
and krm

are solved simultaneously for each stage:

ku1 = α ( x( )n )
ku2 = α (x( )n + kr1Δt/2)
ku3 = α (x( )n + kr2Δt/2)
ku4 = α (x( )n + kr3Δt )

kr1 = u( )n

kr2 = ku1Δt/2
kr3 = ku2Δt/2
kr4 = ku3Δt

(45)

where Δt is time step and a=du/dt.

2.3 The fluid-structure interaction treatment for
ISPH-TLSPH model

Although the SPH method is used to solve the govern‐
ing equations for both fluid and structure media, two nu‐
merical separated approaches for these media are consid‐
ered. Therefore, they must be coupled together in a physi‐
cally manner and applicable mathematics. In the follow‐
ing, the adopted algorithm for coupling is expressed and
can be seen in Figure 4.

Throughout the interface between fluid-structure, the
normal components of the velocity vector must be continu‐
ous. For this purpose, the use of the velocity field of the
structure provides a suitable boundary condition for the
fluid flow. In other words, the structure particles are used
as moving boundaries for fluid governing equations to
complete the support domain of fluid particles.

Essentially, the normal component of Cauchy stresses in
fluid and structure are continuous on the boundary of fluid-
structure interaction. In assuring the normal stress continu‐
ity at the fluid-tructure interface, The pressure (an isotro‐
pic section of Cauchy stress) is considered continuous dur‐
ing the interaction between fluid and structure. Using the
projection-based particle method, the ISPH algorithm is
applied to all particles adjoining each other, regardless of
their nature (belonging to the structure or fluid media). In
other words, the position and velocity of structure particles
as a boundary condition are used to calculate the fluid
pressure field using the pressure Poisson equation (Figure
4b). The present algorithm accompanied by the proposed
FSI particle shifting scheme ensures that the fluid velocity
field remains free-divergence. When the fluid pressure
field is calculated, the interaction term in the equation of
fluid and structure momentum is determined based on the
pressure gradient between the fluid and structure particles.
Hence, the components of the interaction force, perpen‐
dicular to the interface of the fluid and structure, are equal
in the opposite direction. According to this:

∇pf→ s ⋅ nf = − ∇ps→ f ⋅ ns (46)

22



A. M. Salehizadeh and A. R. Shafiei: A Coupled ISPH-TLSPH Method for Simulating Fluid-Elastic Structure Interaction Problems

Regarding Neumann boundary condition for the pres‐
sure field across the interface of fluid-structure interaction
and considering a no-slip boundary condition at the fluid-
structure interface, the Eq. (46) shows the relation of nor‐
mal stress continuity at the interaction boundary. By using
optimized particle shifting method, the fluid particles are
then shifted slightly, also, the pressure field of all particles
regardless of their nature are corrected by the Taylor series
approximation,

pa′ = pa + (∇p) a
⋅ δraa′ + O (δr 2

aa′) (47)

The modified pressure field of particles is used to calcu‐
late pressure gradient at a typical structure particle and
then imposed on the structure particle as interaction term
αf → s. This proposed coupling scheme works in a robust
and efficient manner so that, no internal iteration for a con‐

verged particle position is needed. The interaction term ob‐
tained on the basis of the pressure gradient for a structure
particle is as follows:

αf → s = − ∇ps

ρs

=
1
ρs
∑
k ∈ Ω
∇pks ; Ω = ΩF ∪ Ωs (48)

where k denotes all the particles of fluid and structure in
the support domain of structure particle (Figure 4(c)).

The exchange of kinematic information throughout the
interaction thus leads to a coupled process for a problem
with material discontinuity. The pseudo-code of the pres‐
ent solution algorithm is shown in Algorithm1 in the Ap‐
pendix.

2.4 Time-stepping condition

In SPH method, the time step is generally determined in
the Courant-Friedrich-Levy conditions:

Δt = Cr ⋅ h
U

(49)

Where Cr is Courant number and U is the characteristic ve‐
locity of the model. The SPH-based structure model and
the fluid model utilize different characteristic velocities in
their formulation. The sound speed is used in the structure
model, while for fluid, the maximum velocity of the fluid
is used in each time-step. Consequently, the time steps al‐
lowed for a structure should be quite smaller than the
fluid. Therefore, significant improvements are achieved us‐
ing separate and different time steps for both media. In
this study, the time step of the structure Δts was set to 0.01
Δtf. Therefore, the fluid governing equations are updated
for every 100 steps of the structure. Here, the Courant
number is taken as Cr=0.1 for all cases.

The proposed scheme is programmed in Fortran and an
Intel® Core™ i7-4770 CPU is used to run the computations.

3 Validations and comparisons

3.1 Benchmark tests for the structural analysis

To validate the structural analysis method, static and dy‐
namic simulations were performed on an elastic structure.
In a static simulation, a concentrated load is applied to
clamped beam at its end. The geometric dimensions of the
clamped beam are shown in Figure 5, which L=100 mm is
the length of the beam, b=1 mm the width and T=10 mm
thickness of the beam. The load is gradually increased
ranging from 0 to 1750 N within t=1.5 ms; then the load
remains constant until the simulation ends at t=3 ms.
Young’s moduli and Poisson’s ratio for the beam were con‐
sidered E=210 GPa and v=0.3 respectively.

(a) Calculation of interaction acceleration between fluid particle-
structure particle

(b) Using the velocity and pressure of structure particles in the
calculation of the Poisson equation and the acceleration applied

to the fluid particle

(c) Calculation of interaction acceleration applied to the structure
particle from the fluid particles

Figure 4 Schematic View of the coupling model between fluid and
structure
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The maximum displacement of the beam under the con‐
centrated load at its end is obtained by:

Δ =
FL3

3EI
+

6FL
5GA

= 33.59 mm (50)

A sensitivity analysis of the particle discretization is car‐
ried out. The Different particle resolutions have been used,
starting from Ny=5 particles through the thickness until Ny=
17 particles. For every case, the solution ΔTLSPH /Δ is calcu‐
lated and evolved vs number of particles as depicted in
Figure 6. As one can observe, the predicted TLSPH end-
deflection converges to the analytical solution as the num‐
ber of particles is over ten, the error between the end de‐
flection obtained using the TLSPH model and the analyti‐
cal value is less than 1.04 percent, which is acceptable.

Table 1 presents the Root Mean Square Error (RMSE) of
the results obtained from the simulations by TLSPH model
presented in Figure 6.

Figure 7 shows the vertical displacement of the beam.
The presented result has an acceptable correspondence
with the analytical solution.

The present structure model was also used to simulate

the free oscillation of an elastic plate of length L=0.2 m and
thickness T=0.02 m with a clamped edge and free edge (Fig‐
ure 8). The initial vertical velocity distribution for the elastic
plate is considered as follows (Gray et al. 2001):

Vy( x) = V0Lc0

f ( )x
f ( )L

(51)

where

f ( x) = (cos kL + cosh kL) (cosh kx − cos kx)
+(sin kL − sinh kL) (sinh kx − sin kx) (52)

where kL=1.875. V0L=0.01 is the initial velocity at the free

end and c0 = K/ρ is the sound speed, which K is the bulk

modulus of elastic plate. For comparison with the results
of Antoci et al. (2007), the properties of the elastic plate
were considered to be ρ=1 000 kg/m3, K=3.25 MPa and v=
0.397 5. For resolution test, the particle spacings of Δx=
0.002 m, 0.001 m and 0.000 5 m are chosen which corre‐
spond to 10, 20 and 40 particles in vertical direction. The
simulation results are compared with analytical solution in
Figure 9. The plate tip’s vertical displacement in Figure 9
shows that the present simulation is well-resolved for T/Δx
=20.

Table 2 provides RMSE and Normalized Root Mean
Square Error (NRMSE) corresponding to the results in Fig‐
ure 9, quantitatively verifying the convergence property of
the TLSPH model.

In Table 3, the simulation results are compared with ana‐
lytical solution and numerical results by other researchers
who had performed this test using other approaches.

Figure 10 shows the deformed configuration of the elas‐
tic plate at the maximum vertical displacement of the plate
at the instant t=0.65 s (Figure 10(a)).

In order to investigate the energy conservation property

Figure 6 The ratio of predicted TLSPH end-deflection to the
analytical solution vs the number of particles through the thickness

Table 1 RMSE corresponding to deflection of a clamped beam
subjected to a concentrated load

∆x=0.000 667 m

0.001 182

∆x=0.001 m

0.001 709

∆x=0.002 m

0.002 189

Figure 7 The deformed configuration of the clamped beam and the
vertical displacement distribution of the beam

Figure 8 Schematic sketch of the dynamic problem of a free
oscillating plate

Figure 5 The sketch of static problem of a clamped beam under
concentrated load
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of 2D TLSPH model, time histories of kinetic, elastic
strain, total energies until t=0.7 s are presented in
Figure 11. The presented time histories correspond to par‐
ticle spacing of Δx=5.0e-4 m. From the presented figure,
kinetic and elastic strain energies consistently vary in time
with a phase difference of half of the period of plate’s os‐
cillatory motion

3.2 Benchmark tests for the fluid-structure
interaction

The proposed algorithm for analyzing fluidstructure in‐
teraction problems is evaluated through several examples
of applied problems.

3.2.1 Hydrostatic column of water on aluminum elastic
plate

Figure 12 shows the initial configuration of the prob‐
lem. An elastic aluminum plate with a width L=1m and a
thickness T=0.05 m clamped on both sides and the column
of water to the depth of H=2 m with a similar width at the
top of the plate. Water pressure variation is due to the ef‐
fect of gravity. For the fluid, density and dynamic viscos‐
ity were ρw=1000 kg/m3 and μω=1.0×10-3 Pas respectively,
and the physical parameters of the aluminum plate were
considered ρs=2700 kg/m3, E=67.5 GPa and v=0.34.

First, the aluminum plate bends due to the weight of the
water column and the weight of the plate. Then, with the
energy transfer between the potential energy and the ki‐
netic energy, the elastic plate vibrates around its equilib‐
rium state. The average mean descent of the elastic plate
with the assumption of no damping in the structure and no
viscosity in fluid, is calculated based on static analysis:

Figure 11 Time histories of kinetic, elastic strain, total energies by
2D TLSPH — dynamic response of a free oscillating elastic plate

Figure 9 Time histories of oscillations of the free end of the elastic
plate reproduced by TLSPH with a set of different particle spacing
with corresponding analytical solution

Table 2 RMSE and NRMSE corresponding to dynamic response
of a free oscillating plate for 0.7 s of computation—dynamic
response of a free oscillating plate.

Item

RMSE

NRMSE

∆x=0.000 5 m

0.004 351

0.094 593

∆x=0.001 m

0.007 851

0.170 711

∆x=0.002 m

0.011 87

0.258 12

Table 3 Comparison of dynamic test results with analytic solution
and other researchers’ results

Method

Analytical Solution

TLSPH (T/∆x=40)

TLSPH (T/∆x=20)

TLSPH (T/∆x=10)

Antoci et al. (2007)

Rafifiee and Thiagarajan (2009)

Gray et al. (2001)

Period

tc0

L

72.39

74.10

74.80

77.50

81.5

82.2

82

error
(%)

−
2.36

3.33

5.68

12.58

13.55

13.27

Amplitude

A
L

0.115

0.119

0.120

0.123

0.124

0.126

0.125

error
(%)

−
3.48

4.35

6.96

7.83

9.57

8.7

(a) Vertical displacement distribution

(b) σxx distribution

Figure 10 Dynamic response of elastic plate under free
oscillation
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Δ | L/2 = 12g ( )1 − v2 ( )ρωH + ρaT L4

384ET 3
= 68.6 μm (53)

Figure 13 presents a set of time histories of plate’s mid-
span deflection Uy corresponding to three different spatial
resolutions (initial particle spacing) by refining the resolu‐
tion from T/Δx=8 to T/Δx=12. The accuracy of deflection
time history increases and eventually, for T/Δx=12 is quite
well consistent with theoretical static displacement. In the
beginning, the aluminum plate falls under sudden load
caused by the weight of the water column. In the follow‐
ing, the plate vibrates in response to this extensive load.
Progressively, the plate damped and remains close to its
static point. The acceptable stability was obtained by using
the fluid-structure interaction algorithm based on the SPH
method and a noise-free pressure field was provided.

Table 4 presents the RMSE corresponding to numerical
results shown in Figure 13.

Figure 14 shows the vertical displacement of the center
of the elastic plate Uy during the time for T/Δx=12 as com‐
pared to the Fourey et al. (2017) results.

Figure 15 shows the fluid pressure field and stress distri‐
bution of the structure reproduced by ISPH-TLSPH

coupled method at t=0.3 s. The computational conditions
for the corresponding simulation are T/Δx=12 and Δt f

max=

Figure 14 The time histories of deflection at the mid-span of an
elastic plate under hydrostatic water column

Figure 13 The time histories of deflection at the midspan of an
elastic plate under hydrostatic water column simulated by ISPH-
TLSPH FSI solver with respect to the analytical solution

Table 4 RMSE (Root Mean Square Error) corresponds to
deflection of the mid-span of plate under the water hydrostatic
column for 1.0 s of computation

∆x=0.004 167 m

2.96E-11

∆x=0.005 m

1.15E-10

∆x=0.006 25 m

4.24E-10

Figure 12 Schematic sketch of hydrostatic water column on an
aluminum elastic plate

Figure 15 The fluid pressure field and stress distribution of the
structure at t=0.3 s
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8.0e-6 s.
In addition, Table 5 shows the required CPU time for

ISPH fluid model and SPH structure model for one second
of simulation of the hydrostatic water column on elastic
plate for the resolution of T/Δx=12.

3.2.2 Dam breaking through an elastic gate
The problem of water dam-breaking through an elastic

gate was considered in comparison with the experimental
results presented in Antoci et al. (2007) and the numerical
results (Antoci et al. 2007; Rafiee and Thiagarajan 2009;
Khayyer et al. 2018a; Fourey et al. 2017). The initial con‐
figuration of the problem is shown in Figure 16. The water
is located inside a reservoir that can flow by pushing a de‐
formable gate that is clamped from above to a rigid wall.
The elastic rubber gate is of thickness T=5 mm with den‐
sity ρgate=1 100 kg/m3, Young modulus E=12 MPa, and
Poisson ratio v=0.4.

The comparison between experimental results and nu‐
merical simulation is shown in Figure 17 for every 0.04
seconds. The hydrostatic pressure of water causes the gate
to gradually open, resulting in water flowing. By increas‐
ing the gate opening, the amount of water leakage is inten‐
sified. With the passing of time at the instant t≈0.14 s, the
pressure applied on the back of the gate decreases due to
the lowering of the water surface. Therefore, the gate
slowly returns to its initial position.

The distribution of stresses σxx and σyy for the elastic
structure at its maximum vertical displacement at the in‐
stant t≈0.14 s is shown in Figure 18.

Figures 19(a) and 19(b) show the horizontal and vertical

Table 5 Required CPU time for simulation of hydrostatic water
column on an elastic plate by using ISPH-TLSPH FSI solver until t=
1 s for the resolution of T/Δx=12 (s)

ISPH fluid model

CPU time for one
second of calculation

1.08e+05

TLSPH structure
model

CPU time for one
second of calculation

1.05e+05

Total CPU time

2.13e+05

Figure 16 Schematic sketch of the test case: breaking-dam flow
through an elastic gate

(a) t=0.04 s

(b) t=0.08 s

(c) t=0.12 s

(d) t=0.16 s

Figure 17 Qualitative comparison between simulation snapshots
and experimental photographs, obtained by Antoci et al. (2007) for
every 0.04 second in breaking-dam flow through an elastic gate

Figure 18 The distribution of stresses σxx and σyy for the elastic
structure reproduced by ISPH-TLSPH coupled method at its
maximum displacement
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displacement of the free end of the gate in time to compare
with the results of Antoci et al. (2007) (experimental,
WCSPH), Rafiee and Thiagarajan (2009) (ISPH-
WCSPH), Khayyer et al. (2018a) (ISPH-SPH) and Fourey
et al. (2017) (SPH-FEM). As can be seen, at the moment t≈
0.14 s, the elastic plate reaches its maximum vertical dis‐
placement. The results show that the proposed coupled al‐
gorithm for structure-fluid interaction analysis provides ac‐
ceptable accuracy for determining the displacement of the
elastic gate. It should be noted that the difference between
the results of the present study and the experiments of An‐
toci et al. (2007) is due to the nonlinear behavior of the
rubber gate in the experiment. Comparison of the results
of the present study with other studies shows that the dif‐
ferent treatment of incompressible constraint of fluid in
weakly compressible approach and truly incompressible
approach (based on the SPH method) and different struc‐
tural models lead to a difference in the determination of
the amount of displacement of the gate.

The energy conservation property of ISPH-TLSPH FSI
solver is investigated in the benchmark test of dam break‐
ing through an elastic gate by considering the energy com‐
ponents corresponding to fluid and structure. The effect of
elastic energy of fluid due to compressibility is neglected
by considering an incompressible fluid within the context
of ISPH. The time evolution of the mechanical energy of
the coupled system in each sub-domain is presented in Fig‐
ures 20(a)‒20(e) as well as the energy accumulated at the
fluid-solid interface in Figure 20(f).

Figures 20(a), 20(b) and 20(c) show the time variations
of gravitational potential energy of structure, the kinetic
energy of structure and elastic strain energy of the struc‐
ture, respectively. Figure 20(d) illustrates the time evolu‐
tion of the mechanical energy of the coupled system in
structure sub-domain. Figure 20(e) shows the time evolu‐
tion of the mechanical energy of the coupled system in
fluid sub-domain. From Figure 20(e), this drop of energy
is mainly linked with the drop in gravitational potential en‐
ergy of fluid. Figure 20(f) presents the time histories of to‐
tal energy of the FSI system. A slight decreasing of the to‐
tal system energy is observed that can be interpreted as a
slight numerical dissipation. Indeed, within the context of
ISPH, the fluid is considered to be incompressible and
thus, the elastic energy of fluid due to compressibility is ig‐
nored. For the considered benchmark test, the proposed
ISPH-SPH FSI solver is shown to possess acceptable en‐
ergy conservation properties.

3.2.3 Breaking dam on a hypo-elastic baffle
In order to investigate the interaction of fluid-structure

with free-surface and the proposed algorithm for the par‐
ticle shifting scheme concerning the free surface, numeri‐
cal simulations of the collision of a water column with an
elastic baffle are discussed. The computational condition
of the benchmark test corresponds to the experiment by
Liao et al. (2015). The schematic sketch of the problem is
illustrated in Figure 21. The elastic plate is of T=0.004 m
thick with Young’s modulus and density of E=3.5 MPa
and ρ=1 161.54 kg/m3, respectively.

Figure 22 presents a set of snapshots corresponding
to the simulation of water dam-breaking on an elastic
baffle versus the experimental results at 0.25 s<t<0.75 s.
By comparing the present numerical results with experi‐
mental data, done by Liao et al. (2015), It is observed
that the developed coupled algorithm based on SPH
method determines the main characteristics of the phe‐
nomenon of breaking dam on an elastic baffle. As
shown in Figure 22, in the early stages of the impact of
the fluid on the elastic structure, an acceptable accuracy
is obtained with respect to the baffle movement. With
time passing, track of the blade tip shows oscillation in
the experiment; however, numerical results do not show
clearly these vibrations.

Hence, the horizontal displacement of the blade tip con‐

(a) The horizontal displacement

(b) The vertical displacement

Figure 19 Time histories of the displacement of the gate’s free
end; present results by ISPH-TLSPH model vs. experimental results
(Antoci et al. 2007) and numerical results (Antoci et al. 2007; Rafiee
and Thiagarajan 2009; Khayyer et al. 2018a; Fourey et al. 2017)
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tinues to the right and then moves to its stable point by
fluid accumulation in two sides of the obstacle. The appli‐
cation of the proposed particle regularization scheme is
effective for elimination of pressure oscillations, in par‐
ticular for interaction regions. The configurations of free-

surface fluid flow and deformed baffle are qualitatively
well reproduced compared with those of experimental re‐
sults by Liao et al. (2015). Despite the local fluctuations
in the pressure field, the reproduced pressure/stress fields
obtained from the simulation are consistent with the nu‐

(a) Gravitational potential energy of solid

(c) Elastic strain energy of solid

(e) Mechanical energy in fluid sub-domain

(b) Kinetic energy of solid

(d) Mechanical energy in solid sub-domain

(f) The energy balance of the coupled system

Figure 20 Time histories of Mechanical energy in structure and fluid sub-domain and energy balance for the whole coupled system
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merical results of Khayyer et al. (2019). Figure 23 shows

the time histories of the displacements of the baffle’s free
end Ux reproduced by proposed SPH-based FSI solver along
with corresponding experimental data (Liao et al. 2015) and
the numerical results by FDM-FEM (Liao et al. 2015),
multi-resolution MPS (Khayyer et al. 2019), single-phase δ-
WCSPH-TLSPH scheme (Sun et al. 2019) and multi-phase
δ-WCSPH-TLSPH scheme (Sun et al. 2019).

It can be seen that the proposed SPH-based coupled
method has provided an almost acceptable level of accu‐
racy with the experimental result. To study this test case
more precisely, the proposed algorithm is used for simula‐
tion this problem with different geometry followed by
other numerical studies. This configuration has been stud‐
ied by other researchers using finite element method
(FEM), simulated by Walhorn et al. (2005), particle finite
element method (PFEM), done by Idelsohn et al. (2008b)
and ISPH-WCSPH coupled method, simulated by Rafiee
and Thiagarajan (2009). Although there are no experimen‐
tal results for this configuration, however, the free surface

Figure 22 Qualitative comparison between simulation snapshots
and experimental photographs, obtained by Liao et al. (2015) in
breaking-dam flow on an elastic baffle: fluid pressure field and stress
component σyy in structure

Figure 23 Time histories of the horizontal displacement of the free
end of baffle; present results by ISPH-TLSPH model vs.
experimental results (Liao et al. 2015) and numerical results (Liao et
al. 2015; Khayyer et al. 2019; Sun et al. 2019) - Breaking dam on an
elastic baffle

Figure 24 Schematic sketch of breaking dam on an hypo-elastic
baffle based on numerical studies (Idel-sohn et al. 2008b; Rafiee and
Thiagarajan 2009; Walhorn et al. 2005)

Figure 21 Schematic sketch of the test case: breaking dam on a
hypo-elastic baffle based on Liao et al. (2015) experiment
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profile and the elastic baffle deformation correspond to the
physics of the problem. The initial configuration of the
problem is presented in Figure 24. A column of water
placed in hydrostatic equilibrium in a reservoir, and an
elastic baffle with density ρb=2500 kg/m3, Young modulus
E=1 MPa, and Poisson ratio v=0 in the middle of the reser‐

voir is clamped from below. The geometry of the elastic
baffle is width B=1.2 cm and height H=20/3B. The sound
speed of the fluid cw=50 m/s and the initial distance be‐
tween the particles Δx=2.4 mm were considered.

Figure 25 shows the fluid pressure field and the stress
component σyy of the elastic structure. When the fluid en‐

(a) t=0.12 s

(c) t=0.25 s

(e) t=0.40 s

(g) t=0.5 s

(b) t=0.15 s

(d) t=0.35 s

(f) t=0.45 s

(h) t=1.0 s

Figure 25 Numerical simulation results of the test case: breaking-dam flow on an elastic baffle-fluid pressure field and stress component σyy in
structure
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counters a baffle, because of the impact of the fluid on the
lower part of the obstacle, firstly, its free end is diverted to
the left. And by increasing the amount of water behind the
obstacle, the baffle moves to the right. The maximum de‐
viation of the obstacle to the right occurs when water jets
pass through it, and the left side of the baffle is completely
under the pressure of the fluid. In other words, the baffle
starts to oscillate due to the pressure of the fluid, subse‐
quently by fluid accumulation on both sides of the baffle,
the baffle motion is gradually damped.

Figure 26 shows the horizontal displacement of the free
left end of the elastic baffle Ux in terms of time in order to
compare with the results of Walhorn et al. (2005) (FEM
method), Idelsohn et al. (2008b) (PFEM method), and
Rafiee and Thiagarajan (2009) (ISPH-WCSPH method). It
is observed that the curves have a relative correspondence
to the first peak. Walhorn’s results predict the maximum
displacement by about 18% less than the results of the
present study. With passing the time, the results have been
different. However, the second peak is relatively similar in
time to other studies.

The force that the fluid exerts on the front wall, after
passing through the elastic baffle, depends on the Young
modulus of the baffle. By increasing the Young modu‐
lus, the amount of force applied to the wall decreases.
The reason is that an elastic baffle with less flexibility
makes more resistant to bending, therefore, more fluid
momentum changes direction from horizontal to verti‐
cal, meaning that there is less horizontal momentum
available in the flow when it impacts the side wall. The
effect of the baffle on the amount of applied force on the
front wall was studied by selecting different Young’s
modulus. Figure 27 shows the amount of applied force
Fx on the wall in terms of time for three different

Young’s moduli, which is qualitatively concordant with
the physics of the problem.

3.2.4 Flow in sloshing tank interacting with a clamped
elastic baffle

The proposed ISPH-TLSPH FSI solver is applied in the
simulation of sloshing in a rolling tank with a bottom
clamped elastic baffle as compared with Idelsohn et al.
(2008a). The initial configuration is illustrated in Figure 28.
The fluid used is sunflower oil with density and kinematic
viscosity of ρoil=917 kg/m3 and voil=5×10−5 m2/s, respectively.
The elastic baffle with a density of ρb=1100 kg/m3 and
Young’s modulus of E=6 MPa, is clamped in the middle of
the tank. A sinusoidal oscillation with a maximum amplitude
of 4° and a period of t=1.211 s is prescribed to the tank.

The experimental results are presented in Idelsohn et al.
(2008a), inclusive of the local displacement of the tip of
the elastic baffle and four photographs taken during the
experiment to illustrate the deformation of the elastic
body and the free-surface flow of fluid. Figure 29 shows
qualitative comparisons between simulation snapshots and
experimental photographs at the same instants. In general,

Figure 26 Comparison between present results by ISPH-TLSPH
model vs. numerical results (Idelsohn et al. 2008b; Walhorn et al.
2005; Rafiee and Thi-agarajan 2009) for time history of the
horizontal displacement of the upper left corner of the baffle

Figure 27 Comparison of impact load for different Young modulus

Figure 28 Schematic sketch of sloshing with an elastic baffle
clamped at the bottom of a rolling tank partially filled by oil
(Idelsohn et al. 2008a)
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the reproduced free-surface profiles and elastic baffle dis‐
placements well agree with the experiment. The positions
of the wave trough and crest show good agreement between
the simulation and the experiment. For time t=1.84 s, the
free-surfaces matches with experimental result while struc‐
tural deformation shows phase lag behind the expected.
The minor observed discrepancies are expected to be due
to an imprecise reproducibility of the working fluid’s vis‐
cosity as well as considered assumptions in the mathemati‐
cal model for structure. According to the presented fig‐
ures, there is no un-physical gap in between fluid and
structure and in specific, in the vicinity of fluid-structure

interface, both the pressure and velocity divergence fields
are well reproduced, thanks to the implemented fluid-
structure coupling and the consistent particle shifting scheme.

Figure 30 shows the time histories of displacements of
elastic baffle’s free end for comparison of simulation re‐
sults with other published results (Idelsohn et al. 2008a;
Khayyer et al. 2018a). The displacement curve shows peri‐
odic motion with respect to the sloshing tank as in the ex‐
periment. The good agreement in the amplitude of the dis‐
placement indicates that the coupling model can accu‐
rately perform in a long term simulation of viscous fluid‐
elastic structure interaction.

(a) t=1.84 s

(b) t=2.12 s

(c) t=2.32 s

(d) t=2.56 s

Figure 29 Qualitative comparison between simulation snapshots and experimental photographs, obtained by Idelsohn et al. (2008a)
corresponding to sloshing with elastic baffle clamped at bottom wall of a tank partially filled by oil.
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4 Conclusion

The focus of this study is on the development, valida‐
tion and application of a mesh-free computational method
for simulating the flow of incompressible fluid in interact‐
ing with an elastic deformable structure. Hence, a numeri‐
cal coupling model based on the SPH method was devel‐
oped to investigate the fluid-structure interaction. The
ISPH method was used to model the fluid in the determina‐
tion of pressure to create a free-divergence velocity field,
while the elastic structure was analyzed by TLSPH. In the
ISPH method, the regular particle distribution is effective
in the reproducing of a noise-free pressure field, to give a
stable and accurate simulation. Xu et al. (2009) proposed a
suitable algorithm for the particle displacement and correc‐
tion of hydrodynamic variables to prevent numerical insta‐
bilities. However, due to incompleteness of the kernel do‐
main of free-surface particles and adjacent to free-surface
particles, numerical errors in their simulation lead to the
lack of proper formation of the boundary of the fluid with
the free surface. The proposed coupled method, without
tuning a new parameter, results in a smooth and uniform
pressure field in the fluid, as well as in the interface with
the structure. The structure model was validated using two
static and dynamic problems for the elastic structure and
compared with its analytical results. Then, the numerical
FSI coupled model combining with particle shifting
scheme was evaluated by simulating several benchmark
test cases in relation to the fluidstructure interaction. The
simulation results in this study were compared with the
analytical, experimental, and numerical results of other re‐
searchers. The good agreement of the results presented in
this study with data from the other researchers showed the
ability of the proposed model to simulate the phenomenon of
fluid-structure interaction. The stability and capability of the

coupled FSI-SPH solver by combining an ISPH scheme for
fluid flows and a Total Lagrangian SPH (TLSPH) solver for
elastic structures were demonstrated by comparing the flow
profile of the fluid at the interface with the structure and the
free surface with experimental results.

Appendix: Pseudo-code of the proposed
algorithm
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