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Abstract
Blast pressure measurements of a controlled underwater explosion in the sea were carried out. An explosive of 25-kg trinitro-
toluene (TNT) equivalent was detonated, and the blast pressures were recorded by eight different high-performance pressure 
sensors that work at the nonresonant high-voltage output in adverse underwater conditions. Recorded peak pressure values 
are used to establish a relationship in the well-known form of empirical underwater explosion (UNDEX) loading formula. 
Constants of the formula are redetermined by employing the least-squares method in two different forms for best fitting to 
the measured data. The newly determined constants are found to be only slightly different from the generally accepted ones.

Keywords Underwater explosions · High-pressure shock waves · Effects of directionality on blast pressure records · 
Pressure loading formulas · Applications of the least-squares method

1 Introduction

In an underwater detonation, the formation of a superheated 
and highly compressed gas bubble around the charge causes 
a tremendous pressure increase which in turn gives rise to 
a shock wave (Reid 1996). The spherically propagating 
shock wave initially has a speed much faster than that of 
the sound in water and a steep front with a sharp peak pres-
sure value well above the acoustic pressure levels, which 
decays in an approximately exponential fashion. As the gas 
bubble expands, the pressure inside begins to drop, and the 

expansion overshoots, reversing the process to a contraction 
with an increase in pressure again. This cycling repeats itself 
a few times, generating diminishing pressure pulses, while 
the bubble rises up toward the surface under the lifting force 
of hydrostatic pressure. The peak pressure of a shock wave 
experienced at a relatively closer distance from the charge 
is of great importance in various cases, the most important 
being an explosion in the vicinity of a submarine or surface 
ship.

Due to confidentiality concerns, field measurements of 
controlled underwater explosions are rarely reported in the 
open literature; the studies usually concentrate on numerical 
simulations, and to a lesser extent, on experimental meas-
urements in laboratory conditions. Kwon and Fox (1993) 
studied experimentally and numerically the shock response 
of a cylinder to a far-field underwater explosion. Zhao 
et al. (2003) employed a finite element analysis software to 
model the shock resistance performance of a floating raft. 
Shin (2004) used a commercial code for a three-dimensional 
ship shock simulation and compared the results with actual 
test data. Ramajeyathilagam and Vendhan (2004) conducted 
experiments and numerically modeled the thin rectangular 
plates under blast loading, while Hung et al. (2005) did 
quite similar work for aluminum plates. Yao et al. (2007) 
mathematically analyzed the interaction of two bubbles 
generated by an underwater explosion. Based on the energy 
method, Peng et al. (2009) developed a formula for esti-
mating plastic deformation of the protective bulkhead of 
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a warship under blast loading. Li et al. (2011) conducted 
underwater explosion trials using unfilled and sand-filled 
cylindrical shells to determine elastic and plastic deforma-
tions. Barras et al. (2012) numerically modeled the bubble 
dynamics in an underwater explosion. Cavitation effects on 
ships were studied by Zong et al. (2012). Emamzadeh et al. 
(2015) considered the propagation of explosion waves to 
far fields and their effects on structures. The response of a 
multilayered structure to shock waves was experimentally 
investigated by Zhang et al. (2017). Brochard et al. (2019) 
worked on the development of a simplified analytical method 
for estimating the structural response of an immersed cylin-
der subjected to an underwater explosion. Camargo (2019) 
summarized the mathematical formulations for the damage 
prediction of naval panels. Hawass et al. (2019) theoretically 
and experimentally analyzed the performances of various 
underwater explosive compositions. Directional effects in 
underwater explosions were studied by Huang et al. (2019). 
Gan et al. (2021) evaluated the deformation characteristics 
of a floating slender structure due to UNDEX. Jiang et al. 
(2021) performed trials of shock wave effects on thin-walled 
aluminum plates. Numerical simulations of structural dam-
age due to near-field underwater explosions were carried out 
by Peng et al. (2021).

Setting up a detonation experiment and carrying out 
measurements at sea are major difficulties in conducting a 
controlled underwater test in the field. This work precisely 
takes up this challenging task and reports the pressure meas-
urements recorded during a planned underwater detonation 
carried out in open sea. Peak pressure measurements are 
used to redetermine the coefficients of a well-known heu-
ristic formula expressing the maximum pressure as a func-
tion of charge quantity and standoff. Comparing the newly 
determined coefficients with the generally assumed values 
reveals only slight differences, bolstering confidence in both 
the formula and measurements.

2 � Open‑Sea Detonation Measurements

Pressure measurements were carried out during a planned 
open-sea underwater detonation. Time histories of pressure 
changes in water were recorded at eight stations placed at 
different locations. Evaluation of measurements and use of 
peak-pressure values for redetermining the coefficients of the 
empirical power-law approximation (Cole 1948) are given 
in this section; but first, some general information on the 
underwater explosions is presented.

2.1 � Underwater Explosion Process

Explosions transform energy from one form to several other 
forms in a relatively short period of time and space with a 

strong mechanical effect. An underwater explosion, typi-
cally initiated by detonating a highly explosive material, 
leads to a complex sequence of events. The explosive, a 
chemically unstable substance, is triggered into a chemi-
cal reaction which results in the explosion. The unstable 
substance is converted into a stable gas at a very high tem-
perature (~3000°C) and pressure (~50000 atm) (Cole 1948). 
Almost instantaneous rise of pressure to a peak value in the 
superheated gas generates a compression wave with a steep 
wall-like front and exponentially decaying back, propagating 
radially (Reid 1996). This is called the shock wave, and it 
is the most destructive one among a series of pulses gen-
erated by an underwater explosion. Typically, 53% of the 
released energy is depleted for generating the shock wave, 
while the remaining 47% is used for the formation of the 
secondary pulses that follow the shock wave (Hsu et al. 
2014). The propagation velocity of the shock wave initially 
exceeds the speed of sound in water (~1500 m/s) by a factor 
of several times but quickly falls to this value as the wave 
propagates and the pressure drops to the acoustical levels. 
At first, the dropping of the pressure with distance is faster 
than the inverse-first-power-law, but as the wave amplitude 
diminishes with further outward propagation, the inverse-
first-power-law establishes itself for the pressure fall.

Besides the reflections of a shock wave from the free sur-
face and seabed, cyclic overshooting and receding phases of 
the gas bubbles give rise to successive secondary pressure 
pulses. The peak pressure in the first bubble pulse is only 
10% to 20% of the primary shock wave, but the pulse dura-
tion is longer, thus making the areas under the two pressure-
time curves quite nearly the same. Successive pulses get 
lower and lower in strength, and generally, it is the first sec-
ondary pulse that is of any practical concern.

A detailed account of all these processes and the Kirk-
wood–Bethe theory, covering the first analytical treatment 
of finite-amplitude shock-wave propagation, can be found 
in Cole (1948).

2.2 � Field Measurements

An underwater detonation with eight pressure gauges, 
mounted on a suspended steel frame in the seawater was 
carried out. A cylindrical explosive of a 25-kg TNT equiva-
lent was detonated in the sea at 18 m depth, where the total 
water depth was 30 m. The cylindrical charge had a radius 
of r = 190 mm and a length of l = 49 mm. The time histo-
ries of issuing pressure variations were recorded by non-
resonant, high-voltage output, PCB series pressure sensors. 
An L-shaped steel frame suspended by buoyant spheres was 
used to hold the pressure gauges at different positions as 
shown in Figure 1. Gauges 1–7 were placed on the same 
plane, say y − z plane, at different distances and positions, 
while a single gauge, number 8, was placed on the x − z
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plane at a distance of 9 m. from the charge, serving as the 
counterpart of gauge 7 of the y − z plane. The closest pos-
sible distance for the location of the first pressure sensor, 
gauge 1, was determined by ensuring that the sensor could 
withstand the peak pressure without breaking down. The 
standoff for the remotest sensor, gauge 4, was selected by 
giving a good allowance for a clear observation of the expo-
nential decay. Three of the remaining sensors, gauges 2, 3, 
and 7, were placed in between gauges 1 and 4. Two of the 
sensors, gauge 5 and 6, were placed between gauges 4 and 
7, above and below the reference depth 18 m for seeing the 
depth effect, if any. Finally, the last sensor, gauge 8, was 
placed in a direction at a right angle to the others to observe 
the effect of directionality. Considering the weather condi-
tions and forecasts, the test day was selected to ensure a calm 
sea state with minimum disturbance from the waves. Fishline 
ropes were used to fix the sensors effectively; once the entire 
frame was afloat in the sea, the divers checked and made sure 
the correct positions of the sensors prior to the detonation.

Figure 2 shows the time records of pressure sensors in 
the order of their distances from the charge, starting from 
the nearest, R = 2 m, gauge 1 ending with R = 18 m gauge 
4. Note also that since there are big differences in the maxi-
mum pressure values, three different vertical scales are used 
to give a clearer view of each record. Different character-
istics of the secondary pulses for each sensor are the most 
noteworthy aspect of these records. Besides, the pulsations 
of the primary bubble, reflections, and re-reflections from 
the seabed and the free surface play an important part in 
establishing the characteristics of the secondary peaks. Note 
also that the shown pressure values are the gauge pressures 
zero-referenced against the ambient pressure, hence the 
pulse-like motions of the explosion bubble and reflections 

from the bottom and free surface cause apparent below-zero 
pressure values as well as differences in pressure curves.

Both the shock wave peak pressure and the impulse, the 
latter being directly related to peak pressure and pulse dura-
tion, are very important parameters for assessing the poten-
tial damage to a sea structure. Pulse duration itself carries 
additional importance as it might trigger resonance, depend-
ing on the eigen period of the structure. Table 1 presents 
the measured peak pressure values and the corresponding 
distances from the charge for all the gauges. Gauge 7 and 8 
both have a 9 m distance from the charge; only their direc-
tion is different. On the other hand, the maximum shock wave 
pressures measured by these gauges differ from each other 
by approximately 18%. Besides, this notable difference in the 
peak pressure values, the time histories in the low-pressure 
parts caused by bubble contractions, differs appreciably. All 
these differences in both the peak values and below-zero pres-
sure fluctuations indicate variabilities that could be induced 
by directionality. Note that gauge 8 has consistently higher 
peak pressure and lower below zero levels compared to gauge 
7. More specially, imperfect symmetry in an explosion gives 
rise to such different maxima and minima in different direc-
tions and that these maxima and minima are proportional. 
Huang et al. (2019) examined this rather less-studied subject 
of directional effects in underwater explosions by conducting 
experiments and performing numerical simulations.

3 � Shock Wave Pressure Loading

A shock wave causes an almost instantaneous (less than 
10

−7 s) rise of pressure to a peak value which decays in time 
nearly in an exponential fashion. A well-known semiempiri-
cal formula describing the exponential decay is given by 
(Cole 1948; Keil 1961).

where p(t) is the instantaneous pressure, pm the peak pres-
sure, t the time, and � the decay time that the pressure drops 
to 1∕e of the peak value, p(�) = pm∕e. Equation (1) is valid 
for 0 ≤ t ≤ �. The peak or maximum pressure pm and decay 
time would obviously depend on the quantity of charge and 
the distance from this charge at which the observation is 
done. pm and � are expressed by the following empirical 
relations (Cole 1948; Keil 1961):

(1)p(t) = pme
−t∕�

(2)pm = k1

(

W1∕3

R

)�1

(3)� = k2W
1∕3

(

W1∕3

R

)�2

Figure  1   Schematic description of locations of charge and pressure 
gauges for underwater detonation
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Figure 2   Blast pressure versus 
time as recorded by gauges, 
given in the order from the 
highest to the lowest peak pres-
sure. a Gauge 1, R = 2 m; b
Gauge 2, R = 6 m; c Gauge 5, R
= 7.6 m; d Gauge 6, R = 7.7 m; 
e Gauge 8, R = 9 m; f Gauge 7, 
R = 9 m; g Gauge 3, R = 12 m; 
h Gauge 4, R = 18 m

(b) Gage 2, R=6 m 

(c) Gage 5, R=7.6 m 

(d) Gage 6, R=7.7 m 

(e) Gage 8, R=9 m 

(f) Gage 7, R=9 m 

(g) Gage 3, R=12 m 

(a) Gage 1, R=2 m 

(h) Gage 4, R=18 m 
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in which the explosive quantity W  is defined in terms of the 
equivalent amount of TNT and R is standoff with k1, �1, and 
k2, �2 denoting the tuning parameters.

The well-established and most frequently used coeffi-
cients are given as k1 = 21600, �1 = 1.13, and k2 = 0.058, 
�2 = −0.22 when pm is in psi and � in millisecond (Keil 1961). 
When the quantities are expressed in SI units,

where pm is in megapascal (MPa), W in kilogram (kg), R in 
meter (m), and � in microsecond (μs). In this work, the above 
expressions with given coefficients are referred to as the standard 
formulas since they are conventionally the most preferred ones.

Zamyshlyaev and Yakovlev (1973) gave a redefined version 
of the peak pressure Eq. (4):

where r is the radius of charge, and all the units are as indi-
cated for Eq. (4). Note that the refinement is introduced only 
in the near field 6 < R∕r < 12, while the far-field expression 
is kept the same as (4).

4 � Redetermination of Coefficients 
from Measured Peak Pressure Values

Using the measured data given in Table 1, the coefficients k1
and �1 in Eq. (2) are redetermined by the method of the least-
squares (Ralston and Rabinowitz 2001). Following the usual 
approach first, we take the natural logarithm of Eq. (2):

(4)pm = 52.4

(

W1∕3

R

)1.13

(5)� = 92.5W1∕3

(

W1∕3

R

)−0.22

(6)
pm = 44.1

(

W1∕3

R

)1.5

for 6 <
R

r
< 12

pm = 52.4

(

W1∕3

R

)1.13

for 12 ≤
R

r
< 240

The total error as defined by the squares of differences 
between the measured and the predicted pressure values is 
as follows:

in which N stands for the total number of data points. The 
least-squares method aims at minimizing the total error by 
appropriately selecting the parameters involved. To accom-
plish this aim, the error function E2(k1, �1) is differentiated 
with respect to k1 and �1, separately, and the resulting expres-
sions are set to zero. Thus, for the determination of lnk1 and 
�1, the following linear equations are obtained.

Taking W = 25 kg and using all the measured, N = 8, peak 
pressure values pmi and corresponding standoffs Ri listed in 
Table 1 in the above equations give k1 = 51.5 and �1 = 1.18

as solutions. These values are quite comparable with the gen-
erally accepted k1 = 52.4 and �1 = 1.13 values. Note that 
numerically higher powers such as �1 = 1.16 (Cole 1948) and 
�1 = 1.18 (Shin 2004) were also reported for TNT.

At this point, we should like to diverge from the usual 
approach slightly and do the least-squares analysis by using 
the approximating function for pm directly without introducing 
the logarithm. The total error for this case is simply,

Differentiating Eq. (11), with respect to k1 and �
1
, in turn, 

gives the following equations for obtaining k1 and �1.

Obviously, solving k1 and �1 from the above equations is 
not a straightforward task and that is the reason the logarith-
mic formulation is used routinely. Nevertheless, it is possible 

(7)ln pm = ln k1 + �1ln

(

W1∕3

R

)

(8)E2(k1, �1) =

N
∑

i=1

[

ln pmi
− ln k1 − �1ln

(

W1∕3

Ri

)]2

(9)N ln k1 + �1

N∑

i=1

(
W1∕3

Ri

)
=

N∑

i=1

ln pmi

(10)

ln k1

N
∑

i=1

ln

(

W1∕3

Ri

)

+ �1

N
∑

i=1

[

ln

(

W1∕3

Ri

)]2

=

N
∑

i=1

ln pmi
ln

(

W1∕3

Ri

)

(11)E2(k1, �1) =

N
∑

i=1

[

pmi − k1

(

W1∕3

Ri

)�1
]2

(12)k1

N
∑

i=1

(

W1∕3

Ri

)2�1

=

N
∑

i=1

pmi

(

W1∕3

Ri

)�1

(13)

k1

N
∑

i=1

(

W1∕3

Ri

)2�1

ln

(

W1∕3

Ri

)

=

N
∑

i=1

pmi

(

W1∕3

Ri

)�1

ln

(

W1∕3

Ri

)

Table 1   Measured shock wave peak pressure values and distances to 
charge

Gauge number Distance from charge 
R (m)

Measured maximum 
pressure pm (MPa)

1 2.0 77.48
2 6.0 21.13
3 12.0 9.05
4 18.0 5.47
5 7.6 16.34
6 7.7 15.53
7 9.0 14.82
8 9.0 17.76
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to devise an approach to extract the solutions. �1 is assigned 
a range of values between 1.0 and 2.0 by small increments 
such as Δ� = 10

−5 while k1 is computed separately from Eqs. 
(12) and (13) for each �1 value. The difference between two 
k1 values, as computed from (12) and (13), is checked at 
every step until it gets less than a preset small value such 
as 10−3. When this criterium is satisfied, the �1 value used 
at that particular step and the average of two corresponding 
k1 values are taken as solutions. Again, using the data of 
Table 1, with N = 8 points, the computations yield k1 = 50.3

and �1 = 1.14 from Eq. (12) and (13). Albeit slightly, these 
values are different from the solutions obtained from the 
usual approach given by (9) and (10). Note that �1 is now 
much closer to the generally adopted value 1.13.

We should now comment on the reason for differences in 
the coefficients in these slightly different applications of the 
least-squares method. Equation (8) computes the logarithmic 
errors, which are not the same as the direct errors of Eq. (11) 
since the logarithm function is not a linear operation. As 
the errors minimized are not the same, the computed coeffi-
cients are different. In this respect, the second approach that 
minimizes the direct errors is obviously better as it uses the 
actual total error between the measured and computed pres-
sure values. Numerically, the total error for each case can be 
computed by using the direct error defined in (11). If this is 
done, the first approach with k1 = 51.5 and �1 = 1.18 gives 
E2

(
k1, �1

)
= 30.59, while the direct approach with k1 = 50.3

and �1 = 1.14 gives E2
(
k1, �1

)
= 19.65, which is lower than 

the former.
Figure 3 shows the measured peak pressure data against 

the plots of the power-law formula (2) for three different 
sets of coefficients: the standard or generally used param-
eters k1 = 52.4 , �1 = 1.13 , the logarithmic approach 
results k1 = 51.5, �1 = 1.18, and finally the direct approach 
k1 = 50.3, �1 = 1.14. Overall, only minor differences can be 
observed from Figure 3; however, a closer view and com-
parisons with measurements for each k1, �1 pair reveal clearly 
that the error minimization done by the direct use of the 
power function results in the least errors for the data points 
used (Table 2). Measurements done by Hung et al. (2005) in 
the laboratory give these coefficients as k1 = 59.5, �1 = 1.29, 
which are appreciably different from the values obtained 
here. Naturally, there are notable differences between the 
open sea and laboratory conditions. The most obvious one 
is the relatively large domain of the sea compared to the 
small and enclosed region of the laboratory. Due to stronger 
reflection effects in confined regions, even the scaled meas-
urements would not agree perfectly with those recorded in 
an open environment. The difference in bottom material is 
another important point related to reflection and differences 
in measurements in the sea with relatively soft bottom mate-
rial such as mud and in the laboratory with concrete base 
are quite normal. Bias caused by environmental effects like 

waves and currents must too be borne in mind. In the same 
vein, equipment and its deployment in the ocean require 
more durability and care. We may then conclude that all 
these reasons contribute to the differences in parameters 
determined according to measurements performed in the 
open sea and laboratory.

In terms of the newly determined k1, �1 pair, we have

where pm is in pascal as indicated before. We remark that 
the performance of the present Eq. (14) is very close to that 
of the standard one; slight differences observed between 
the customary loading formula, and the new measurements 
may be attributed to two main reasons. First, the well-known 

(14)pm = 50.3

(

W1∕3

R

)1.14

Figure 3   Measured peak pressure values and the power-law formula 
with different coefficients

Table 2   Measured shock wave peak pressure values compared with 
computed predictions from different k1 and �1  

Standoff R (m) Measured Direct pm Logarith-
mic (MPa)

Standard

2.0 77.48 77.42 80.65 80.49
6.0 21.13 22.18 22.08 23.26
7.6 16.34 16.95 16.71 17.81
7.7 15.53 16.70 16.46 17.55
9.0 14.82 13.99 13.69 14.71
9.0 17.76 13.99 13.69 14.71
12.0 9.05 10.08 9.75 10.63
18.0 5.47 6.36 6.05 6.72

711

1 3

A. Tatlısuluoğlu, S. Beji: Blast Pressure Measurements of an Underwater Detonation in the Sea



loading formula is the outcome of a curve fitting to a definite 
measured data which has deviations from the curve itself. 
Second, the sensors used in the present work are of the new-
est type with better technical capabilities.

Restricted access to the measurement data does not allow 
the determination of decay time; therefore, the constants k2 and 
�2 in Eq. (3) could not be computed.

5 � Concluding Remarks

Blast pressure measurement records of a controlled underwater 
explosion in the sea have been presented. Besides confidential-
ity issues, installation, deinstallation, equipment durability, and 
overall expenditures are burdensome matters in ocean meas-
urements that require much care, planning, and involvement of 
a professional maritime team with scuba divers. Ensuring the 
correct positions of the sensors alone is a tedious task in itself. 
For all these and more reasons, the reported actual sea trials are 
rare and the value of actual field data cannot be overestimated. 
The measurements reported here are expected to be useful not 
only for confirming previous works but also for testing the 
relevant numerical simulations.

In the mathematical part of the work, parameters of the 
semiempirical maximum pressure formula are redetermined 
by the use of field data by employing two different formula-
tions of the error function. The first formulation is the clas-
sical way of applying the least-squares method to an expo-
nential function by employing the logarithmic approach. On 
the other hand, the second formulation is entirely new and 
uses the error function directly without resorting to any addi-
tional manipulation. Therefore, the latter approach might be 
viewed as rendering the true minimum of the total errors. 
Calculated coefficients from two different approaches show 
slight variations depending on the error function adopted 
but agree fairly well with the generally accepted values. This 
agreement serves as a further assurance of the accuracy of 
measurements.
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