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Abstract
Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles. Hovercrafts are
implemented in several applications, such as military missions, transportation, and scientific tasks. Thus, to improve their
performance, it is crucial to control the system and compensate uncertainties and disruptions. In this paper, both classic and
intelligent approaches are combined to design an observer-based controller. The system is assumed to be both controllable and
observable. An adaptive neural network observer with guaranteed stability is derived for the nonlinear dynamics of a hovercraft,
which is controlled via a nonsingular super-twisting terminal sliding-mode method. The main merits of the proposed method are
as follows: (1) the Lyapunov stability of the overall closed-loop system, (2) the convergence of the tracking and observer errors to
zero, (3) the robustness against uncertainties and disturbances, and (4) the reduction of the chattering phenomena. The simulation
results validate the excellent performance of the derived method.
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1 Introduction

Hovercrafts, also known as air cushion vehicles (ACVs), are
under actuated electromechanical vehicles that can move on
water, land, and any kind of surface; this flexibility is due to
the air cushion support underneath the vehicles, which mini-
mizes friction with the bottom surface. Therefore, they are
employed for applications such as helping flood refugees,
transportation, and accessing impassable places (Rashid
et al. 2012; Mutreja et al. 2015). Because of these extensive
applications, it is crucial to control and solve the problems
limiting these vehicles.

In both the modeling and control phases, hovercrafts may
face challenges such as the inaccessibility of the variable states
and the disturbance effects on the motion performance
(Soneda and Ohtsuka 2002; Morales et al. 2015). Various
observers have been designed to observe unknown parameters
(Soneda and Ohtsuka 2002; Rigatos and Raffo 2015) and
disturbances (Jeong et al. 2015; Xie et al. 2018; Lin and
Wang 2017). Furthermore, observer design for nonlinear sys-
tems is an important subject in control engineering, and much
effort has been channeled toward designing more efficient and
up-to-date observers (Niu et al. 2004; Qiu et al. 2019; Nath
et al. 2019; Shah and Singh 2019; Huang et al. 2019; Liu and
Li 2019).

In recent years, artificial intelligence based on artificial
neural networks has been used in several industrial applica-
tions. In the same way, neural network observers are widely
used for the estimation of disturbances and unknown system
parameters (Lau et al. 2019; Zhao et al. 2019; Wang et al.
2018; Liu et al. 2018). This method has the advantages of
parallelism during information processing, high accuracy with
minimal neural units, and distributed knowledge representa-
tion (Resendiz et al. 2008; Grigoryev et al. 2010).

Artificial intelligence-based controllers that have been imple-
mented on hovercrafts thus far include artificial neural network
controllers and fuzzy controllers (Tunstel et al. 1994; Tanaka
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et al. 2000; Wang et al. 2012; Duan et al. 2018). Some classic
controllers include nonlinear Lyapunov-based tracking control-
ler, PID controller, adaptive controller, and backstepping and
second-order sliding-mode controller, which have been applied
on hovercraft nonlinear systems (Aguiar et al. 2003; Marconett
2003; Wang et al. 2010; Ding et al. 2017; Sira-Ramírez 2002).

The nonsingular fast-terminal sliding-mode methodology
based on an adaptive neural network disturbance observer has
been applied on flexible air-breathing hypersonic vehicles
(Ma et al. 2019), and its performance is superior to the
backstepping strategy. Terminal sliding-mode control is ro-
bust in the presence of both bounded disturbances and uncer-
tainties and can stabilize the system in finite time (Hui and Li
2009; Mobayen and Javadi 2017).

The chattering effect in the sliding-mode control simulates
the fast dynamics of sensors and actuators. This phenomenon
damages the system actuator; therefore, in this context, a super-
twisting algorithm is considered to eliminate the chattering ef-
fect (Boiko and Fridman 2005; Utkin and Poznyak 2013).

The nonlinear characteristics of the system and distur-
bances are estimated through experimental data in a neural
network, and the weights of the layers are adaptively adjusted.
This approach can enhance system robustness against distur-
bances and uncertainties (Zhou et al. 2012; Mobayen et al.
2017; Abbaspour et al. 2017; Sharafian and Ghasemi 2017;
Khoygani and Ghasemi 2016; Sharafian and Ghasemi 2019;
Moghanloo and Ghasemi 2016).

Some finite-time control techniques that combine the fuzzy
and cascade methods have been implemented for other marine
vehicles. These methods also showed remarkable performance
(Liang et al. 2019; Wang and He 2019; Wang and Ahn 2019).

The main contributions of the paper are the use of a neural
observer-based sliding-mode control, which has not been pre-
viously reported, and the use of a super-twisting algorithm to
reduce the chattering phenomena.

In this paper, the terminal sliding-mode controller is
adopted to control the ACV. The nonlinear dynamics consid-
ered in this paper induces lateral forces on the ACV, depend-
ing on the torque. Compared with the other studies that rely on
the measurability of states of the ACV, a sensorless approach
is derived in this paper. The neural observer is designed to
identify the nonlinearity with high accuracy and guarantee
the convergence of the observer to zero. In addition, the ter-
minal sliding-mode controller based on the proposed observer
is developed to satisfy the closed-loop system stability.

2 Hovercraft Dynamic Model

2.1 Model Description

The nonlinear dynamics adopted in this paper has been de-
rived and identified in Liang et al. (2019). The equations of

velocity components as shown in Figure 1 are presented
below:

u̇ ¼ −m−1du0 sgn u−m−1duuþ m−1bTTcosθþ vr
v ¼ −m−1dv0 sgn v−m−1dvvþ m−1bTTsinθ−ur
ṙ ¼ −J−1dr0 sgn r−J−1drr−J−1abTTsinθ

8<
: ð1Þ

where u and v are the surge and sway velocities; r is the
angular velocity; {du0, du, dv0, dv, dr0, dr}∈R are the friction
and drag coefficients; a is the length of the arm from the center
of mass to the rudder surface; T is the thrust force; and θ is the
rudder angle; the coefficient bT scales the thrust input from [0, 1]
to force in Newton.

The model is actuated by the thrust force T and rudder
angle θ, which are generated by propellers subjected to veloc-
ity drag forces. In these equations, the lateral force is induced
on the system dependent on the torque. By somemathematical
manipulations and particularization, the torque is disregarded
in the mentioned equations.

The kinematics equation is as follows:

Ṗ ¼ RV ð2Þ

where P ¼ x
y

� �
∈R2 is the system position P ¼ x½ y�, and

V = [u v]T ∈ℝ2 corresponds to the velocity. The rotation ma-
trix R is as follows:

R ¼ cosθ −sinθ
sinθ cosθ

� �
ð3Þ

By substituting (2) into (1), the kinematics and the overall
dynamics of the hovercraft is obtained as follows:

Figure 1 Sketch of air cushion vehicles model
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ẋ ẏ
h i

¼ cosθ −sinθ
sinθ cosθ

� �
u
v

� �

u̇ ¼ −m−1du0 sgn u−m−1duuþ m−1bTTcosθþ vr

v̇ ¼ −m−1dv0 sgn v−m−1dvvþ m−1bTTsinθ−ur

ṙ ¼ −J−1dr0 sgn r−J−1drr−J−1abTTsinθ

8>>>>>>><
>>>>>>>:

ð4Þ

2.2 Model Transportation

To design the controller, the dynamics mentioned in (4) should
be standardized in the strict feedback form; the diffeomorphism
transformation should satisfy the following equation:

z1 ¼ T1 xð Þ
z2 ¼ ∂T1

∂x
ẋþ ∂T1

∂y
y

8<
: ð5Þ

After some mathematical manipulations, a new state space
is obtained as Eq. (6):

z1 ¼ T 1 xð Þ ¼ u2 þ v2

z2 ¼ Ṫ2 xð Þ ¼ ż1

�
ð6Þ

where z1 = T1(x) = u
2 + v2 and z2 ¼ Ṫ2 xð Þ ¼ ż1 are the transfor-

mations between the model in Eq. (4) and the equation below.
To better describe the system, Eqs. (6) and (4) can be re-

written as Eq. (7):

ż1 ¼ z2
ż2 ¼ f z;Uð Þ

�
ð7Þ

where f z;Uð Þ¼2u −m−1dv0 sgn vð Þ−m−1dvvþ m−1bTTsinθ−ð
urÞ þ 2v −m−1du0 sgn uð Þ−m−1duuþ m−1bTTcosθþ vrð Þ; and
u demonstrates the inputs of the system containing (θ, T), and
z refers to z1 z2½ �T.

The general equation of the system is considered as follows:

ż tð Þ ¼ f z;Uð Þ
Y tð Þ ¼ Cz tð Þ

8><
>: ð8Þ

By adding and subtracting Az(t) to f(z,U), Eq. (8) becomes:

ż tð Þ ¼ G z;Uð Þ þ Az tð Þ
Y tð Þ ¼ Cz tð Þ

8><
>: ð9Þ

where A is a Hurwitz matrix andG(z,U) = f(z,U) − Az(t);G(z,
U) contains both the uncertainty nonlinear and disturbance
terms.

Without loss of generality, the following assumptions are
considered:

Assumption 1:
Uncertainties that exhibit time dependence are omitted.
Assumption 2: (A, C) is observable.

3 Neural State Observer Design

3.1 Neural Network Observer Structure

Both the states and the inputs enter the neural network input
layer. There are two input neurons. The hidden layer has three
neurons and the output layer has two. The neuron numbers of the
hidden layer are obtained by checking the neural network model
response. The activation functions of the hidden layer and the
output layer are considered a bounded hyperbolic tangent. The
weights of the neurons are updated by the backpropagation al-
gorithm: a neural network–based method that calculates the gra-
dient of the error with respect to the weights for given inputs by
propagating the error backward. The proposed algorithm con-
siders the initial values as random small numbers around zero.
The optimal parameters are used to estimate unavailable states.

In Figure 2, the control input isU =Ueq +Ur, and the states

are bZ ¼ bz1 bz2½ �T.

3.2 Observer Formulation

The proposed observer, which is considered in this approach,
is defined as (10):

ḃz ¼ Abzþ bG bz;U� �
þ Γ Y−Cbz� �bY ¼ Cbzn

ð10Þ

where bz is the estimated state; bY denotes the system output
whose states are estimated; A and C are matrices, and the (A,
C) pair is observable; Γ ∈ℝn is the observer gain to estimate the
nonlinear termG(z,U); it should be chosen such that (A −ΓC) is
Hurwitz. The neural network observer is proposed as follows:

G z;Uð Þ ¼ wTφ w
0Tz

T
� �

þ ε ð11Þ

w,w′are the weights of the output and hidden layers; ε is the
approximation error, which is bounded; z = [z U]; and the
weight of first layer is w ′ = I which is the approximation of
the nonlinear function of (10) and is based on the neural net-
work as the universal approximator; it is given by (11):

bG z;Uð Þ ¼ bwT
φ

b
z

� �
ð12Þ

where bw is the weight estimation.
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The observer error is considered as ez ¼ z−bz; the observer
error dynamics is obtained as follows:

ėz ¼ Acezþ ewφ bez
� �

þW tð ÞeY tð Þ ¼ Cez tð Þ
�

ð13Þ

where ew ¼ w−bw, Ac = A − ΓC; W(t) is the disturbance term,
which is bounded and obtained from (13); and Ac is a Hurwitz
matrix.

w tð Þ ¼ w φ z
� �

−φ
b
z

� �� �
þ ε zð Þ ð14Þ

3.3 Stability of Observer

The stability of the neural observer is proved in this section by
considering the weight updating mechanism.

Theorem 1 Consider the hovercraft model mentioned in (4)
and the observer model derived in (9) that satisfies assump-
tions (1) to (3). The proposed neuro-observer based on the
update laws as mentioned in Eq. (15) makes the states of the
observer asymptotically converge to the system states, and the

objective function (J ¼ 0:5 eYTeY� �
) reaches its min point

J ¼ 1=2 eYTeY� �
.

ḃw ¼ −ℓ eYT
CA−1

c

� �T

φ
b
z

� �� �T

−γ Cez			 			bw ð15Þ

where the learning rate (ℓ) is positive and γ is a small positive

number; then ez; eY ; ew∈L∞.

Proof: Equation (15) can be rewritten as follows:

ėw ¼ ℓ ezTCTCA−1
c

� �T

φ
b
z

� �� �T

þ γ Cez			 			bw ð16Þ

The Lyapunov function candidate is as follows:

L ¼ 1

2
ezTQezþ 1

2
tr ewT

γ−1ew
� �

ð17Þ

whereQ =QT is a positive definite matrix.AT
cQþ QAc ¼ −Η ,

and H is positive definite, and Ac is a Hurwitz matrix. I3 is a
small positive constant, and tr(ATB) = BAT. According to the
Lyapunov function in (17), L is positive, and according to the

Lyapunov theorem, L̇ should be negative; therefore, based on
the time derivative of the Lyapunov function, (18) is obtained:

L̇ ¼ 1

2
ėzTQezþ 1

2
ezTQėz

� �
þ 1

2
ewT

γ−1 ėw
� �T

ð18Þ

Equations (13) and (16) are substituted into (18), and the
following equation is obtained:

L̇ ¼ −
1

2
ėzTHezþezTQ ewφ b

z
� �

þ w
� �

þ −ewT
ζezφT þ wþ ewT

Cez			 			 w−ew� �� �
ð19Þ

where ζ ¼ ℓγ−1A−T
c CTC.

Without loss of generality, Eqs. (20) and (21) are consid-
ered to prove the theorem.

tr
�ewT

w−ew� �
≤k1 wk k− ew			 			2 ð20Þ

tr ewT
ζezφT

� �
≤k2 ewT

				
				 ζk k ez			 			 ð21Þ

where k1 and k2 are the upper bounds of the activation
function and weight, respectively. Based on (20) and (21),
Eq. (19) can be rewritten as:

L̇≤
�
−
1

2
λmin Hð Þ ez			 			2 þ ez			 			 Qk k ew			 			k2 þ w

� �

þ k2 ewT
				

				 ζk k ez			 			þ k1 wk k− ew			 			2
� �

Ck k ez			 			 ð22Þ

Figure 2 Proposed structure
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where λmin(H) is the minimum H eigenvalues. If the squares
of ewk k is completed, then the negative definiteness of (22) is
guaranteed in the following set:

Ω ¼ zj
ez			 			≥�2 Qk kw

þ 1

2
k1 Qk k þ k2 Ck k þ k1 ζk kð Þ2

�
=λmin Hð Þ

8><
>:

9>=
>;ð23Þ

The proof is completed.

4 Controller Design

4.1 Nonsingular Terminal Sliding-Mode Control

To design the nonsingular terminal sliding-mode controller,
Eq. (20) is considered for the sliding surface:=

S ¼ bz1 þ λbz
p
q

2 ð24Þ

where 1
2 <

p
q < 1 and bz1 and bz2 are the states of dynamics,

which are estimated by the observer.
The control input (U) should be considered in two compo-

nents: the reaching phase and the sliding phase.

θ ¼ θr þ θeq
T ¼ Tr þ T eq

�
ð25Þ

where θr and Tr are the reaching phase inputs (rudder angle
and thrust force) and θeq and Teq are the sliding phase inputs.
The reaching phase inputs are obtained from (26), and the
super-twisting algorithm is used. The super-twisting algorithm
increases the robustness of the control structure against uncer-
tainties. Only the knowledge of the sign of the sliding variable
during online operation is required (Kunusch et al. 2008)

θr ¼ −α1 Sj jρ1 sign sð Þ−β1∫sign Sð Þdt
T r ¼ −α2 Sj jρ2 sign sð Þ−β2∫sign Sð Þdt

�
ð26Þ

Based on the time derivative of the sliding surface (24) and
substituting (26), the equivalent term of the thrust force in the
sliding phase is derived as follows:

T eq ¼ λpbz
p
q−1

2

q
2u m−1du0 sgn uð Þ þ m−1duu


 �þ 2v m−1dv0 sgn vð Þ þ m−1dvv

 �
 �

−bz2
ð27Þ

Furthermore, the equivalent term of the rudder angle is as
follows:

θeq ¼ q
2λbTpvm−1 bz

1−p
q

2 −
u
v

ð28Þ

Therefore, these control inputs are applied to the system,
and the stabilities of the overall closed-loop system, the ob-
server, and the controller are proved.

4.2 Stability Analysis

Theorem 2 Consider the hovercraft, which is described by (4)
and satisfies assumptions 1 and 2, and the observer derived in
(9) based on the learning laws (15). The nonsingular terminal
sliding-mode controller with the candidate sliding surface (24)
and control inputs (25)–(28) make the system asymptotically
stable, and the signals involved in the closed-loop system
remain bounded.

Proof The Lyapunov function candidate is as follows:

V ¼ 1

2
S2 ð29Þ

To prove the stability of the closed-loop system, the time
derivative of (29) should satisfy the following inequality:

V̇ ¼ SṠ≤−η Sj j ð30Þ

By substituting (24) and its derivative into (30), the follow-
ing equation is obtained:

V̇ ¼ S ḃz1 þ λ
p
q
bz

p
q−1

2 ḃz2
� �

¼ S bz2 þ λ
p
q
bz

p
q−1

2 2uu̇þ 2vv̇
� �� �

ð31Þ

Based on Eq. (10), (31) is rewritten as:

V̇ ¼ S bz2 þ λ
p
q
bz

p
q−1

2 2u −m−1du0 sgn uð Þ−m−1duuþ m−1bTTcosθþ vr

 �þ 2v m−1dv0 sgn vð Þ−m−1dvvþ m−1bTTsinθ−ur


 �
 �� �

ð32Þ
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Based on the control input in (25) and |S| = S sgn(S), Eq.
(32) becomes:

V̇ ¼ −α Sj jρsgn sð Þ−βS∫sgn Sð Þdt ð33Þ
where α, ρ, and β are positive constants.

Through the control input mentioned in (25)–(28) and the
application of some mathematical manipulations to (32), Eq.
(33) leads to (34):

V̇ ¼ −k Sj j < −η Sj j→k > η ð34Þ

To satisfy Eq. (34), the inequality condition k>η should be
satisfied. Thus, the asymptotic stability of the system is proved
and the proof is complete.

5 Simulation Result

The system was simulated using friction coefficients and sys-
tem parameters in Liang et al. (2019) and Talebi et al. (2010).
The controller, system, and observer parameters are presented
in Table 1.

Table 1 System and controller parameters

Parameter Value Parameter Value

p 3 Β 2

q 5 λ 10

ρ1 1 m 0.585

ρ2 1 a 0.14

α1 0.0001 J 0.01

α2 0.001 bT 10

β1 0.002 du0 0.1

β2 0.001 dv0 0.01

du 0.6 dr0 0.004

dv 0.8 dr 0.1

Figure 3 Estimation error of first state (z1)

Figure 4 Estimation error of second state (z2)

Figure 5 Sliding surface of the terminal sliding-mode controller

Figure 6 Estimation of z1 and real z1
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The purpose of the simulation is to demonstrate the stabil-
ity of the closed-loop system and the estimation accuracy.

The earlier mentioned control laws and observer were ap-
plied to the system, and the following results were obtained:

The convergence of the observer estimation error to zero is
depicted in Figures 3 and 4. The results show the promising
performance of the proposed neuro-observer.

The sliding surface of the terminal sliding-mode controller
also converges to zero (Figure 5).

The first state of the system and its estimation are depicted
in Figure 6.

The second state of the system and its estimation are
depicted in Figure 7.

The convergence of the states and their estimations to the
origin demonstrate the asymptotic stability of the closed-loop
system in presence of the disturbances.

6 Conclusions

In this paper, a neuro-observer-based robust controller is de-
signed for a class of nonlinear, controllable, and observable
systems, and it can say that both classic and intelligent ap-
proaches are combined to design an observer-based controller.
An adaptive neural network observer with guaranteed stability
is derived for the nonlinear dynamics of a hovercraft, which is
controlled via a nonsingular super-twisting terminal sliding-
mode method. The backpropagation algorithm is applied to
update the weighting parameters due to the Lyapunov stability
of the overall system. The super-twisting algorithm reduces
the chattering phenomenon. Moreover, the Lyapunov stability
of the closed-loop system, the convergence of both the track-
ing and observer errors to zero, and the robustness of the
controller against uncertainties and disturbances are all
achieved. The simulation results demonstrate the effectiveness
of the presented methodology.
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