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Abstract
In this study, the coupled torsional–transverse vibration of a propeller shaft system owing to the misalignment caused by the 
shaft rotation was investigated. The proposed numerical model is based on the modified version of the Jeffcott rotor model. 
The equation of motion describing the harmonic vibrations of the system was obtained using the Euler–Lagrange equations 
for the associated energy functional. Experiments considering different rotation speeds and axial loads acting on the propul-
sion shaft system were performed to verify the numerical model. The effects of system parameters such as shaft length and 
diameter, stiffness and damping coefficients, and cross-section eccentricity were also studied. The cross-section eccentricity 
increased the displacement response, yet coupled vibrations were not initially observed. With the increase in the eccentric-
ity, the interaction between two vibration modes became apparent, and the agreement between numerical predictions and 
experimental measurements improved. Given the results, the modified version of the Jeffcott rotor model can represent the 
coupled torsional–transverse vibration of propulsion shaft systems.

Keywords Coupled torsional–transverse vibrations · Forced vibrations · Marine propulsion shaft system · Cross-section 
eccentricity · Jeffcott rotor · Coupled vibration in rotor system

1 Introduction

Understanding the effects of the single and coupled vibra-
tion modes in a ship, including torsional, longitudinal, and 
transverse vibrations of the propeller shaft, is important in 

the shipbuilding industry for the safe operation of the ship. 
Single and coupled vibration modes induce fatigue, frac-
ture, and tribological issues on the overall shaft system. To 
avoid these structural problems, studies have been performed 
especially on torsional vibration and coupled longitudinal-
torsional vibrations; however, studies on coupled torsional-
transverse vibrations are not sufficient.

The coupled torsional-transverse vibration results in 
imbalances caused by the propeller rotation or the mass of 
the shaft components. Owing to excessive torsional–trans-
verse vibrations caused by unbalanced loads in the shaft sys-
tem, various secondary structural failures such as rotor insta-
bility and bearing damage may occur (Murawski 2005; Rao 
et al. 2003; Shi et al. 2010). Thus, maintaining the integrity 
of the rotor-bearing system is an important safety concern. 
Consequently, the topic of coupled vibration has attracted 
much attention lately in the shipbuilding industry (Chahr-
Eddine and Yassine 2014; Huang et al. 2017; Murawski 
2004; Qu et al. 2017; Yang et al. 2014; Zhang et al. 2014). 
The significant imbalance may cause several issues related 
to structurasl mechanics, and coupled torsional–transverse 
vibration must be studied in depth. However, the number of 
studies in coupled torsional-transverse vibration regarding 
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the shipbuilding industry is limited, with most of the studies 
focusing on aerospace engineering.

In their works, Friswell et al. (2010) and Tiwari (2017) 
provided a basic description of rotor dynamics and exam-
ined simple models with modern analysis methods. Using 
Lagrangian dynamics, Al-Bedoor (2001) and Mohiuddin 
and Khulief (1999) proposed a dynamic model of a rotor-
bearing system, considering gyroscopic effects and the iner-
tia coupling between bending and twisting deformations. 
He et al. (2017) showed the dynamic characteristics of a 
crane system based on Hamilton’s principle under transverse 
and longitudinal disturbances. He et al. (2020) derived the 
governing equations and the boundary conditions of wings 
through Hamilton’s principle to achieve a rigid-flexible wing 
under bending and twisting deflection. In addition, Han et al. 
(2017) and Hong et al. (2020) studied a rotor system with a 
dynamic model in which the rotor disk is placed in the mid-
dle of a massless elastic shaft. The equation of motion was 
obtained through Lagrangian dynamics for lateral–torsional 
vibrations. Han et al. (2017) derived the equation of motion 
by assuming that the diesel engine drive system could be 
approached as a simple rotor model such as a Jeffcott rotor. 
Hashemi and Richard (2000) used the finite element method 
to model a bending-twisting beam. Moreover, Han and Lee 
(2019) and Yuan et al. (2007) numerically modeled vibra-
tions caused by lateral and torsional forces by comparing 
the shaft system to the Jeffcott rotor system at three degrees 
of freedom. Also, Das et al. (2011) modeled a flexible rotor 
shaft system subjected to coupled bending and twisting with 
a shaft and a disk shifted away from the midpoint of the 
shaft. Most recently, Huang et al. (2019) considered that 
the propeller shaft is equivalent to a cantilever beam. The 
authors numerically solved a nonlinear model using a high-
order Runga-Kutta method and verified the results through 
experiments performed at different rotational speeds. As 
seen from the above studies, the Jeffcott rotor, with the disk 
located at the midpoint of the massless shaft, is a common 
model for coupled torsional–transverse vibrations. In addi-
tion to these studies, research has also been conducted for 
the early detection of cracks that may occur in the rotor sys-
tem because of vibrations. Papadopoulos (2008) presented 
different methods to enable the early detection of transverse 
cracks in the rotor system. Gayen et al. (2017) gave the finite 
element formulation of a shaft with multiple cracks to study 
the effects of transverse vibration in a rotor-bearing system. 
Moreover, Gayen et al. (2018) used finite element analysis 
to study the free vibration of the cracked shaft and com-
pared the effect of multiple parameters on natural frequen-
cies. Also, Gayen et al. (2019) improved the finite element 
formulations to analyze transverse cracks that occurred on 
a functionally graded shaft.

In the current study, a new numerical model based on a 
modified version of the Jeffcott rotor model is proposed to 

predict the dynamic behavior of the shaft system. The equa-
tion of the motion of the shaft is obtained considering the 
cross-section eccentricity, which may result from the shaft 
excessive vibrations. Typically, the increase in response is 
erroneously associated with the coupled vibrations of the 
system. However, stiffness coefficients were investigated in 
detail, and such a coupling was not observed. Accordingly, 
a new coefficient is proposed to describe the cross-section 
eccentricity. Experimental verifications are provided for 
different rotational speeds. To comprehensively assess the 
coupled torsional–transverse vibrations, this paper also 
investigates the effect of the system parameters and pre-
sents response amplitudes for different conditions. It was 
found that the modified version of the Jeffcott Rotor model 
accurately represents the coupled torsional–transverse 
vibrations of the propulsion shaft system.

2 � Methodology and Numerical Model

The coupled torsional–transverse vibrations of rotor 
systems are commonly modeled using a Jeffcott rotor 
model, which has a massless shaft and a disk of mass m
located in the middle of the shaft. In this study, while the 
experimental setup was modeled numerically, a loading 
system instead of a propeller was attached to the end of 
the shaft, and the shaft movement is only provided by an 
electric motor that enables the shaft to rotate at certain 
speeds. Thus, the shaft was modeled with three degrees 
of freedom, as shown in Figure 1 (Han and Lee 2019).

The shaft can be subjected to both torsional and trans-
verse deformations. Here the mass center of the shaft is 
relocated with a distance e, and O′ is the new location of 
the mass center, due to the acting forces. The shaft speed is 
given as �, and � represents the torsional displacement, and 
t denotes time. Figure 1 shows the deformed configuration 
in a particular state. The governing equation of the system 
is obtained using Lagrangian dynamics. The kinetic energy 
of the shaft is given as Eq. (1):

where xc and yc are the new positions of the mass center; 
their relationships with x, y are given as

where e is the cross-section eccentricity of the system due 
to the external forces. Substituting the expressions of Eq. (2) 
into Eq. (1) gives the expression of the shaft kinetic energy:

(1)T =
1

2
m(ẋ2

c
+ ẏ2

c
) +

1

2
J(𝜔 + 𝜃̇)2

(2)

xc = x + e cos�

yc = y + e sin�

� = � + �t
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In addition, the potential energy of the system is defined 
as

Similarly, the dissipation energy of the shaft system is 
presented as

where kx, ky , and k� are the stiffness coefficients, and 
cx, cy, and c� are the damping coefficients in the torsional 
and transverse directions, respectively. The equations of 
motion for the shaft system are obtained by substituting 
the expressions of kinetic energy, potential energy, and 
dissipation energy in Lagrange’s equation:

where Q denotes the non-conservative forces, and q
denotes the generalized coordinates, with q =

[
x y �

]T . 
To obtain the equations of motion for the torsional–trans-
verse coupled vibration of the system, the following equa-
tion is used:

(3)
T =

1

2
m(ẋ − e(𝜔 + 𝜃̇) sin(𝜔t + 𝜃))2

+
1

2
m(ẏ + e(𝜔 + 𝜃̇) cos(𝜔t + 𝜃))2 +

1

2
J(𝜔 + 𝜃̇)2

(4)V =
1
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kxx
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kyy

2 +
1
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k��

2

(5)D =
1
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cxẋ

2 +
1
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cyẏ

2 +
1

2
c𝜃𝜃̇

2

(6)
d

dt

(
𝜕T

𝜕q̇

)
−

𝜕T

𝜕q
+

𝜕V

𝜕q
+

𝜕D

𝜕q̇
= Q

In Eq. (7), the torsional acceleration terms me𝜃̈ sin(𝜔t + 𝜃)

and me𝜃̈ cos(𝜔t + 𝜃) are also found in the equations of 
transverse motions, while the transverse acceleration terms 
meẍ sin(𝜔t + 𝜃) and meÿ cos(𝜔t + 𝜃) are found in the equa-
tion of torsional motion. As a result, the transverse vibration 
interacts with torsional vibration through the inertia terms 
of the equations, this interaction is brought by the mass of 
the unbalanced loads. Moreover, the equations of motion of 
the unbalanced rotor system end up being nonlinear when 
the coupling of lateral vibration and torsional vibration is 
considered.

Usually, the torsional displacements in most rotor systems 
are small, and they are to be approximated based on the main 
term of their particular developments. Under this supposi-
tion, the accompanying relations are utilized. Generally, the 
amplitude of torsional vibration in most rotor systems is little, 
permitting sin � and cos � to be approximated based on the first 
term of their respective Taylor series expansions. Assuming 
this, the relations below are utilized (Hong et al. 2020):

(7)

⎧
⎪⎨⎪⎩

mẍ − me𝜃̈ sin(𝜔t + 𝜃) + cxẋ + kxx = me(𝜔 + 𝜃̇)2 cos(𝜔t + 𝜃)

mÿ + me𝜃̈ cos(𝜔t + 𝜃) + cyẏ + kyy = me(𝜔 + 𝜃̇)2 sin(𝜔t + 𝜃)

(J + me2)𝜃̈ − meẍ sin(𝜔t + 𝜃) + meÿ cos(𝜔t + 𝜃) + c𝜃𝜃̇ + k𝜃𝜃 = 0

(8)

{
cos(�t + �) = cos(�t) cos � − sin(�t) sin � ≈ cos�t − � sin�t

sin(�t + �) = sin(�t) cos � + cos(�t) sin � ≈ sin�t + � cos�t

Figure 1   Unbalanced shaft 
model
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Equation (9) is obtained by ignoring the unknown higher-
order terms in Eq.  (7) and adopting the assumptions in 
Eq. (8):

The coupled torsional–transverse equation of motion 
presented in Eq. (9) can be rewritten in the matrix form as 
shown in Eq. (10):

Equation (10) demonstrates that the cross-section eccen-
tricity is the cause of the coupled torsional–transverse vibra-
tions and therefore a fundamental element of the vibrations. 
The vertical and horizontal vibrations are observed to be 
unconnected to the torsional vibration, with the case of 
e= 0. To continue the coupled vibration calculations, the 
cross-section eccentricity is taken as 0.001 (Hua et al. 2017; 

(9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

mẍ − me𝜃̈ sin𝜔t + cẋ − 2me𝜔𝜃̇ cos𝜔t + kx + me𝜔2𝜃 sin𝜔t

= me𝜔2 cos𝜔t

mÿ + me𝜃̈ cos𝜔t + cẏ − 2me𝜔𝜃̇ sin𝜔t + ky − me𝜔2𝜃 cos𝜔t

= me𝜔2 sin𝜔t�
J + me2

�
𝜃̈ − meẍ sin𝜔t + meÿ cos𝜔t + c𝜃𝜃̇ + k𝜃

= 0

(10)

⎡
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m

0

−me sin(𝜔t)

0

m

me cos(𝜔t)

−me sin(𝜔t)
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⎤
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ẍ

ÿ

𝜃̈

⎤
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+
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cx 0 −2me𝜔 cos(𝜔t)

0 cy −2me𝜔 sin(𝜔t)

0 0 c𝜃

⎤⎥⎥⎦

⎡⎢⎢⎣

ẋ

ẏ

𝜃̇

⎤⎥⎥⎦
+

⎡⎢⎢⎣

kx 0 me𝜔2 sin(𝜔t)

0 ky −me𝜔2 cos(𝜔t)

0 0 k𝜃

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x

y

𝜃

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

me𝜔2 cos(𝜔t) + Fx(t)

me𝜔2 sin(𝜔t) + Fy(t)

M𝜃(t)

⎤⎥⎥⎦

Huang et al. 2017; Hong et al. 2020). The parameters used 
in the simulation are summarized in Table 1.

The external forces and torsional torque on the shaft 
are given as Fx(t) = Fx0

sin (�t), Fy(t) = Fy0
sin (�t) and 

M�(t) = M�0
sin(�t). Here, Fx0

,Fy0
,M�0

 are external forces 
measured from tail shaft, and they have different amplitudes 
at different rotational speeds.

To verify the numerical estimations, the coupled tor-
sional–transverse vibration of the shaft system was experi-
mentally investigated. Figure 2 presents the installation of the 
experimental setup. The experimental setup comprised of a 
loading system that represents the propeller which is located at 
end of the tail shaft, bearings to prevent movements, an electric 
motor as a marine engine at the other end of the shaft, a foun-
dation to mount the whole plants, and a base frequency con-
verter. Although the experimental setup included disks attached 
to the shaft that can be used in the numerical modeling of the 
crankshaft, in the present study, the disks are disregarded in the 
numerical modeling since the inertia torque and inertia of the 
disks are relatively small compared with those of the shaft.

There were two intermediate bearings to support the 
intermediate shafts and another stern bearing to support the 
tail shaft. Figure 3 presents measurement points where the 
sensors transmitting the analog signals were located.

The torsional and transverse vibration signals were recorded 
simultaneously along the shaft. The signal of the tail shaft was 
measured, and the shaft speed was checked using a laser tor-
sional vibration meter (B&K MM0071 sensor and 2523 laser) 
(Figure 3). Additionally, measurements for the vertical and 
horizontal displacements of the tail shaft were conducted using 
the eddy current sensors (ZA-210803), as given in Figure 3. In 
this particular case, for the test, two measurement points of the 
tail shaft were selected for transverse vibration. Possible errors 
due to the vibration were reduced by fixing the sensor position.

Transverse loads were exposed to a hydraulic system. A 
strain gauge positioned on the tail shaft was used to meas-
ure the torque produced by the transverse forces (Figure 4). 
Although the shaft speed values were determined from 100 

Table 1   Parameters of the propulsion shaft system

Parameter Symbol Value

Shaft density � 7800 kg/m3

Poisson’s ratio � 0.3
Young’s modulus E 206 GPa
Shear modulus G 77 GPa
Shaft length L 2.665 m
Shaft diameter D 0.086 m
Rotational speed � 100–190 r/min
Mass m �L∕A

Moment of inertia J mr2∕8

Stiffness of bearing kx, ky, k� kx = ky = 7 × 105 N/m

k� = 1.7 × 105 kgm/s2

Damping of bearing cx, cy, c� cx = cy = 60 N ⋅m/s

c� = 0.08 N ⋅m ⋅ s/rad
Figure 2   Experimental setup of the propulsion shaft system
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to 190 in 30 increments and frequencies and amplitudes for 
the shaft coupled vibrations were recorded for each speed, 
the measurements and results presented in Sect. 4 are only for 
100 r/min. The amplitudes of each transverse force applied 
and the corresponding torque were 300 kN and 0.06 N·m, 
respectively, for 100 r/min. Given that the test apparatus only 
permitted axial and transversal loadings, the torsional stress 
could not be directly obtained; nevertheless, torque values 
were obtained from the measured transverse stresses. The 
transverse stresses were collected for the transverse forces 
applied with regard to the displacements of the loading sys-
tem. The applied displacements, measured torque, and trans-
verse force amplitudes are provided in Table 2.

3 � Numerical Model Verification

To obtain steady results, for each speed, the simulation time 
was taken as 1 min in the experiment. The initial conditions 
were taken as x0 = y0 = �0 = 0, and the simulation time 
was applied as 10 s. The results tended to be steady in this 
period. The second half of the simulation time interval was 
used to show the numerical results.

The displacement values and frequency responses 
obtained with the numerical model in three direc-
tions are compared with the measurements.  The 
results are given in Figures 5, 6, and 7 for 100 r/min 
shaft speed.

Figure 3   Measurement point layout for the shaft. a vertical, b horizontal, c torsional

Figure 4   Hydraulic loading 
system and torque measurement 
point
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Figure 5 indicates the displacements in the vertical 
direction for the experimental system and the numeri-
cal model at 100 r/min. While the vertical displacement 
was 3.292 × 10–4 m at 1.541 Hz in the experiment, the 

numerical result was 2.941 × 10–4 m at 1.648 Hz. In the 
graph given in Figure 5(a), the time step was kept the same 
as the experiment data to avoid errors in the comparisons 
with the experimental results; thus, even though the maxi-
mum displacements occurred before 5 Hz, the frequency 
range continued up to 500 Hz. The vertical displacement 
obtained from the numerical model was lower than that 
obtained from the experimental data. However, the fre-
quency values corresponding to the maximum displace-
ments were similar between the two models, despite the 
margin of error; this indicates that the numerical model 
yielded results similar to the experimental data. Figure 6
shows the displacements in horizontal vibration obtained 
from the experimental system and the numerical model 
at 100 r/min. While the vertical displacement was 3.979 

Table 2   Torque and transverse force values for considered rotational 
speeds

Rotational 
speed (r/
min)

Displace-
ment 
(mm)

Vertical 
force (N)

Horizontal 
force (N)

Torque (N·m) 
under tranverse 
force

100 0.6 300 300 0.06
130 0.9 320 320 0.065
160 1.2 330 330 0.07
190 1.5 350 350 0.075

Figure  5   Vertical displacement results a at 100 r/min, b between 0 
and 5 Hz

Figure 6   Horizontal displacements results a at 100 r/min, b between 
0 and 5 Hz
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× 10–4 m at 1.542 Hz for the experimental system, the 
numerical model result was 3.068 × 10–4 m at 1.648 Hz. 
Figure 7 reveals that the torsional angles were 2.603 ×
10–7 rad at 1.542 and 2.307 × 10–7 rad at 1.648 Hz for the 
experimental system and the numerical model at 100 r/
min, respectively. Figures 5, 6, and 7 show that the test 
results were higher than numerical predictions, owing to 
the imperfection of theoretical models.

3.1 � Verification at Various Speed Ranges

Figures 8 and 9 indicate the difference in coupled tor-
sional–transverse vibration between the experimental 
system and numerical models under increasing rotational 
speeds. This section evaluates the validity of the numerical 

method by considering the error margins of the experiment 
at different shaft speed values.

The torsional angle and transverse displacement of all 
numerical models were lower than the experimental data, Figure 7   Torsional angle results a at 100 r/min, b between 0 and 5 Hz

Figure 8   Numerical results between 100 and 190 r/min. a Vertical, b
horizontal, c torsional
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and the error margins were similar for each rotational speed. 
In addition, the slopes of curves in the image are similar 
despite the error margin, indicating that the numerical mod-
els yielded a good correlation with the experimental data.

4 � Discussion of Parameter Effect

The validity of the numerical model has been proved with 
the maximum displacement and forced vibration frequency 
at different shaft speed values. The main terms of the numer-
ical model are the coupling effect, propeller shaft length and 
diameter ratio, stiffness and damping coefficients, and cross-
section eccentricity. Thus, the influence of the above impact 
factors on the coupled vibration was studied to observe the 
vibration behavior of the model in detail at 100 r/min shaft 
speed. Transient solutions were obtained for each situation, 
and figures were created according to the maximum dis-
placement values.

4.1 � Coupling Effect

In Table 3, torsional and transverse vibration amplitudes are 
given for coupled and uncoupled vibration forms. When the 
differences between the three directions were examined, it 
was seen that the coupled effect had an impact only on trans-
verse displacement. Comparing the vertical and horizontal 
directions, the coupling has an impact of approximately 
0.1% and 4.4%, respectively; thus, the coupled vibration had 
a more effect on the horizontal axis.

4.2 � Effect of Length and Diameter Ratio

The shaft length and diameter values are effective to 
define the stiffness and damping coefficient values 
and the mass and moment of inertia on the coupled tor-
sional–transverse vibration. To examine the effect of the 
length change, the diameter value was kept constant, and 
the shaft length was multiplied by 0.8, 0.9, 1, 1.1, and 
1.2. The torsional and transverse displacements varied 
with the length ratio (Figure 10), and all three axes were 
similarly affected.

Figure 11 depicts the variation in the vibration amplitudes 
in the three axes with the shaft diameter. To examine the 
effect of diameter change, the length was kept constant, and 
the shaft diameter was multiplied by 0.8, 0.9, 1, 1.1, and 
1.2. The variation of the vibration amplitudes was directly 
proportional to the change in the shaft length but inversely 
proportional to the change in the shaft diameter. The shaft 
diameter is an important factor influencing the bending and 
twisting stiffness; thus, they are more currently effective on 

Figure 9   Experimental results between 100 and 190 r/min. a Vertical, 
b horizontal, c torsional

Table 3   Coupling effect on three axis

Direction Coupled Uncoupled

Vertical 2.941 × 10–4 m 2.938 × 10–4 m
Horizontal 3.068 × 10–4 m 2.938 × 10–4 m
Torsional 2.307 × 10–7 rad 2.307 × 10–7 rad
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the displacement values, and displacement values are not 
directly related to the shaft diameter.

4.3 � Effect of Stiffness and Damping Coefficient 
Ratio

Stiffness and damping coefficients are important fac-
tors in shaft system optimization. In this study, these two 
values were first defined on the basis of bearings. How-
ever, to observe the effect of these factors on coupled tor-
sional–transverse vibrations, the stiffness and damping coef-
ficient were changed at a certain ratio while the other values 
were kept constant.

Figure 12 presents the displacement values correspond-
ing to different damping coefficients under a constant stiff-
ness coefficient and 100 r/min shaft speed. In the numerical 
model, the damping coefficients in the three axes given by 
dx, dy, d� had no effect on the vibration; thus, the coeffi-
cients are given with the same symbol d on the x-axis. The 
damping coefficient did not have an observable effect on the 
system because of the rather small coefficient values.

The vibration amplitudes due to different rates of trans-
verse stiffness coefficient values are given in Figure 13. 
While the transverse displacement decreased with the 
increase in coefficients, there was no change in the torsional 
angle. Figure 14 shows the vibration amplitude response to 
the change in the torsional stiffness coefficient. While the 
torsional angle decreased with the increase in the coeffi-
cient, there was no change in the transverse displacement. 
Figures 13 and 14 indicate that the torsional and transverse 
directions do not interact. To reveal the causes of the lack of 
interaction between two vibration type, displacements at the 
different cross-section eccentricity values were investigated 
(Figure 15).

4.4 � Effect of Eccentricity of Cross‑Section 
Coefficient Ratio

Figure 15 presents the displacement values at different cross-
section eccentricity values. At the cross-section eccentricity 
of 0.001, the vertical and horizontal axes interacted, but the 
effect on the torsional angle was too small to be seen. The 
coupled vibration effect disappeared with a decrease in the 
e value, except at the first stage of numerical calculations. 
However, with the increase in the cross-section eccentricity, 
the displacements significantly increased, demonstrated by 

Figure 10   Displacements for different shaft lengths

Figure 11   Displacements for different shaft diameters Figure 12   Displacements for different damping coefficients
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the occurrence of more interactions between two vibration 
forms.

When the cross-section eccentricity value was e= 0.005, 
the displacement values were 3.009 × 10–4 m in the verti-
cal direction, 3.59 × 10–4 m in the horizontal direction, and 
2.409 × 10–7 rad in the torsional direction. A comparison 
of these displacement values with the experimental results 
shows that the error margin decreased and the interaction 
between vibration forms increased compared with the case 
under e= 0.001. Consequently, the coupled vibration effect 
was not seen between the torsional and transverse directions 
at any e value selected from the references, and it is impor-
tant to correctly determine the eccentricity of the cross-sec-
tion coefficient value in the design stage.

5 � Conclusions

In this study, a shaft model was subjected to torque and 
transverse excitation forces, and the dynamic behavior of 
the system with coupled torsional–transverse vibration was 
observed. The displacements and frequency response of the 
system for single and coupled vibrations were comprehen-
sively investigated, and the major conclusions are as follows:

(1) Under the low eccentricity value, except at the first 
stage, no coupling effect was observed on the tor-
sional angle; the coupling effect was mostly between 
the horizontal and vertical vibrations. However, with 
an increase in the eccentricity, the coupling effect 
was more significant, and vibration forms interacted. 
Additionally, the margin of error with the experiment 
decreased.

(2) The displacement amplitudes increased in three direc-
tions with an increase in the shaft length and decreased 
with an increase in diameter. The displacements were 
directly proportional to the shaft length ratio and 
changed at an equivalent rate but inversely propor-
tional to the shaft diameter; the effect of the diameter 
was larger, and it was not directly associated with the 
displacement ratio.

(3) The change in damping coefficient had no effect on 
the system because of the rather small damping value. 
Moreover, the change in the transverse stiffness values 
did not affect the torsional angle, and the change in 
torsional stiffness values did not affect the transverse 
displacement values. Thus, an increase in the displace-
ment values does not always indicate that coupled 
vibration occurred between the vibration forms, and 

Figure 13   Displacements for different transverse stiffness coefficients

Figure 14   Displacements for different torsional stiffness coefficients

Figure 15   Displacements at different cross-section eccentricities
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it is important to accurately define the cross-section 
eccentricity coefficient value.

In future work, the coupling under added mass and hydro-
dynamic damping coefficients due to the propeller will be 
considered for the coupled vibration of the marine propeller 
shaft system. In addition, the fatigue, breakage, and tribo-
logical problems on the bearings and the poor performance 
and failure of the shaft system due to the coupled vibration 
will be examined.
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