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Abstract
The model-driven architecture (MDA)/model-based systems engineering (MBSE) approach, in combination with the real-time
Unified Modeling Language (UML)/Systems Modeling Language (SysML), unscented Kalman filter (UKF) algorithm, and
hybrid automata, are specialized to conveniently analyze, design, and implement controllers of autonomous underwater vehicles
(AUVs). The dynamics and control structure of AUVs are adapted and integrated with the specialized features of the MDA/
MBSE approach as follows. The computation-independent model is defined by the specification of a use case model together
with the UKF algorithm and hybrid automata and is used in intensive requirement analysis. The platform-independent model
(PIM) is then built by specializing the real-time UML/SysML’s features, such as the main control capsules and their dynamic
evolutions, which reflect the structures and behaviors of controllers. The detailed PIM is subsequently converted into the
platform-specific model by using open-source platforms to quickly implement and deploy AUV controllers. The study ends
with a trial trip and deployment results for a planar trajectory-tracking controller of a miniature AUV with a torpedo shape.

Keywords Autonomous underwater vehicles (AUVs) . AUV control . Model-based mechatronic system design . Unscented
Kalman filter (UKF) . Hybrid automata . Real-timeUML/SysML .MDA/MBSE

1 Introduction

Autonomous underwater vehicles (AUVs) have been
widely developed and used for the study of oceans to
enhance the cost-effectiveness of civil society and im-
prove existing naval facilities, e.g., the biological dis-
covery of ocean resources, disaster and tsunami warn-
ings, and self-operated underwater military means

(Allotta et al. 2016b; Brignone et al. 2015; Cui 2019;
Ribas et al. 2015; Shojaei and Dolatshahi 2017; Wynn
et al. 2014).

In the present design and construction of AUV controllers,
traditional guidance, navigation, and control methods are
combined with soft computing techniques to closely deal with
the control of AUV dynamics (Allotta et al. 2016a; Bhopale
et al. 2019; Eslami et al. 2018; MahmoudZadeh et al. 2018).
For example, Shariati et al. (2019) applied a particle filter
combined with an extended Kalman filter (EKF) to the model
identification of AUVs so as to minimize the errors and vari-
ances of nonlinear control systems for AUVs. A hierarchical
robust nonlinear (HRN) controller was designed by Karkoub
et al. (2017) for the trajectory tracking of an AUV subject to
uncertainties (e.g., current disturbances, unmodeled dynam-
ics, and parameter variations); the proposed HRN controller
utilizes the backstepping and sliding mode control technique
with a hierarchical structure based on the kinematic and dy-
namic models of the system. The robustness of the proposed
HRN controller was then verified through injection of random
uncertainties into the system model. The closed-loop stability
of the proposed individual subsystems is guaranteed to have
uniformly ultimately bounded performance according the
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Lyapunov stability criteria. Shojaei and Dolatshahi (2017) in-
troduced the target tracking control of underactuated AUVs in
the presence of model uncertainties and environmental distur-
bances. In this study, dynamic surface control, neural net-
works, and adaptive control techniques were employed to de-
velop a target-tracking controller for underwater vehicles in a
three-dimensional space; a Lyapunov-based stability analysis
proved that all signals are bounded in the closed-loop control
system and that tracking errors converge to a neighborhood of
the origin.

In fact, customization and reusability are factors associated
with the production of new applications to reduce costs, re-
sources, and time development. According to the Object
Management Group (OMG) (OMG 2015), the Unified
Modeling Language (UML) is essential for its visual object-
oriented design support and has been increasingly utilized and
appreciated in the software industry. The System Modeling
Language (SysML) (OMG 2017), which is a UML profile
for systems engineering, has been standardized by OMG.
SysML supports the specification, analysis, design, verifica-
tion, and validation of a broad range of complex systems.
However, UML and SysML lack constructs for modeling
the time and duration constraints of developed systems.
OMG have standardized the model-driven architecture
(MDA) (OMG 2014) so as to separate the specification of
system operations from the details pertaining to the way that
a system uses the capabilities of its platform. The three main
goals of MDA are portability, interoperability, and reusability
through the architectural separation of concerns. Portability
allows the same solution to be realized on new or multiple
platforms. Interoperability creates systems that can easily in-
tegrate and communicate with other systems and use a variety
of resource applications. Reusability builds solutions that can
be reused in many different applications in different contexts.
Model-based systems engineering (MBSE) is the formalized
application of modeling to support system requirements and
design, analysis, verification, and validation activities starting
from the conceptual design phase and continuing throughout
the development and later life cycle phases (INCOSE 2007;
INCOSE 2014). MBSE is intended to facilitate systems engi-
neering activities that have traditionally been performed using
the document-based approach. It is expected to result in en-
hanced specification and design quality, enable the reuse of
system specification and design artifacts, and facilitate com-
munication among development teams. The output of systems
engineering activities is a coherent model of the system, with
the emphasis placed on evolving and refining the model using
model-based methods and tools. For example, Sakairi et al.
(2013) presented the integration of a SysML modeling tool
(IBMRational Rhapsody (IBM 2018)) with a proprietary sim-
ulation tool (MathWorks Simulink (MathWorks 2018)) and a
computer algebra system (CAS), which was mainly based on
MBSE concepts, to validate system specification. The

integration with Simulink enables users to implement systems
engineering processes in the SysML model while designing
continuous control algorithms and plant behavior in Simulink.
Plant behavior can also be validated by simulating the overall
composition in Simulink. The integration with the CAS en-
ables the evaluation of mathematical constraints defined in
SysML parametric diagrams. Hence, MDA is a system devel-
opment paradigm that emphasizes the use of rigorous visual
modeling techniques throughout the system development life
cycle, and MBSE is a specialization of MDA that applies
MDA principles and best practices to systems engineering
applications (Hien et al. 2018; Soriano et al. 2016).

The features of MDA/MBSE can thus be specialized to-
gether with the real-time UML/SysML (Douglass 2014;
OMG 2011, 2017; Selic and Gerard 2014) to model in detail
the analysis and design artifacts for real-time and embedded
control systems, e.g., AUV controllers.

On the basis of the aforementioned points, this study is in-
terested in implementing a control model that integrates AUV
dynamics into MDA/MBSE combined with real-time object
paradigms, the unscented Kalman filter (UKF) algorithm, and
the specialization of hybrid automata (HA) features. This model
facilitates the realization and deployment of AUV controllers
and makes the designed and implemented control elements to
be closely customizable and reusable in the realization of new
control applications for various AUV types. In this model, the
dynamics and control structure of AUVs are adapted for control
and are then combined with the specialization of MDA/MBSE
features, including the computation-independent model (CIM),
platform-independent model (PIM), and platform-specific
model (PIM). The control system permits an AUV to track a
horizontal planar reference path in the Cartesian space. Herein,
the CIM includes a use case model that is specialized closely
with an implementable function block diagram, the supple-
mented UKF algorithm, and HA to precisely achieve the re-
quirement analysis of control for AUV controllers. The PIM is
built on the identified CIM by specifying the real-time UML/
SysML to intensively design real-time control capsules with
ports, protocols, and intercommunication evolution for AUV
controllers. The detailed PIM elements are then converted into
platform-specific models (PSMs) by using open-source plat-
forms, such as OpenModelica (OpenModelica 2018) and
Arduino (Arduino 2018), to quickly simulate, realize, and de-
ploy AUV controllers. A horizontal planar trajectory-tracking
controller for a miniature AUV (M-AUV) with a torpedo shape
was completely deployed and tested.

This paper is structured as follows. The adapted dynamics
and control structure of AUVs are introduced in Section 2.
The details of model-driven development aimed at intensively
realizing AUV controllers, including the CIM, PIM, and PSM
components, are provided in Section 3. The application of the
specialized model to a case study is discussed in Section 4.
Conclusions and future works are reported in Section 5.
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2 Adapting AUV Dynamics and Control
Structure

2.1 Overview of AUV Dynamics for Control

According to SNAME (1950), the six motion components of
an underwater vehicle are surge, sway, heave, roll, pitch, and
yaw (Table 1).

Based on the guidance, navigation, and control of under-
water vehicles, the 6 DoF dynamic model of AUVs in body
frame (Antonelli 2006; Fossen 2002, 2011; Lantos and
Márton 2011) can be written as follows:

η̇ ¼ J ηð Þν
M ν̇ þ C νð Þν þ D νð Þν þ g ηð Þ ¼ τ v; uð Þ

8
><
>:

ð1Þ

where η = [η1
T,η2

T]T includes the position η1 = [x,y,z]T

(NED: north, east, and down) and the orientation
η2 = [ϕ,θ,ψ]T (Euler RPY: roll, pitch, and yaw angles);
ν = [v1

T,v2
T]T comprises the linear v1 = [u,v,w]T and the

angular v2 = [p,q,r]T velocities; M =MRB +MA is a mass
matrix that denotes the 6 × 6 system inertia matrix con-
taining the generalized constant inertia matrix MRB and
the added mass inertia matrix MA; C(ν) = CRB(ν) + CA(ν)
is the 6 × 6 coriolis and centripetal force matrix with
added mass; the 6 × 6 matrix D(ν) =D +Dn(ν) contains
linear and nonlinear hydrodynamic damping, with D
containing the linear damping terms and Dn(ν) contain-
ing the nonlinear damping terms; g(η) is the 6 × 1 vec-
tor of gravitational and buoyancy effects; τ(v, u) is the
vector of resultant force and moment acting on the un-
derwater vehicle; and u denotes the control inputs, e.g.,
the rotational speed of the motors related to the gener-
ated thrusts and the driving angles sent to the needed
servomotor for sail planes and rudder.

A discrete state-space representation is required in model-
ing AUV controllers based on a recursive digital motion esti-
mation filter (Allotta et al. 2016a), e.g., the UKF; the devel-
oped system can then be described by the following set of
equations:

xk ¼ f k−1 xk−1; uk−1ð Þ þ wk−1
yk ¼ hk xkð Þ þ vk

�
ð2Þ

Here, x ¼ η
ν

� �
is a 12-dimensional state vector for describ-

ing AUV motion and xk is the vector of state variables at the k
th

instant of x; uk and yk, respectively, denote the inputs and outputs
of the system; hk, wk, and vk are the measurement function, ad-
ditive process, and measurement noise, respectively. The first
equation in (2) is called the system’s evolution equation while
the second one is called the measurement equation.

On the basis of the AUV dynamic model (1), the following
assumptions are made: as the AUV drag along transversal
directions strongly dampens the lateral and vertical motions,
the AUV dynamics can be considered to take place only in the
longitudinal direction. The time evolution of the developed
system is then written in the following equations:

ẋ ¼ η̇

v̇

" #
¼ F x; uð Þ þ w

¼ η ¼ J η2ð Þν
M−1 τ v; uð Þ−C νð Þν−D νð Þν−g ηð Þð Þ

� �
þ w

ð3Þ

2.2 Control Structure of an AUV

Three main systems comprise the autonomy architecture of
AUVs: the guidance system responsible for generating the trajec-
tory to be followed by the AUV, the navigation system that esti-
mates the current state of the vehicle, and the control system that
calculates and applies appropriate forces to maneuver the vehicle.
All these subsystems have corresponding tasks to complete, but
they must also work cooperatively to ensure that the AUV com-
pletes its objectives even in the presence of unknown environmen-
tal disturbances. Figure 1 shows a general block definition dia-
gram in SysML, which captures how these subsystems interact.

The problem of control design for AUVs is equally challeng-
ing because controllers are closely connected to dynamic AUV
models. Therefore, control systems must consider models with
discrete events and continuous behaviors; such systems are called
hybrid dynamic systems (HDS) (Carloni et al. 2006; Fishwick
2007). Control systems do not always have the same behavior

Table 1 SNAME notations for
underwater vehicles Degree of

freedom
Motions Force and

moment
Linear and angular
velocity

Position and Euler
angles

1 Surge X u x

2 Sway Y v y

3 Heave Z w z

4 Roll K p ϕ

5 Pitch M q θ

6 Yaw N r ψ

Journal of Marine Science and Application104



because they are associated with validity hypotheses to be
checked at any moment, security requirement forces to envisage
events, and behaviors different from nominal behaviors. Hence,
the behaviors of such systems are complex and can be modeled
by HA (Fishwick 2007; Henzinger et al. 1998). On the basis of
the description of the dynamics and general control structure of
AUVs, together with the characteristics of HDS, one can consid-
er AUV controllers as HDS. These controllers have continuous/
discrete parts and interactions such as the surge, sway, heave,
roll, pitch, and yaw motions. They are also prone to external
interaction events from guidance and navigation systems and
environmental disturbances. In the current model, the objective
is to develop a trajectory-tracking controller for AUVs. The hy-
brid dynamic model is expected to be capable of identifying
control algorithms combined with a specific guidance law, such
as the line-of-sight (LOS) guidance (Lekkas and Fossen 2014;
Shojaei and Dolatshahi 2017; Zheng and Zou 2016).

3 Specializing MDA/MBSE Features
to Develop AUV Controllers

3.1 Building the CIM for an AUV Controller

The goal of the CIM is to entirely model a problem in business
terms without delving into the solution or its implementation.
In the CIM, object collaborations with real-time UML/
SysML, which are based on the use case model; interaction
diagrams; and state machines are used to describe the structure
and behavior of an AUV controller.

Following the dynamics and control structure of AUVs
adapted in Section 2 and together with LOS guidance, we
present here the main use case model (Figure 2) of AUV
controllers. We also provide an example of trajectory tracking
scenarios and the local state machine of the “track a desired

trajectory” use case (Figure 3 a and b, respectively). In
Figure 3(a), the “loop (5)” fragment is typical value in the
practice of LOS guidance (Lantos and Márton 2011).

In Figure 2, the actors of the developed AUV in the case
study are described as follows:

& MDS is the measurement cum display system consisting
of guidance and navigation systems that essentially act as
signal suppliers for the AUV controller.

& MES is the marine environment system, which includes
disturbances such as wind, waves, and ocean currents.

& User is a person who is responsible for verifying the phys-
ical properties of the AUV and configuring the system
parameters for starting up missions of the AUV.

The use cases for the developedAUV are described as follows:

& The “Track a desired trajectory” use case is aimed at track-
ing the desired trajectory to be followed by the vehicle.

& The “Ensure safety” use case is aimed at ensuring system
safety when one component fails, the supplied power is
low, or the weather is poor.

Figure 2 Main use case model for the AUV controller

Figure 1 General control architecture for an AUV
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& The “Configure” use case permits a user to configure and
update control parameters for starting up missions of the
AUV.

& The “Maintain” use case is aimed at maintaining the
whole system, including its activities such as error identi-
fication and correction for the entire physical AUV and
periodic maintenance.

In this model, all industrial conditions, e.g., the maximum
swing angles of rudder and sail planes, velocity, immersible

depth, and additional safe trip modes of the AUV being de-
veloped, should be provided to ensure the operational safety
of the system.

An implemented functional block diagram must also be de-
fined to model the continuous behaviors of the system amid
external events because the real-time UML/SysML lacks con-
structs for modeling internal continuous behaviors for each state
on the statemachine diagram. Considering the dynamicmodel of
AUVs, its industrial constraint conditions, and the defined use
case model, we develop an implemented functional block dia-
gram of an AUV controller, as shown in Figure 4 (Hien et al.
2018). Here, the desired trajectory and depth actions respectively
provide the desired position (xd, yd) and depth (zd) to the position
and deep controller. ΣTd is the desired overall thrust. The posi-
tion controller receives the AUV’s position (x, y) and desired
thrust and outputs the desired roll (ϕd) and pitch (θd). The desired
yaw (Ψd) comes directly from the guidance system block. The
attitude controller gives the desired control signals to the actuator
commands (e.g., Ωdi can be the desired motor speed sent to the
mainmotor controllers for the propellers or tunnel thrusters or the
desired driving steps sent to the needed servomotor controllers

for sail planes, rudder, and displacement units; i ¼ 1; n for an
AUV operating with n actuators, and thus, u is the control input
of size n × 1). The proportional–integral–derivative (PID) regu-
lators can be applied to the motor control block, including the
main motor controllers and servomotor controllers, to reduce the
inertial and delay time caused by the physical AUV actuators in
thewhole system evolution. τϕ,θ,Ψ andΣT are the overall moment
and force acting on the AUV, respectively. In the current model,
the integral backstepping (IB) techniques implemented in previ-
ous works (Fossen 2011; Lantos and Márton 2011; Li et al.
2014) are hierarchically used to control the depth, position, and
attitude of the AUV.

The state-space models (2) and (3) described in Section 2.1
are used to estimate and predict the position, depth, attitude,
and velocity corresponding to the sensors installed on the
AUV that are implemented in the navigation system block.
The EKF has been widely accepted as a standard tool in the
control and machine learning communities. In this study, we

Figure 4 Implemented functional block diagram for the AUV controller

Figure 3 Dynamic behaviors of the “Track a desired trajectory” use case
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use the UKF that addresses many of the approximation issues
of the EKF. The UKF consistently performs equally to or
better than the EKF at comparable levels of complexity. The
performance benefits of UKF-based algorithms have been
demonstrated in a number of application domains, including
state estimation, dual estimation, and parameter estimation
(Wan and Merwe 2001). The UKF has a number of clear
advantages, e.g., the mean and covariance of the state estimate
are calculated at the second order or higher as opposed to the
first order in the EKF. Hence, the UKF can facilitate the ac-
curate implementation of the optimal recursive estimation
equations, which are the basis of the EKF and UKF.
Although equations specifying the UKF may appear more
complicated than those for the EKF, the actual computational
complexity is equivalent. The advantages of the UKF are fur-
ther detailed in the literature (Wan and Merwe 2001).

The standard navigation filter is based on the UKF (Bar-
Shalom et al. 2001; Wan and Merwe 2001) and comprises the
predict/update scheme shown in Algorithm 1 for estimating the
position, depth, attitude, and velocity of the AUV. In Algorithm
1, b: denotes an estimate; P is the state covariance; Q and R
respectively denote the covariance matrices of process and mea-
surement noises, which are assumed as zero mean stationary
white noises with zero cross correlation. The state is recursively
estimated starting from the assumed initial conditions as follows:
bx0j0 ¼ x0 andP0∣ 0 = 012× 12. The unscented transform (UT) is a
deterministic sampling technique that allows us to compute the
mean and the covariance matrix of a random variable. It un-
dergoes a generic nonlinear transformation by propagating a
minimum set of its samples and exploiting the knowledge of
the mean and the covariance of the starting variable.

Algorithm 1 Standard navigation filter based on UKF.

In the CIM of an AUV controller, HA are specialized to
describe mathematical behaviors, i.e., the dynamic model of
the AUV, including the terms situations, continuous state

variables, event, transition, global continuous behavior, and in-
variants. HA have only one global continuous behavior at any
given time, contain invariant notations to verify the hypotheses
on the continuous state, are derived from an automaton for
modeling the dynamic behavior of general interactive software
systems, and are verified with proof tools, such as HyTech,
CheckMate, HSolver (Carloni et al. 2006), and OpenModelica
(OpenModelica 2018). Thus, HA can be used to model and
implement the control evolution of an AUV controller. The
HA of an AUV controller are defined by the following form:

HAUV ¼ Q;X ;∑;A; Inv; F; qo; xcoð Þ ð4Þ
where Q is a set of states describing the trip modes of HAUV,
e.g., the motion in horizontal transfer, idling, submerging/ris-
ing, and rotating (e.g., roll, pitch, and yaw), which are com-
bined with the local state machine oriented toward control
modes (Figure 3(b)) in permutations. Q can be referred to as
the status of the AUV controller; qo is the initial situation. X
presents the continuous state space of HAUV, X ⊂ℜn, and xco is
the initial value of this space, e.g., continuous components of
the AUV controller. ∑ is a finite set of events, e.g., external
interacting events from the guidance and navigation system,
and environmental disturbances. A is a set of transitions defined
by (q, Guard, σ, Jump q’). Here, q, q’∈Q; Guard is a subset of
the state space in which the continuous state must be so that the
transition can be crossed; and Jump represents the continuous
state transformation during the change of situation and is
expressed by a state value function, whose result is affected
similar to the initial value of the continuous state in the new
situation. σ∈∑ presents the event being associated in the tran-
sition; this association does not imply giving an input or output
direction to the event. Inv is an application that associates a
subset of the state space in each situation. It is called the invari-
ant of the situation in which the continuous state must remain;
when the situation is q, the continuous state must verify xc∈-
inv(q). F is defined using the 6 DoF dynamic model of the
AUV and the implemented functional block diagram
(Figure 4). The evolution of continuous state occurs when the
situation is activated. F is called the continuous fluid.

The constraints are as follows. σ∈∑ is considered in terms
of inputs/outputs and internality/externality. X contains input/
output signals that are applied to globally perform the HA
evolution of an AUV controller. The realization hypotheses
of the HA evolution, which permit the invariant Inv and guard
control Guard to generate internal events for the AUV con-
troller, is assumed in existing reports (Hien et al. 2013, 2018).

3.2 Designing the PIM for an AUV Controller

According to the approach in the literature (Diem et al. 2013;
Hien et al. 2018; Hien and Soriano 2012; Soriano et al. 2016), we
specialize fivemain control capsules for use in theHA realization
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of the AUV being developed: the continuous part’s capsule, the
discrete part’s capsule, the internal interface’s capsule, the exter-
nal interface’s capsule, and the capsule of instantaneous global
continuous behavior (IGCB). Figure 5 shows the capsule collab-
oration of the real-time communication pattern for the AUV
controller based on the real-time UML collaboration diagram.

The discrete part’s capsule contains a set of situations Q and
transitions A in the HA of the AUV controller (i.e., the macro--
motion in horizontal transferring, idling, submerging/rising, and
rotations [roll, pitch, and yaw], which are combinedwith the local
state machine shown in Figure 3(b) in permutations.

The continuous part’s capsule is combined with the contin-
uous state space X in the implemented functional block dia-
gram. The sequential evolution of continuous elements is car-
ried out by specifying the rendezvous pattern introduced in the
literature (Douglass 2011) with two sub-capsules called
RendezVous and Semaphore.

The IGCB’s capsule contains the concrete global
continuous behaviors of the AUV being developed at
a given time, similar to f ∈ F in its HA. f is derived
from (1), (2), and the implemented functional block di-
agram (Figure 4). The concrete IGCB is also integrated
into Algorithm 1 to estimate the position, depth, atti-
tude, and velocity of the AUV. Each global continuous
behavior corresponds to a situation in the HA.

The internal interface’s capsule verifies Inv in the HA of
the AUV being developed and generates internal events so
that the discrete part’s capsule can make its own evolution
on the basis of these events.

The external interface’s capsule is an intermediary that re-
ceives or sends episodic events and periodic signals between

the developed AUV and the interacted systems, such as MES
and MDS in the current model.

The timing concurrency of evolutions for the aforemen-
tioned capsule collaboration of the real-time communication
pattern has been described in detail previously (Hien et al.
2018).

Reusability is important in implementing controllers for dif-
ferent AUVapplications because it helps reduce the development
time and cost. The various reusable views in the development
phase are as follows. The reusable view is based on the virtual
mechanism of objects, classes, or class hierarchies. The other
reusable view can be based on design components and architec-
ture, e.g., the implemented functional block diagram, the local
state machine of the AUV controller, and the generic state ma-
chine of main control capsules that can be specified to develop
various control applications of AUVs using the same technique.
The specializations that permit the capsule collaboration of a
developed AUV to be customizable and reusable in the new
control application for various AUV types are summarized in
Table 2.

3.3 Constructing the PSM for an AUV Controller

In the construction of the AUV controller, the PIM is first imple-
mented in the PSM (i.e., the simulationmodel) that is transformed
from the built PIM by using tools such as IBM Rational Rose
RealTime or IBM Rational Software Architect RealTime (IBM
2018) and Modelica/OpenModelica (Fritzson 2015;
OpenModelica 2018). IBM Rational’s leading role in defining
the real-time UML is widely acknowledged, as is the pre-
eminence of the IBM Rational Rose RealTime or IBM Rational

Figure 5 Capsule collaboration of real-time communication pattern for the AUV controller
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Software Architect RealTime products in implementing UML to
support the architecting of large-scale, real-time, and embedded
software systems. These tools combine a rich modeling environ-
ment with a code-oriented tool set to create a comprehensive
practitioner desktop for creating solutions in a variety of architec-
tural styles and targeted at specific runtime infrastructure. Many
other important life cycle artifacts also benefit from this tool (e.g.,
requirement lists, test cases, and build scripts) to entirely cover
development phases for the AUV controller. OpenModelica is an
open source modeling and simulation environment intended for
industrial and academic usage. It is an object-oriented declarative
multi-domain modeling language for complex dynamic systems.
The OpenModelica environment allows most of the expressions,
algorithms, and function parts of Modelica to be executed inter-
actively, aswell as the equationmodels andModelica functions to
be compiled into efficient C/C++ codes. The generated C/C++
codes are combined with a library of utility functions, a runtime
library, and a numerical differential algebraic equation solver. The
obtained simulation results in OpenModelica allow us to theoret-
ically evaluate control performance and functionalities and to eas-
ily optimize the control design elements before they are imple-
mented and deployed. Then, the PIM with the optimized control
elements of the simulation model is adapted to obtain the new
updated PIM for the realizationmodels of the AUV; the newPIM
is called PIM*. This PIM* is converted into the new PSM* (i.e.,
the realization model) by using specific platforms based on an
object-oriented implementation development environment (IDE),
e.g., Arduino’s IDE (Arduino 2018), to completely realize the
AUV controller with compatible microcontrollers, e.g.,

ATMEGA32-U2 and STM32 Cortex-M4 microcontrollers
(Arduino 2018). A sketch of the described model transformations
is shown in Figure 6. Here, the transformations are performed
through the round-trip engineering (i.e., forward and reverse en-
gineering) of the intermediate C++ codes, including about 80%of
the generated codes and 20% of the handcrafted codes, which are
issued from themodels depicted in IBMRational Rose RealTime
or IBM Rational Software Architect RealTime, OpenModelica
tools, and Arduino’s IDE.

The transformation rules, which are used to convert the
PIM into the PSM or the PIM* into the PSM*, and vice versa,
through the round-trip engineering of the intermediate C++
codes are as follows:

& Each capsule is implemented by a class or block model.
& Each sub-capsule is carried out by a component class or

block model and corresponds to the composite class or
block model.

& Messages are implemented by the “functions” of classes
or block models.

& Interfaces are realized by the set of inputs and outputs of a
block model.

& Passive classes such as continuous elements or IGCBs are
mapped to the “expressions” terms.

& The state machines of the main capsules are implemented
by state graphs.

Figure 7(a)–(c) partially illustrate an example of the above
transformation rules taken as excerpts between the designed

Table 2 Main control capsules of PIM can be customized and reused in the new control application for various AUV types

Main control
capsules

Specialization description

Generic artifacts Specialized artifacts

Discrete capsule The discrete part’s capsule remains at the generic level
for the new AUV controller

None

Continuous part The ports and protocols of this capsule remain at the
generic level for the new AUV controller

The continuous part’s capsule is specialized by adding or removing concrete
continuous elements (xc∈X) that depend on the physical configuration of AUV
actuators, e.g., the number of propeller motors related to the generated thrusts.
The states and their behaviors, which correspond to the added/removed con-
tinuous elements, are added/removed in/from the state machine of this capsule.
The behavior of the new set of continuous elements is used to redefine the
concrete IGCBs (f∈F)

IGCB The state machine, ports, and protocols of this capsule
remain at the generic level for the newAUV controller

The specification of the IGCB’s capsule captures new IGCBs, which are formed by
restructuring the new set of continuous elements according to the implemented
functional block diagram. Jump, which denotes the initial value of each IGCB,
must be identified

Internal interface The state machine and ports of this capsule remain at the
generic level for the new AUV controller

The specialization of the internal interface’s capsule is carried out by
adding/removing in/from the new IGCB in the IGCB’s capsule if necessary new
Inv and Guard that correspond to new added/removed situations in/from the
discrete part’s capsule

External interface The state machine, ports, and protocols of this capsule
remain at the generic level for the newAUV controller

The external interface’s capsule is specialized by adding or removing input or
output events from the outside (i.e., adding/removing these events in/from the
protocol of this capsule)

The interconnection of the main control capsules described in Figure 5 remains at the generic level for various control applications of AUVs
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PIM components of the IGCB capsule and the simulated PSM
elements; the converted target is a Modelica/OpenModelica
model. Here, we suppose that the PID regulator and motor actu-
ator reside in the continuous part’s capsule and that they are used
to partially implement the functional block diagram for IGCB.

The HA of an AUV controller can be automatically imple-
mented in the object-oriented convention by using the state
pattern described in the literature (Douglass 2011; Gamma
et al. 1995). This pattern allows an object to alter its behavior
when its internal state changes; the object appears to change
its class. Following this pattern, an implementation structure
of the HA (Figure 8) is specified to improve the evolution of
the AUV controller. In this case, Arduino’s platforms are used
to realize the AUV controller. An example of the main gener-
ated codes of the HA’s state pattern, which is verified and
compiled to fit in the ATMEGA32-U2 and STM32 Cortex-
M4 microcontrollers using Arduino IDE version 1.8.0
(Arduino 2018), is shown in the Appendix.

4 Application

Following the above specialized model, we developed a pla-
nar trajectory-tracking controller that enables a miniature
torpedo-shaped (M-AUV) with a small navigation bridge
(Figure 9(a)–(e)) to reach and follow a desired planar trajec-
tory. The main characteristics of the M-AUV are provided in
Table 3.

In this application, the damping matrix is assumed as a
diagonal matrix that allows the coupling between dissipative
effects to be neglected because the velocities of the M-AUV
are not too high; the mass matrix is considered a diagonal that
is derived from the body reference frame aligned with the
vehicle’s principal axes of inertia.

We present an example of simulation cases in which the
guidance and navigation system is assumed to address a drive
event in the Transferring situation to the M-AUV controller
with a desired course from the current position. One of the

simulation results is then illustrated in Figure 10, which indi-
cate the transient response of the M-AUV course. In this sim-
ulation scenario, we suppose that the M-AUV receives a de-
sired course angle of 20o with a mean transferring velocity of
2.0 m/s. The transient duration is 4.8 s for the stabilized
course. All the obtained simulation results allow us to theoret-
ically evaluate the control performance of this application
within the control criteria, such as the admissible timing re-
sponse and transition and static errors. Subsequently, we can
choose the designed control elements and their properties for
implementing the realization model of this system.

The Arduino platform (Arduino 2018) is also used to quickly
deploy the realization model for the controller. This platform can
sense the environment by receiving input from a variety of sen-
sors, such as the pressure and magnetometer sensors, inertial
measurement unit, and GPS, e.g., MPU6000 with a working
frequency of 100 Hz (InvenSense 2018) and Ublox Neo 6 M
with aworking frequency of 10Hz (u-blox 2018). It can affect its
surroundings via the controlled actuators. The ATMEGA32-U2
and STM32 Cortex-M4 microcontrollers (Arduino 2018) are
used on the board and can be programmed using Arduino’s
IDE based on C++. The main structure of the implemented code
on the Arduino card is shown in Figure 11 by using the real-time
UML component diagram.

The trial trip scenarios are based on the use case model,
desired courses with different desired course angles, and var-
ious desired shape-based reference paths of the M-AUV and
mean transferring speeds. The main test scenarios and their
experimental data for this controller are performed in the lab-
oratory. Some of the main course-tracking test results are
shown in Table 4. Figure 12 illustrates the horizontal planar
trajectory-tracking controller that enables the M-AUV to au-
tonomously reach and follow the rectangle-shaped reference
path. Figure 13 indicates the real horizontal planar positions of
the M-AUV for a test scenario corresponding to the fourth test
scenario described in Table 4.

Based on the comparison between the experimental data of
these trial tests and the obtained experimental results from the

Figure 6 Sketch of PIM–PSM
model transformation for AUV
controllers
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Figure 7 Illustration of transformation rules between parts of the designed PIM components and simulated PSM elements

Figure 8 State pattern of HA for an AUV controller
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literature (Hien et al. 2018), in which the IB control method and
EKF algorithm were implemented, the planar trajectory-tracking
controller of this M-AUV is improved in terms of the stabilized
course duration and trajectory error, which decrease by about 2.0 s
and 1.20 m, respectively. In this application, the standard control
method of IB and the UKF algorithm are used for the position and
attitude control. PID regulators are applied to the block of the
motor controllers to implement the functional block diagram
(Figure 4) for building up the ICCB’s capsule of the PIM model.

5 Conclusion and Future Work

This paper presents a model-driven implementation to intensive-
ly realize controllers for AUVs whose global behaviors can be
considered HDS. This model is mainly based on the specializa-
tions of MDA/MBSE’s features combined with the real-time

UML/SysML, UKF algorithm, and HA to closely analyze, de-
sign, implement, and realize the control parts of a system. No
single formalism or language of an engineering process can pos-
sibly capture all the knowledge and information needed to solve
complex control systems, such as AUV controllers. Hence, the
dynamics and control structure of AUVs are adapted for the
control and combined with the specialization of MDA/MBSE
features, including the CIM, PIM, and PSM components. In
the CIM, the use case model is specialized with continuous be-
haviors, the UKF algorithm, and HA to perform the requirement
analysis for an AUV controller. The PIM is built to obtain the
detailed design model by specifying the real-time control cap-
sules, ports, and protocols enclosed with their intercommunica-
tion evolutions to model in detail the behaviors and structures of
the AUV controller. The updated PIMwith the optimized control
elements of the simulation model (PIM*) is then converted into
the PSM* through the round-trip engineering of the intermediate
C++ codes so as to completely realize the AUV controller with

(a)  System board   (b) Tail assembly of the M-AUV

(c) Whole view of the assembled M-AUV

(d) Trial trip with the average speed (e) Trial trip with the low speed

Figure 9 Installation and trial
trips for the M-AUV controller

Table 3 Main characteristics of the M-AUV

Parameter Value

Size (L ×H ×W) (m) 1.50 × 0.27 × 0.20
Net dry weight (kg) 12.30
Autonomy (min) 20
2 × Li-Po battery (V, mAh) 22.2, 20 000
Maximum load capacity (W) 314
Maximum immergence/emergence speed (m/s) 0.60
Maximum horizontal transferring speed (m/s) 2.0
Maximum diving depth (m) 1.20
Maximum radius of action (m) 400

Figure 10 Transient response in a desired course from the current position
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compatible microcontrollers. Based on this model, a trajectory-
tracking controller of a low-cost AUV is completely deployed
and tested out with ATMEGA U2 and STM32-Cortex-M4
microcontrollers.

An assessment of the above application of the MDA/
MBSE methodology can be summarized as follows:

Advantages

& It highlights a top global model that can combine the use
case model with discrete models and continuous models
(i.e., HAwith the UKF algorithm) to estimate AUV states.

& The PIM-PSM separation and its model transformation
allow the design model to distinguish which elements
are customized and reused in the new control applications
of AUVs.

& The user benefits from a chain of commercial or open-
source software, such as the IBM Rational Rose
RealTime or IBM Rational Software Architect
RealTime, OpenModelica, and Arduino library. It could
take advantage of the efforts of communities and facilitate
the specialization of programming codes.

& The transformation rules can be rewritten to convert the
real-time capsules of the PIM into PSM (Modelica/
OpenModelica) models of the PSM or PIM* into PSM*
(Arduino IDE).

& Arduino microcontrollers are used widely in embedded
system development, for which designers use open-
source solutions.

& The Arduino platform can sense the environment by re-
ceiving inputs from a variety of sensors to allow for the
extension of complex systems.

Disadvantages

& The product is naturally less specialized and could possi-
bly lose speed performance. It may also require
optimization.

& Development engineers may need to receive training in
different IDEs to be able to manage the interfaces between
tools.

& A version of real-time OpenModelica remains lacking;
thus, quickly performing hardware-in-the-loop simula-
tions may be difficult.

& Compiling and uploading the implemented programs in
Arduino IDE could take time.

Figure 12 M-AUV reaches and follows the rectangle-shaped planar
trajectory

Table 4 Test scenarios and
experimental data in the stabilized
courses of the M-AUV

No Desired course angle (degree) Mean transferring speed (m/s) Duration for the stabilized course (s)

1 010 1.0 5.2
2 010 2.0 4.5
3 020 1.0 5.5
4* 020 2.0 4.8
5 030 1.0 6.5
6 030 2.0 5.4

This test scenario corresponds to the simulation case shown in Figure 10

Figure 11 Main structure of the implemented code on Arduino card
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The developed control application shows that the MDA/
MBSE approach combined with the real-time UML/SysML
provides a framework and enables tools to be provided for
specifying a system independent of the platform that supports
it, specifying platforms, choosing a particular platform for the
system, and transforming the specified system into one for a
particular platform. However, the real-time UML/SysML ver-
sions lack constructs for modeling internal continuous behav-
iors for each state on the state machine diagram. An imple-
mented functional block diagram must thus be defined in the
CIM to model continuous behaviors for industrial HDS, such
as an AUV controller with external events.

We have applied the above specialized model in a low-cost
AUV controller, and we intend to implement it in new control
applications for autonomous coordinated AUVs. In the near
future, wewill investigate the application strategy to extend its
effectiveness and develop controllers for balancing search and
target responses in cooperative teams of autonomous un-
manned ships and various AUVs for ocean exploration.

Appendix

An example of the main “HA_Q_AUV.h” header and
“HA_Q_AUV.h.cpp” implementation files of HA library for

the developed AUV controller were implemented, verified,
and compiled to fit in ATMEGA32-U2 and STM32 Cortex-
M4 microcontrollers by using Arduino IDE version 1.8.0.

Figure 13 Real horizontal planar positions of theM-AUV corresponding
to the fourth test scenario described in Table 4

/***************************************************************
Login : User
Component : DefaultComponent 
Configuration : DefaultConfig
Model Element : HA_Q_AUV
File Path : DefaultConfig\HA_Q_AUV.h
****************************************************************/
#ifndef HA_Q_AUV_H
#define HA_Q_AUV_H
#include <oxf\oxf.h>
#include <oxf\omcollec.h>
class State;
class HA_Q_AUV {
public :

HA_Q_AUV();
~HA_Q_AUV();
void request();
OMIterator<State*> getItsState() const;
void addItsState(State* p_State);
void removeItsState(State* p_State);
void clearItsState();

protected :
void cleanUpRelations();
OMCollection<State*> itsState; //## link itsState

public :
void _addItsState(State* p_State);
void _removeItsState(State* p_State);
void _clearItsState();

};

#endif
/****************************************************
File Path : DefaultConfig\HA_Q_AUV.h
****************************************************/

/*******************************************************************
Login : User
Component : DefaultComponent 
Configuration : DefaultConfig
Model Element : HA_Q_AUV
File Path : DefaultConfig\HA_Q_AUV.cpp
********************************************************************/
#include "HA_Q_AUV.h"
#include "State.h"
HA_Q_AUV::HA_Q_AUV() {
}
HA_Q_AUV::~HA_Q_AUV() {

cleanUpRelations();
}
void HA_Q_AUV::request() {
}
OMIterator<State*> HA_Q_AUV::getItsState() const {

OMIterator<State*> iter(itsState);
return iter;

}
void HA_Q_AUV::addItsState(State* p_State) {

if(p_State != NULL)
{

p_State->_setItsHA_Q_AUV(this);
}

_addItsState(p_State);
}
void HA_Q_AUV::removeItsState(State* p_State) {

if(p_State != NULL)
{

p_State->__setItsHA_Q_AUV(NULL);
}

_removeItsState(p_State);
}
void HA_Q_AUV::clearItsState() {
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