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Abstract
This study explored the buckling of multiple intersecting spherical shells. A three-segment spherical shell was designed using the
theory of deformation coordination; the design was compared with that of a volume-equivalent cylindrical shell and ring-ribbed
cylindrical shell. The numerical results indicated that the buckling capacity of the three-segment spherical shell was superior to
those of the other two cylindrical shells. To validate our numerical approach, three laboratory-scale shell models were fabricated.
Each model was accurately measured and slowly tested in a pressure chamber; thus, the tested shells were studied numerically.
The experimental collapse modes agreed well with numerical results, and the collapse load of the three-segment pressure shell
was considerably higher than that of the two cylindrical shells.
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1 Introduction

For many years, cylindrical and spherical pressure shells have
been the simplest and most efficient deep-sea pressure shell
structures. These structures play crucial roles in the develop-
ment of underwater pressure vessels, such as hulls of subma-
rines and submersibles, due to their high space utilization and
simple geometry (Ross et al. 2001; Ross 2006; Pan and Cui
2010; Pan and Cui 2011; Zuo et al. 2014). However, these

structures are susceptible to buckling when exposed to uniform
external pressure, which is strongly affected by geometrical
configuration, material properties, and geometrical imperfec-
tions (Arbocz and Starnes 2002; Błachut and Magnucki 2008;
Błachut 2014; Jasion and Magnucki 2015; Zingoni 2015).

The spherical pressure shell exhibits a small buoyancy co-
efficient and uses less space than a cylindrical pressure shell of
equal diameter (Ness and Simpson Jr 2009; Błachut and
Jaiswal 2000; Liang 2006; Błachut and Smith 2008; Stanley
2012). Multiple intersecting spherical shells have the same
two advantages as these two shell types (Zhang et al. 2017;
Zhang et al. 2018). Garland designed and built a double-
segment spherical submersible termed Deep Quest and a
Deep Submergence Rescue Vehicle (Charles Garland 1968).
Leon (1971) conducted an experimental study on a double-
segment spherical shell with titanium alloys. The result indi-
cated that using Al2O3 instead of titanium alloys to fabricate
ring ribs increases the payload of the shells by 10%. Hall et al.
developed a double-segment spherical shell by using graphite
and epoxy composites, reducing the weight of the shell by
46% compared with a steel pressure shell with the same di-
ameter (Hall et al. 1991). Liang et al. studied the optimisation
design of multi-segment spherical shells under deep-water
conditions (Liang et al. 2004). Gou and Cui studied the struc-
tural optimisation of multi-segment spherical pressure shells
and proposed two typical failure modes (Gou and Cui 2009).
However, the buckling between a multi-segment spherical
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pressure shell and cylindrical shell under uniform external
pressure has not been compared.

In this paper, a comparison of the buckling between multi-
ple intersecting spherical pressure shells and cylindrical shells
under uniform external pressure is presented. First, the three-
segment spherical shell and corresponding equivalent cylin-
drical and stiffened cylindrical shells were designed
Subsequently, equivalent contrast shells for the three-
segment spherical, volume-equivalent cylindrical, and stiff-
ened cylindrical shells were developed in both linear and non-
linear ranges, and the geometrical nonlinearity and initial geo-
metrical imperfections were included in nonlinear computa-
tion. Finally, the buckling performances of the three
laboratory-scale models were experimentally studied. The re-
sults revealed that the load-carrying capacity of multiple
intersecting spherical shells was higher than that of the cylin-
drical shell and stiffened cylindrical shell.

2 Problem Description

2.1 Geometries of Three-Segment Spherical Shells
and Cylindrical Shells

In this study, a three-segment spherical shell was investigated
as a representative structure of the multi-segment spherical
pressure shell, as illustrated in Figure 1, wherein t is the thick-
ness of the spherical shell, R is the inner radius of the any
spherical shells of the three-segment spherical shell, α is the
intersection angle, Lr is the width of the circumferential rib, tr
is the thickness of the circumferential rib, Dr is the outer

diameter of the circumferential reinforcing rib, and L is the
total length of the three-segment spherical shell.

In this study, to design the three-segment spherical,α = 45°
and tr = 250 mm were selected. According to the deformation
compatibility principle (Gou and Cui 2009), when the radial
deformation of a multi-segment spherical shell opening is
consistent with the radial deformation of the complete spher-
ical shell opening, the rib-ring parameter combination is opti-
mal. Related formulas are given as follows.

The radial displacement of the complete spherical shell in
hydrostatic pressure:

δs ¼ P0R2sinα
2Et

1−μð Þ ð1Þ

where P0 is uniform external pressure, E is Young’s modulus,
and μ is Poisson’s ratio.

The radial displacement of the rib-ring outer diameter is
obtained from the following equation:

δr ¼ PRDr

2E
D2

r þ d2

D2
r−d

2 −μ

 !
ð2Þ

where PR ¼ 2Fcosα
Lr

þ P0, which is the uniform pressure on the

rib-ring.
Coordinate the deformation between the spherical shell and

the rib-ring; then,

δs ¼ δR ð3Þ

Thus, the functional relationships betweenDr, tr, and Lr can
be presented as follows:

Lr ¼ Rcosα
R2sinα 1−μð Þ

tDr

1

D2
r þ 2t2r−2Drtr
2Drtr−2t2r

−μ
−1

ð4Þ

where Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 Rþ tð Þp

2−4R2cosα2.
The design of the cylindrical shell is commonly divided

into two types: no reinforcement and ribbed reinforcement.
Ribbed reinforcement is generally achieved using annular
ribs. To avoid the shape, size, quantity, and layout of the ribs
influencing the analysis, the shape, size, quantity, and layout
of cylindrical shell ribs used were identical to those of the
three-segment spherical shell.

Figure 1 Geometry of the three-segment spherical pressure hull

Table 1 Main parameters of three
geometric models Model L (mm) R (mm) t (mm) Dr (mm) Lr (mm) D0 n

Three-sphere shell 5086 1000 20 1470 109 N/A N/A

Cylindrical shell 5086 N/A 20 N/A 0 888 0

Ring-ribbed cylindrical shell 5086 N/A 20 N/A 109 898 2
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The volume, thickness, and the total length of the cabin (L)
of the cylindrical shell were equal to those of the three-
segment spherical shell, which can be calculated as follows:

Volume of the multi-segment spherical shell (V1):

V1 ¼ πR3 n⋅
4

3
−2 n−1ð Þ 2

3
−cosαþ 1

3
cosα3

� �� �

þ Vr n−1ð Þ ð5Þ

where Vr ¼ π Dr
2 −tr
� �

2 is the interior volume of the section of
the rib ring.

Cylindrical shell volume of internal cavity (V2):

V2 ¼ π
D0

2

� �2

⋅ L−Lr⋅nð Þ þ π
D0

2
−tr

� �2

⋅Lr⋅n ð6Þ

where n is the number of circumferential stiffeners and D0 is
the inner diameter of the cylindrical shell.

Then,

V1 ¼ V2 ð7Þ

2.2 Numerical Analysis

The finite element method is a high-performance and com-
monly used numerical calculation method that can effectively
solve problems related to pre-research analysis of production.
The detailed parameters of geometries are presented in
Table 1. The nonlinear numerical analysis was conducted
using the arc length method available in ABAQUS code ac-
cording to existing specifications (Eurocode 2007; China

Classification Society (CCS) 2013). A uniform initial pres-
sure, P0 = 1 MPa, is externally applied on the outer surface
of eachmodel. A three-point constraint method was employed
to avoid rigid body motion, as illustrated in Figure 2, as fol-
lows: Uy =Uz = 0, Ux =Uy = 0, and Uy =Uz = 0. The mesh
type of the shells was a quadrilateral shell element (S4). The
numbers of three-segment spherical shell elements, cylindrical
shell elements, and rib-ring cylindrical shell elements were
approximately 24 600, 22 680, and 25 320, respectively. The
number of elements was determined using mesh density con-
vergence analysis, as reported in CCS (China Classification
Society (CCS) 2013).

The pressure shell of submersibles is mostly composed of
high-strength metallic materials having good plastic property.
Considering that the pressure shell can operate in deep-sea
environments, the material should have strong corrosion resis-
tance, high-specific strength, and high-specific stiffness;
therefore, titanium alloy (TC4) was selected as the material
for numerical analysis. Its properties are as follows: Young’s
modulus E = 110 GPa, Poisson’s ratio μ = 0.3, and yield
strength σs = 830 MPa. In linear analysis, multimodal buck-
ling problems were considered. Castro et al. indicated that
initial geometric imperfections play a crucial role in shell
buckling analyses, and linear buckling eigenmode-shaped im-
perfections are commonly used to assess the effects of initial
imperfections on the buckling of thin-walled structures
(Castro et al. 2014). Therefore, according to ENV 1993-1-6

Table 2 Critical buckling loads
and circumferential waves of the
three-segment spherical and
cylindrical shells

Buckling eigenmode Plb (MPa) (Circumferential waves number)

Three-segment spherical shell Cylindrical shell Ring-ribbed cylindrical shell

1st 52.42 (9) 5.60 (3) 18.17 (4)

2nd 52.42 (9) 5.60 (3) 18.17 (4)

3rd 52.45 (9) 8.37 (2) 19.36 (4)

4th 52.45 (9) 8.37 (2) 19.36 (4)

5th 52.45 (9) 9.17 (4) 19.62 (5)

Figure 2 FEmesh and boundary condition of the three-segment spherical
shell

Figure 3 Buckling modes of the three-segment spherical shell and two
types of cylindrical shell
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(2007; Eurocode 2007), the linear bucking eigenmode imper-
fections are introduced as initial geometric imperfections in
nonlinear analysis. The magnitude of the imperfections is set
to 5 mm which is the highest value allowed in the code.

3 Computational Results and Discussion

The load-carrying capacity of the three-segment spherical shell
was studied in detail, and the three-segment spherical shell was
compared with volume-equivalent cylindrical shells with and
without rib rings. The computational results are presented in
Table 2. The first column indicates that the linear buckling
loads Plb of the 5th-order buckling mode of the three-segment
shell varied slightly from 52.42 to 52.45 MPa. The 5th-order
buckling mode of the cylindrical shell had a considerable buck-
ling load difference. The linear buckling loads increased signif-
icantly with an increase in mode order. In the cylindrical shell,
the maximum and minimum buckling loads were 9.17 and
5.60 MPa, respectively, causing a difference of 63.81%. The
linear buckling load in the 5th-order buckling mode of the ring-
ribbed cylindrical shell was higher than that of the 5th-order
buckling mode of the cylindrical shell. The maximum buckling
load of the ring-ribbed cylindrical shell was 19.62 MPa, which
was 8.00% higher than the minimum buckling load. The buck-
ling load of the three-segment shell was higher than that of the
two types of cylindrical shells at all mode orders. The buckling
load of the three-segment shell was 2.88% higher than that of
the ring-ribbed cylindrical shell and 9.36% higher than that of
the cylindrical shell in the first order.

Figure 3 indicates that the three-segment shell buckling mode
occurred at both ends of the shell. The bucklingmode position of
the cylindrical shell was the middle of the shell, while the buck-
ling mode of the ring-ribbed cylindrical shell occurred in the
middle of one end.

The five buckling eigenmodes were determined for the
three-segment shell, and the superposition of the first three

eigenmode was used as the initial geometric imperfection.
The superposition modes were 1st + 2nd, 1st + 3rd, 2nd +
3rd, and 1st + 2nd + 3rd, as presented in Table 3. The critical
buckling loads of nonlinear buckling under the eigenmode-
shaped imperfections were considerably close, ranging from
approximately 17.09 to 17.92 MPa.

The equilibrium paths of the three-segment spherical shell under
different eigenmode-shaped imperfections are illustrated in Figure 4.
The nonlinear load increased monotonically to a maximum value
corresponding to the critical buckling load and subsequently de-
creased rapidly. For the three-segment spherical shell, the first-
order buckling eigenmode-shaped imperfection was the least
favourable imperfection among the first five-ordered buckling
modes. Moreover, the maximum buckling load of the first three-
ordered buckling superposition eigenmode-shaped imperfections
occurred at 2nd + 3rd, which was 15.557MPa, while theminimum
critical buckling load occurred at 1st + 2nd + 3rd, which was
13.539 MPa. The critical buckling loads of each of the first five-
ordered superposition eigenmode-shaped imperfections were con-
siderably lower than those of any single eigenmode-shaped imper-
fection of the first five orders,whichwere initial geometrical defects.
The superposition eigenmode-shaped defects were more damaging
than the single eigenmode-shaped imperfections.

Figure 5 shows collapse modes at the end of the equilibri-
um path. The positions of buckling failure of the three-
segment shell are approximately the same (at one end of the
shell), and no instability was observed in the middle of the
spherical shell. This destruction is similar to that of a single
spherical shell.

For the three types of shells, the equilibrium paths and
the collapse modes were essentially the same under the five
types of imperfection. Therefore, the fault path Δ = 0.1 mm
taken as an example to study the equilibrium path and
nonlinear load. Figure 6 indicates that with an increase in

Table 3 Critical buckling load of the three-segment spherical shell with
imperfections under different eigenmode shapes

Buckling eigenmode Critical buckling load(MPa)

1st 17.09

2nd 17.63

3rd 17.14

4th 17.92

5th 17.17

1st + 2nd 14.54

1st + 3rd 13.85

2nd + 3rd 15.56

1st + 2nd + 3rd 13.54

Figure 4 Nonlinear buckling equilibrium path of the three-segment
spherical shell under different imperfections
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displacement, the nonlinear load of shells initially in-
creased and then decreased, and the maximum value of
the nonlinear load was the critical point. The critical point
pressures of the three-segment spherical shell, stiffened
cylindrical shell, and cylindrical shell were 27.38, 4.84,
and 1.43 MPa, respectively. The comparison shows that
the three-segment spherical shell has the fastest downward

trend, whereas two cylindrical shells had a slower down-
ward trend. The three-segment spherical shell was more
sensitive to defects than the cylindrical shells because the
three-segment spherical shell acted as an extension of the
spherical shell and inherited its imperfection sensitivity.
The load capacity of the three-segment spherical shell
was considerably larger than that of the cylindrical and
ribbed cylindrical shells. Therefore, the stability of the
three-segment shell was highest, which was 19.2 times that
of the equivalent cylindrical shell and 5.7 times that of the
cylindrical shell.

4 Experimentation

4.1 Experimental Analysis

To verify the results of the aforementioned computation, the
three-segment spherical shell and corresponding equivalent
cylindrical and stiffened cylindrical shell scale models were
tested. Three scaled models were fabricated through rapid
prototyping by using photosensitive resin. The main compo-
nent of the resin was Future 8000 epoxy resin, which is widely
used in machinery, construction, and other industries. Its ma-
terial parameters are directly provided by the three-
dimensional (3D) rapid prototyping company, which are as
follows: Young’s modulus E = 2600 MPa, Poisson’s ratio,
μ= 0.34, and tensile strength σb = 35 MPa. Placing a support
inside during the machining process was necessary because
the shell had a closed thin wall. Therefore, the inner support
had to be removed at the opening to guarantee testing accura-
cy. The rubber was repaired at the opening to ensure that the
test models were intact before test.

Additionally, the models were scanned using a 3D scanner.
A manual tripod 3D scanner supplied by Open Technologies
was used. The parameters used are as follows: scanning range
150 mm × 115 mm × 150 mm; pixel 200 M; and accuracy
0.02 mm. After the true contours of the test models were
obtained, they were analysed using the GOM Inspect software
programme for deviation inspection and evaluation. Figure 7
presents the results. The deviation of the three-segment spher-
ical shell from perfect geometry was relatively small. The
maximum deviation was mainly concentrated at around −
0.15 mm, which means the negative deviation (shown in blue
colour in Figure 7) of the actual data obtained by 3D scan from
perfect geometry (nominal data), which indicate that actual
data lies below the nominal surface. The maximum deviation
can be attributed to a lack of manufacturing accuracy. The
maximum deviation of two types of cylindrical shells from
the perfect geometry appeared at openings, which was caused
by the presence of glue that was used for sealing. Due to the
accuracy of the 3D scanner and post-processing software sys-
tem, the scaled models can be regarded as perfect shells.

Figure 6 Nonlinear buckling equilibrium path of the three-segment
spherical and cylindrical shell with imperfections. aCylindrical shell with
and without ring rib. b Three-segment spherical shell

Figure 5 Post-buckling modes of the three-segment spherical shell under
different imperfections
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The average thickness of three models and size of ring rib,
including the length and outside diameter, were listed in
Table 4. The wall thickness of each model was measured
using PX-7 ultrasonic thickness gauge developed by Dakota
Ultrasonics Corporation, which provided accurate measure
measurements. Table 4 indicates that the wall thicknesses of
the three samples were almost equal to that of a nominal shell
(2 mm). The thickness distributions of the three test shells was
determined using the standard deviation, and their values were
near the average value, indicating that the overall thicknesses
of the three test shells were similar to the numerical value.

The test was performed to simulate the real water pressure
environment by using the self-developed deep-sea pressure
chamber (Figure 8). To ensure the accuracy of the test, the
pressure in the cabin must be zero before the test. Each test
model was immersed in a pressure chamber by using a rope
bag. To sink the shells below the surface of water, a weight
was tied to the rope bag of each shell. The pressure was grad-
ually increased through manual pressurisation. When the crisp
cracking sound was heard, the pressurisation was immediately
stopped, and the test peak data were recorded using a pressure
sensor. Their post-buckling modes were similar and acquired
the form of a local dent. These results indicated a satisfactory
repeatability.

4.2 Computational Analysis

On the basis of the scan results, the comprehensive finite ele-
ment models of samples were created and computed using
linear bifurcation analysis and the nonlinear Riks analysis

function available in Abaqus. A mesh convergence analysis
was performed for each sample. The three-segment spherical,
cylindrical, and stiffened cylindrical shells exhibited 24 247
S4 and 187 S3; 21 777 S4 and 246 S3; and 22 209 S4 and 272
S3 elements, respectively. Because the thicknesses of the
shells were evenly distributed, the mean values for shell wall
thickness were used for computations. Furthermore, the load
and boundary conditions were the same as those described in
Section 2.2, and uniform pressure was applied to the outer
surface of each model.

The equilibrium paths of three samples are illustrated in
Figure 9 and are consistent with equilibrium paths presented
in Figure 6. Moreover, comparison presented in Figure 10

Figure 7 Deviation of local radii based on the design geometry of shells

Table 4 Geometric parameters of
the three test models Species t (mm) Ring rib (mm)

tmin tmax tave tstd Lr tr

Cylindrical shell 1.986 1.774 1.925 0.047 N/A N/A

Ring-ribbed cylindrical shell 1.954 1.782 1.871 0.038 13.908 17.996

Three-sphere shell 2.022 1.726 1.971 0.059 13.809 17.888

Figure 8 Photograph of the self-developed deep-sea pressure chamber
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indicated that predicted collapse modes and experimental fail-
ure modes were similar. The local dent of the cylindrical shell
occurred at the middle of the shell, and the local dent of the
ring-ribbed cylindrical shell occurred at the middle of one end.
However, the local dent of the three-segment spherical shell
was not similar to that in the numerical result because the high
sensitivity of the spherical shell towards the imperfections
could lead to deviations from the local dent position.

A comparison of numerical and experimental critical buck-
ling pressure is presented in Table 5. The numerical critical
buckling pressure of the cylindrical shell was 0.057 MPa,
which was 0.85 times higher than the experimental collapse
pressure. The numerical critical buckling pressure levels of the
ring-ribbed cylindrical and three-segment spherical shells
were approximately 0.98–1.04 times higher than the respec-
tive experimental failure buckling pressure levels. Notably, a

bad agreement between the numerical and experimental re-
sults of cylindrical shell was obtained due to the deviation of
local radii based on the design geometry of the unstiffened
cylinder shell being larger than the other two shells, which is
shown in Figure 7. The results indicated that the critical buck-
ling pressure of the three-segment spherical shell considerably
improved compared with that of the corresponding equivalent
cylindrical shell. Future studies should focus on more precise
manufacturing technologies for multiple intersecting spherical
shells, such as numerically controlled machining.

5 Conclusions

In this study, the buckling performance levels of the three-
segment spherical, cylindrical, and ring-ribbed cylindrical shells
were investigated numerically and experimentally. The numeri-
cal results indicated that the load-carrying capacity of the three-
segment spherical shell considerably improved compared with
those of the cylindrical and ring-ribbed cylindrical shells. The
linear and nonlinear buckling load of the three-segment spherical
shell was considerably higher than that of the cylindrical and
ring-ribbed cylindrical shells; therefore, the stability of the
three-segment spherical shell was highest.

The experimental failure modes and buckling modes of the
three types of shells showed favourable consistency in the
numerical analysis. The experimental collapse modes of all
shells were consistent with the numerical analysis results.
The cylindrical shells collapsed in the middle of the shell;
the local dent positions of the ring-ribbed cylindrical and
three-spherical shells were similar; collapses were noted be-
tween the ribs and the end of the shell. The experimental
results indicated that the collapse pressure of the three-
spherical shell had the best superior performance, indicating
that its bearing capacity is substantially higher than that of the
cylindrical shell and its load-carrying capacity is approximate-
ly four times that of the ribbed cylindrical shell.

This methodology can be a valuable guideline for the
predesign of shell structures. However, some limitations of
this work must be noted. First, the influence about the open-
ings of pressure shells should be considered. A multi-segment
spherical shell with an opening structure can result in a more
complex open-cell structure than that in a complete spherical

Figure 9 Nonlinear buckling equilibrium path of the three test shell
models

Figure 10 Numerical and experimental results for the tested shell models.
a Cylindrical shell. b Ring-ribbed cylindrical shell. c Three-sphere shell

Table 5 Comparison of numerical bucking pressure with experimental
collapse pressure

Species Cylindrical
shell

Ring-ribbed cylindrical
shell

Three-sphere
shell

Pnlb(MPa) 0.057 0.186 0.682

Ptest(MPa) 0.067 0.178 0.699

Pnlb/Ptest 0.85 1.04 0.98
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shell opening. Exploring the influence of the position, num-
ber, and size of openings on the performance of the multi-
segment spherical shell structure will be difficult in further
research. Second, this study mainly investigated the initial
geometric defects based on the modality. Further research on
other defects such as local and axisymmetric defects is re-
quired to establish a perfect defect shell buckling mechanism.
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