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Abstract
The installation of plunger-type wave makers in experimental tanks will generally include a gap between the back of the wedge
and the wall of the tank. In this study, we analyze the influence of this gap on the wave making performance of the plunger using
two-dimensional (2D) CFD calculations for a range of nearly linear wave conditions and compare the results with both exper-
imental measurements and linear potential flow theory. Three wedge-shaped profiles, all with the same submerged volume, are
considered.Moreover, the generated waves are comparedwith the predictions of linear potential flow theory. The calculations are
made using the commercial ANSYS FLUENT finite-volume code with dynamic meshes to solve the Navier–Stokes equations
and the volume of fluid scheme to capture the air–water interface. Furthermore, the linear potential flow solution of Wu (J
Hydraul Res 26:481–493, 1988) is extended to consider an arbitrary profile and serve as a reference solution. The amplitude
ratios of the generated waves predicted by the CFD calculations compare well with the predictions of linear potential flow theory
for a simple wedge, indicating that viscous effects do not influence this ratio for small-amplitude motions in 2D. By contrast,
significant higher harmonic components are produced by larger amplitude motions. Also, the simple wedge is found to produce
the smallest spurious higher harmonic content in the far-field wave.
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1 Introduction

Three basic types of wavemakers (i.e., piston, flap, and plung-
er types) are used in laboratories. The most commonly used
type of wave maker is the piston type, which generates waves
through oscillatory motion in the direction of wave propaga-
tion. Most of the published studies based on viscous flow
solvers have focused on either piston-type or flap-type wave
makers (Higuera et al., 2015; Prasada et al., 2017; Dao et al.,
2018; Martínez-Ferrer et al., 2018). However, plunger-type
devices, where a floating body is oscillated vertically, are also
often used to generate waves in experimental facilities. In
contrast to piston-type and flap-type wave makers, analytical
solutions are unavailable for the plunger-type wave maker.
However, a number of numerical solutions based on both
linear potential flow theory and the Navier–Stokes equations
have been presented in the literature. Linear solutions via
eigenfunction expansion were obtained by Wang (1974) and
Wu (1988). Two-dimensional (2D) linear numerical solutions
were also obtained byWu (1991) using the boundary element
method (BEM) and by Arcari (2015) using the finite differ-
ence method. Nonlinear BEM solutions, which showed good
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consistency with the experimental measurements, were ob-
tained by Kashiwagi (1996) and Koo and Kim (2006).
Mikkola (2006, 2007) used a finite-volume Navier–Stokes
solver but neglected viscous effects. Yim et al. (2008) validat-
ed a RANS model by comparing the numerical results with
the experimental data involving wave generation by dropping
a rigid body at various heights into a 2D flume partially filled
with water. Elangovan and Lal (2008), Lal and Elangovan
(2008), and Gadelho et al. (2015) solved the Navier–Stokes
equations for a triangular plunger-type wave maker. Yeung
and Jiang (2014) investigated the shape effects on the viscous
damping and motion of a heaving cylinder using the random
vortex method. Madhi et al. (2014) applied both nonlinear and
viscous potential flow solutions using the random vortex
method to the “Berkeley wedge” profile and compared the
results with experimental measurements. Azadian-
Kharenjani et al. (2018) applied a nonlinear viscous flow solv-
er to investigate the effect of wedge angle (with volume held
constant) on the generated wave quality.

In all of the aforementioned studies, the wedge was either
placed far from the tank wall or sliding along the wall without
a gap between the back of the wedge and the tank wall. For
most real installations, there is a finite gap between the wedge
and the tank wall. One of the goals of this study is to consider
the effect of this finite gap on the resultant wave. We also
investigate the performance of two alternative profiles com-
pared with that of the simple wedge. Calculations are made
using the ANSYS FLUENT 16 CFD software with dynamic
grids near the moving wedge and the volume of fluid (VOF)
scheme to capture the air–water interface. A series of small-
amplitude conditions (wave height divided bywavelength less
than approximately 0.03) are run, and the results are compared
with the linear potential flow theory and experimental
measurements.

2 Description of the Wave Maker

In Figure 1, a 2D section of the Technical University of
Denmark (DTU) flume with the wedge wave maker is shown.

The flume at DTU where the experiments were per-
formed is 28-m long × 0.6-m wide and 0.8-m deep. The
dimensions of the wedge have been selected on the basis
of two constraints. First, the device has to generate waves
whose amplitudes approach the breaking wave limit. The
Battjes breaking wave criteria for deep-water waves state
that the maximum height of a stable wave Hmax is a func-
tion of the wavelength λ: Hmax = 0.14λ (Arcari, 2015). As
the first constraint, all breaking wave conditions should
remain inside the tank for the target range of wave periods
T. As the second constraint, all breaking wave conditions
should generate intermediate-water and deep-water waves,

which means 2πh
gT2 ≥0:05, (Arcari, 2015) where h is the

water depth and g is the gravitational acceleration.
With the aforementioned constraints, the water depth is set

to 0.65 m, the draft of the wedge is fixed to D = 0.45 m, and
the clearance value, which is equivalent to the maximum
stroke amplitude, is Smax = 0.2 m. Finally, on the basis of the
initial study of (Arcari, 2015), the wedge breadth at the free
surface is set to b = 0.225 m. Table 1 summarizes the limits of
the preliminary parameters of the wedge and waves. The
values h, b, D, and Smax are kept constant throughout the
study. λmax and λmin are the wavelengths of the longest and
shortest target frequencies, respectively. The target frequen-
cies cover an interval of intermediate-water and deep-water
waves for this tank.

Given that the wedge fills the entire width of the flume, a 2D
analysis was performed. Moreover, 2D wave theory has been
used to design the wedge and wedge motion (Arcari, 2015).

As this problem is a dynamic problem, the mesh should be
changed on the basis of the motion of the wedge. Therefore, a
dynamic mesh, which can be regenerated at each time step, is
used. To test the wedge under nearly linear wave conditions, the
frequency range of 4–12 rad/s is selected. The characteristics of
the waves and stroke amplitudes are shown in Table 2.

We will compare our calculations for these conditions with
the predictions of linear potential flow theory by considering
the ratio A/S, where A =H/2 is the far-field amplitude of the
generated wave at frequency ω. Possible nonlinear effects will
be identified through nonzero amplitude components at mul-
tiples of the fundamental frequency.

Figure 1 2D section of the wedge wave maker in the Technical
University of Denmark (DTU) flume

Table 1 Preliminary parameters of the wedge and waves (Arcari,
2015); unit, m

h b D Smax Hmax λmax λmin

0.65 0.225 0.45 0.2 0.28 3.06 0.5
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3 Mathematical Modeling

The selected range of wave conditions is in the intermediate-
water to deep-water regime where we expect viscosity and
turbulence to be of importance only in the vicinity of the
wedge. The maximum Reynolds (Re) numbers based on the
maximum velocity of the wedge in test case 8 (S×ω =
0.266 m/s) with characteristic lengths of 2S and b are 16 809
and 66 177, respectively. Comparing these with the critical Re
number of a flat plate (5 × 10e5) (Cengel and Cimbala, 2006),
it is clear that all Re numbers are less than the critical value.
Therefore, the flow field around the wedge is assumed to be
laminar. Given that the flow is assumed to be incompressible
laminar flow, the continuity and momentum equations are
expressed as follows:

∇ � V ¼ 0 ð1Þ
∂V
∂t

þ V � ∇ð ÞV ¼ −
1

ρ
∇pþ 1

ρ
∇ � 2μD
� �

þ g ð2Þ

where D is the stress tensor rate with the components:

Dij ¼ 1

2

∂Vi

∂X j
þ ∂V j

∂X i

� �
ð3Þ

and p, μ, V, and ρ are the pressure, dynamic viscosity, fluid
velocity vector, and fluid density, respectively.

Note that the dynamic condition, i.e., continuity of pressure
at the interface, is automatically implemented by the VOF
method. The kinematic condition, which states that the inter-
face undergoes convection in fluid, can be expressed in terms
of the volume fraction φ as follows (Nikseresht et al., 2008):

Dφ
Dt

¼ ∂φ
∂t

þ V � ∇ð Þφ ¼ 0 ð4Þ

where φ is a color function with a magnitude between 0 and 1
(more explanation is presented in the “Computational
schemes” section).

The motion of the wave maker mentioned previously (Wu,
1988) can be expressed as follows:

Y tð Þ ¼ Ssinωt ð5Þ
V tð Þ ¼ Sωcosωt ð6Þ
ω2 ¼ gktanhkh ð7Þ

In Eqs. (5) and (6), the terms Y, V, and S represent the
vertical displacement, velocity, and stroke amplitude of the
wave maker, respectively. The radian frequency of oscillation
is ω, and Eq. (7) expresses the linear dispersion relation relat-
ing the frequency and the wave number k = 2π/λ.

4 Numerical Procedure

In the present study, the commercial ANSYS FLUENT finite-
volume code is used to solve the Navier–Stokes equations for
the simulation of the flow field around the moving wedge and
in the flume. A second-order upwind scheme is used to
discretize the convective terms in the momentum equations,
and the SIMPLE algorithm is used to couple the pressure-
based and velocity-based equations. An explicit VOF scheme
is also used to capture the interface in a two-phase flow. A
dynamic mesh scheme is used for the moving region. The
UDF program is used to control the wave maker velocity
and stroke using Eqs. (5) and (6). For the absorption of waves,
a numerical beach is applied over the last 8 m of the flume.

4.1 VOF Scheme

In the VOF method with the geo-reconstruct scheme
(Nikseresht et al., 2005, 2009), the interface is described im-
plicitly, and the data structure that represents the interface is the
fractionφ of each cell that is filled with the reference phase, i.e.,
phase 1. The scalar field φ is often referred to as the color
function. The magnitude of φ in the cells cut by the free surface
is between 0 and 1 (0 < φ < 1) and away from it is either 0 or 1.

μ and ρ in any cell (denoted by subscript ij) can be com-
puted using φ by simply taking the volume average over the
cell as follows:

Table 2 Test wave conditions

Test case No. T (s) ω (rad/s) λ (m) 2S (m) H
λ

� �
Linear theory

1 0.57 11.023 0.5 0.007 0.0177

2 0.70 8.976 0.76 0.007 0.01033

3 0.83 7.57 1.08 0.007 6.38e-3

4 0.97 6.477 1.45 0.047 0.02738

5 1.10 5.712 1.84 0.047 0.0185

6 1.23 5.108 2.25 0.047 0.0129

7 1.37 4.586 2.65 0.087 0.01756

8 1.50 4.1887 3.06 0.127 0.0198
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ρij ¼ φijρL þ 1−φij

� �
ρa ð8Þ

μij ¼ φijμL þ 1−φij

� �
μa ð9Þ

where subscripts L and a denote liquid and air, respectively.
The data of φ are given at the beginning of the com-

putational cycle. However, no approximation of the inter-
face position is known. Finding the interface is implicit
because one needs to invert the data of φ to determine the
approximate interface position. In other words, an algo-
rithm for interface reconstruction is needed (Nikseresht
et al., 2009).

4.2 Dynamic Mesh Update

A dynamic mesh layering and a sliding mesh are used to
regenerate the mesh in the dynamic zone. These schemes are
explained briefly as follows:

In the dynamic mesh layering method, dynamic layering of
prismatic (hexahedral and/or wedge) mesh zones can be uti-
lized to add or remove layers of cells adjacent to a moving

boundary on the basis of the height of the layer adjacent to the
moving surface. The layer of cells adjacent to the moving
boundary is split into two layers or merged with the layer of
cells next to it on the basis of the height of the cells.

In the sliding mesh method, two or more cell zones are
used. Each cell zone is bounded by at least one “interface
zone” where it meets the opposing cell zone. The interface
zones between adjacent cell zones are associated with one
another to form a “grid interface.” These two cell zones will
move relative to each other along the grid interface. The cell
zones slide, i.e., rotate or translate, relative to each other along
the grid interface in discrete steps during the calculation.

4.3 Mesh Generation and Grid Independence Check

We first consider the case where there is no gap between the
wedge and the wall of the tank. The domain depicted in
Figure 2 is divided into three regions, a moving zone with
both structured and unstructured meshes that moves along
with the wedge, a dynamic layering zone above and below
the moving zone with a structured mesh, and a stationary zone
far from the wedge with a structured mesh. Moreover, there is

Figure 2 Zones and mesh system around the wedge

Figure 3 Close-up of the moving and sliding mesh regions
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an interface between stationary and moving zones. Layering
and sliding mesh schemes are used in the dynamic layering
zone and the interface, respectively. A close-up of the mesh
near the wedge with the moving zone is shown in Figure 3.
This entire mesh system moves with the wedge. After estab-
lishing a suitable mesh system, we confirm the mesh indepen-
dence of the calculations for test case 1 in a real installation
with a 1 cm gap to determine the number of nodes that is
sufficient to obtain a good result for each wave number or
frequency. The A/S ratio (where A is the wave amplitude and
S is half of the stroke length) for the generated wave is calcu-
lated after 50 time periods to enable the domain to reach a
steady state. Harmonic analysis of the computed wave eleva-
tion signals over three wavelengths starting from a distance of
x = 2h from the wedge where the evanescent mode effects are
negligible (Keaney et al., 2014) is conducted via least squares
fitting to a sum of sinusoids at the fundamental frequency and
its first four higher harmonic components. The value A repre-
sents the average fundamental harmonic amplitude over the
test region. Possible nonlinear effects can be evaluated
through the amplitudes of the higher harmonic components.
The results are shown in Table 3 for different grid resolutions.
Notably, no significant changes in the A/S ratio for different
resolutions are observed. Therefore, we conclude that at least

100 grid points per wavelength and 11 grid points per wave
height are a good mesh resolution for all calculations.

Figure 4 shows the wave elevation versus position
for test case 7 with 100 nodes per wavelength (t7-
Lambda = 100) and 200 nodes per wavelength (t7-
Lambda = 200), and the results of the two calculations
are consistent.

5 Comparison With Linear Potential Flow
Theory Without a Gap

To validate the proposedmethod and schemes, the present results
without a gap are compared with linear potential flow solutions
obtained using the semi-analytical method ofWu (1988) and the
numerical solutions obtained using the OceanWave3D (OW3D)
finite difference method solver (Hicks, 2017). The average A/S
ratio for the three solutions is plotted versus the wave angular
frequency in Figure 5 and tabulated in Table 4. The present A/S
ratios show a maximum difference of 4% compared with the
linear theory. Therefore, the results are consistent with this theo-
ry. The theoretical wave elevation versus the position in test case
5 is compared with the present calculations shown in Figure 6
which also shows good consistency.

Table 3 Grid independence check

Case No. Mesh system Nodes per
wavelength

Nodes per
wave height

Amplitude ratio Percentage of
difference

Total grid No. Time consumption (s) for 1 T
on 16 cores (Xeon-E5-2660-V3)

1 1 50 7 1.2285 489 547 4900

1 2 100 11 1.27 4.4 839 621 7000

1 3 150 11 1.275 0.39 1 161 367 8000

1 4 200 15 1.278 0.234 1 575 711 14 000

Figure 4 Grid independence at angular frequency of 4.587

Figure 5 Comparison of the wave amplitude to stroke amplitude ratio in
the present work with the linear theory of Wu (1988) and OW3D (Hicks,
2017)
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6 Effect of the Gap Behind the Wedge

We now investigate the effect of the gap between the
flume wall and the back of the wedge on the performance
of the wave maker. Therefore, the 1 cm gap located at the
back of the wedge is divided into 3, 6, and 20 parts to
ensure a grid-independent result when including this re-
gion. Changing the resolution of the mesh shows only a
slight effect on the wave elevation. Table 5 shows the
comparison of the A/S ratio of the wedge with and without
a gap in all test cases and indicates that the maximum
difference of the A/S ratio is approximately 3%. Figure 7
also includes the experimental results of Hicks (2017).
These experimental results were obtained in a narrow
flume with a width of 0.6 m. Figure 7 shows that the
results are consistent with the experimental measurements
at low frequencies but begin to deviate at high frequencies
where they instead become consistent with the potential

flow calculations. We assume that this discrepancy at high
frequencies is due to 3D effects, in particular the energy
loss due to vorticity generation in the small gaps between
the ends of the wedge and the side walls. 3D calculations
currently in progress should provide evidence to either
support or refute this supposition.

To better understand the flow in the gap, we consider
the velocity vector of test case 6 for the mesh with the
highest resolution and a period of T = 1.23 s. The region
near the bottom of the wedge, at four instances of time
over one period, is shown in Figures 8 and 9. Although
the vorticity magnitude at the bottom region of the
wedge with a gap is relatively higher than that of the
wedge without a gap, this does not reduce the energy of
the generated wave, as the wave height is the same with
and without a gap. Given that both of these calculations
are also quite consistent with the predictions of linear
potential flow theory, we can conclude that the narrow
gap does not extract energy from the generated wave.
This finding indicates that the energy required to

Table 4 Comparison of the
amplitude ratios in the present
work with the theory of Wu
(1988)

Case
No.

T
(s)

λ
(m)

Steepness,
Wu (1988)

Steepness,
present
work

Amplitude
ratio, Wu
(1988)

Amplitude
ratio, present
work

% difference of
the amplitude
ratio

1 0.57 0.5 0.0177 0.01714 1.265 1.29 2.0

2 0.7 0.76 0.1033 0.01039 1.122 1.1492 2.42

3 0.83 1.08 6.38e-3 0.00614 0.985 0.944 4.16

4 0.97 1.45 0.02738 0.266 0.845 0.839 0.71

5 1.10 1.84 0.0185 0.0183 0.724 0.727 0.41

6 1.23 2.25 0.0129 0.01286 0.6217 0.6215 0.032

7 1.37 2.65 0.01756 0.01665 0.535 0.5294 1.046

8 1.50 3.06 0.0198 0.01924 0.47688 0.4672 2.02

Figure 6 Comparison of the wave elevation in the present work with the
linear theory of Wu (1988) for a wave angular frequency of 5.712

Table 5 Comparison of the wave amplitude ratio for the wedge with
and without a gap

Case
No.

T
(s)

λ
(m)

Wave amplitude
ratio of the wedge
with a 1 cm gap

Wave amplitude
ratio of the wedge
without a gap

Percent of
wave
height
increase

1 0.57 0.5 1.27 1.29 1.57

2 0.7 0.76 1.1354 1.1492 1.215

3 0.83 1.08 0.9344 0.944 1.027

4 0.97 1.45 0.836 0.839 0.36

5 1.10 1.84 0.719 0.727 1.112

6 1.23 2.25 0.6114 0.6215 1.652

7 1.37 2.65 0.5111 0.5294 3.6

8 1.50 3.06 0.462 0.4672 1.126
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generate the vorticity comes from a slight increase in
the required force applied to the wedge.

We also consider the effect of increasing the size of
the gap between the wedge and the wall to 50 cm.
Figure 10 shows the wave elevation in front of the
wave maker for test case 2 (high angular frequency)
and test case 6 (moderate angular frequency). The dif-
ference between the generated wave heights with and
without a large gap is approximately 3.5% in test case
2 and 12.5% in test case 8. Clearly, a large gap enables
the leakage of wave energy behind the wedge, and this
leakage increases with the increase in the wavelength.
For high-frequency wedge motions, the generated wave
behind the wedge has a small amplitude. However, for
long waves (low frequency), the wave behind the wedge
becomes significant and has a considerable effect on the
generated wave.

Figure 7 Comparison of the wave amplitude to stroke amplitude ratio in
the present work with a 1 cm gap (real installations) and without a gap
behind the wedge with the linear theory of Wu (1988) and the experi-
mental measurements (Hicks, 2017)

(a) T )b(4/ T/2

(c) 3T )d(4/ T

Figure 8 Velocity vector (m/s) at four instances of time over one period after 30 s (T = 1.23 s).
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Figure 11 shows an envelope plot of the surface eleva-
tion both behind and in front of the wedge for test case 4.
Notably, the 0 value in the x-axis indicates that the
starting point of the gap and the wedge position is be-
tween 0 and 0.25 on the x-axis. From this, we observe
that significant motion is induced in the gap, which ap-
pears to consist mostly of the piston mode at the forcing
frequency together with the first sloshing mode in the gap.
This leads to significant irregularity in the wave generated
in front of the wedge, which is depicted in Figure 12. This
is clearly an important nonlinear phenomenon, which
needs further investigation to be fully understood, but it
shows the importance of keeping the gap behind the
wedge as small as possible.

7 Effect of Wedge Shape

In this section, the effect of wedge shape on the generation of
the wave is investigated. Three different 2D geometries as
possible shapes for the floating body are shown in Figure 13.

In all wedges, the initial submerged volume should be the
same, and the draft of the wedge D is set equal to 0.45 m. In
terms of these two fixed parameters, the hyperbolic sine curve
wedge is defined as follows:

X yð Þ ¼ b0 sinh a yþ Dð Þð Þ
sinh aDð Þ

b0 ¼ Δ a sinh aDð Þ
cosh aDð Þ−1ð Þ

ð10Þ

(a) T )b(4/ T/2

(c) 3T )d(4/ T

Figure 9 Velocity vector (m/s) at four instances of time over one period after 30 s for the wedge without a gap (T = 1.23 s)
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where Δ is the initial submerged volume of the triangular
wedge and a ¼ π

D.
Similarly, the Berkeley wedge (Madhi et al., 2014) is de-

fined as follows:

X yð Þ ¼ bB A
yþ D
D

� �2

þ B
yþ D
D

� �3

þ C
yþ D
D

� �4
 !

A ¼ 3þ C;B ¼ −2−2C;C ¼ 3þ 6d*
� �

6 d* þ 1
� �2−6 d*−5

� �
ð11Þ

where bB is the beam that has the same volume as the trian-
gular wedge and d∗ = − 0.335.

The two new wedges are sketched in the Gambit soft-
ware, and a mesh with approximately the same resolution
as the triangular wedge is generated, as shown in

(a) With an angular frequency of 8.976 

(b) With an angular frequency of 5.108

Figure 10 Comparison of wave height with different gaps behind the
wedge

Figure 12 Comparison of wave shapes with different gaps behind the
wedge for an angular frequency of 4.188

Figure 11 Envelope plot of the surface elevation both behind and in front
of the wedge for test case 4

(a) Triangular wedge (b) Berkeley wedge (c) Hyperbolic sine curve 

wedge

Figure 13 Three different wedge shapes for wave generation

109A H Nikseresht H B Bingham: A Numerical Investigation of Gap and Shape Effects on a 2D Plunger-Type Wave Maker



Figures 14 and 15. In this part, only test cases 2 and 6,
i.e., one high-frequency case and one low frequency
case, respectively, were solved using the two new
wedges. The computed A/S ratio is compared with the
value predicted by the potential flow modal expansion
method of Wu (1988), which has been extended to solve
for arbitrary body shapes (Fig. 16). Figure 16 shows a
good consistency between the average amplitude ratio of
the wave generated by the Berkeley wedge and the po-
tential flow result. In the case of the hyperbolic sine
wedge, high-amplitude waves are generated, which do
not match the linear theory at all.

Figures 17 and 18 show the wave elevation versus
position for the two wedges in test case 6. In both cases,
some irregularities in the waves are observed. However,
the shape of the waves for the Berkeley wedge is better

Figure 14 Generated mesh around the hyperbolic sine wedge

Figure 15 Generated mesh around the Berkeley wedge

Figure 16 Comparison of theory of Wu (1988) with the present work for
the hyperbolic sine and Berkeley wedges
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than that for the hyperbolic sine wedge. To further inves-
tigate the flow field, the velocity vectors in both cases are
shown in Figure 19 for test case 6. Notably, for the hy-
perbolic sine shape, the velocity profile in the air region
between the free surface and the wedge is complex, and
some large vortices are generated with the velocity of the
air near the free surface reaching nearly 6.5 m/s. This
evidently has a strong effect on the shape of the wave.
For the Berkeley wedge, the maximum velocity of the air
is approximately 0.6 m/s, which does not affect the free

surface shape. Evidently, estimating the A/S ratio and
deriving a transfer function for the hyperbolic sine wedge
are difficult tasks. The high gradient of the profile at the
intersection with the free surface produced by this shape
does not seem to be a good choice for such a wave
maker.

For a closer investigation of the flow field in the gap behind
each wedge, the velocity vector at the bottom region of the
wedges at four instances of time over one period are sketched
in Figures 20 and 21 for test case 6 with the time period of T =
1.23 s. Although the velocity profile is more complex at the
bottom region of the Berkeley wedge than that of the triangu-
lar wedge, it can be observed that, for both Berkeley wedge
and hyperbolic sine wedge (as well as for the triangular

(b) Berkeley wedge

(a) Hyperbolic sine wedge

Figure 19 Velocity vectors on the free surface for different wedge wave
makers in test case 6

Figure 18 Wave elevation versus position for the Berkeley wedge in test
case 6

Figure 17 Wave elevation versus position for the hyperbolic sine wedge
in test case 6

111A H Nikseresht H B Bingham: A Numerical Investigation of Gap and Shape Effects on a 2D Plunger-Type Wave Maker



wedge), the flow in the gap has no significant effect on the far-
field wave height.

For the triangular wedge, the same test cases (Table 2)
were run again with the Berkeley wedge wave maker. The
first harmonic A/S ratio is calculated and compared with
the results of linear potential flow theory shown in
Figure 16. Compared with the results for the simple
wedge, more significant higher harmonic components

were detected in the waves generated by the Berkeley
wedge at lower frequencies with nonlinearity that is
slightly higher than that at higher frequencies (see
Table 2). One example of this is shown in Figures 22
and 23. To extract the harmonic amplitudes, we per-
formed least squares fitting to a steady-state portion of
the time series at three locations, i.e., x = 5, 10, and
15 m. Fitting is performed using the sum of the sine and

(a) T )b(4/ T/2

(c) 3T )d(4/ T

Figure 20 Velocity vector (m/s) for test case 6 at four instances of time over one period after 30 s for the Berkeley wedge
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cosine components at the fundamental frequency and the
first four multiples of the fundamental frequency. We de-
termined that this is a more robust and accurate method of
extracting the harmonic components than using the FFT
because the FFT is sensitive to slight errors in the period-
icity of the analyzed signal. As shown in Figure 23, the
second and third harmonic components are significant for
the Berkeley wedge profile, but all of the harmonic com-
ponents are nearly constant over the test section. However, the

average first harmonic A/S ratios are still consistent with the
theory, as shown in Figure 16.

8 Effect of a Large Stroke on the Wave Shape
for the Berkeley Wedge

Finally, we consider the effect of a large stroke on the
generated wave shape. Four stroke ampli tudes

(a) T )b(4/ T/2

(c) 3T/4 )d( T

Figure 21 Velocity vectors (m/s) for test case 6 at four instances of time over one period after 30 s for the hyperbolic sine wedge
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corresponding to four different steepness values based
on linear theory were applied to test case 4, as shown
in Table 6. The average first harmonic A/S ratio and the
average steepness of these calculations are compared
with the results of linear theory, as shown in Table 6.
Notably, for all stroke amplitudes, the average linear A/
S ratio is consistent with the results of linear theory.
Figure 24 shows the shape of the waves for each stroke,
and the level of higher harmonic components increases
with the wave steepness. With the decrease in the wave
steepness, the wave shape tends toward a regular sinu-
soidal shape. However, as noted previously, the level of
higher harmonic component generation tends to be larg-
er for the Berkeley wedge than for the simple wedge,
indicating that a simple wedge shape may be a better
choice in practice.

(a) Berkeley wedge

(b) Simple wedge

Figure 23 Comparison of the simple and Berkeley wedge harmonic
components

Figure 24 Wave shapes in test case 4 with lambda equal to 1.45 m and
different steepness values

Table 6 Comparison of the A/S ratio at different steepness values in test
case 4 with lambda equal to 1.45 m

Test case
4

Total
(m)

H
λ

A
S

Wu
0
s

theory
Present
work

Wu
0
s

theory
Present
work

S0 0.047 0.0342 0.0341 1.058 1.09

S1 0.028 0.02042 0.02048 1.058 1.068

S2 0.019 0.01388 0.01367 1.058 1.061

S3 0.0145 0.0105 0.0106 1.058 1.072

Figure 22 Comparison of the wave shapes for the Berkeley and simple
wedge wave makers in test case 8
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9 Conclusion

The ANSYS FLUENT finite-volume code is used to solve the
Navier–Stokes equations for simulating the flow around a
plunger-type, wedge-shaped wave maker with a gap between
the wedge and the tank wall. An explicit VOF scheme is used
to capture the interface in a two-phase flow. The effect of the
gap on the generated wave elevation is investigated, and the
smallest possible gap behind the wedge is determined to create
the best quality waves.

In addition to the plane triangular wedge, two alternative
profiles were tested. For the Berkeley wedge profile, good
consistency with linear potential flow theory is observed for
the first harmonic amplitude ratio of the far-field wave.
However, for the hyperbolic sine wedge shape, high-
amplitude waves are generated, which do not match the linear
theory at all.

Large-amplitude motions of both the simple and Berkeley
wedge profiles are also tested. The average first harmonic
amplitude ratios of the waves for these cases are also consis-
tent with the linear theory. However, higher harmonic gener-
ation is observed to increase more rapidly with increasing
stroke amplitude for the Berkeley wedge than for the simple
wedge, suggesting that the simple wedge may be a better
choice in practice.
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