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Abstract
This study aims to investigate the nonlinear added mass moment of inertia and damping moment characteristics of large-
amplitude ship roll motion based on transient motion data through the nonparametric system identification method. An inverse
problem was formulated to solve the first-kind Volterra-type integral equation using sets of motion signal data. However, this
numerical approach leads to solution instability due to noisy data. Regularization is a technique that can overcome the lack of
stability; hence, Landweber’s regularization method was employed in this study. The L-curve criterion was used to select
regularization parameters (number of iterations) that correspond to the accuracy of the inverse solution. The solution of this
method is a discrete moment, which is the summation of nonlinear restoring, nonlinear damping, and nonlinear mass moment of
inertia. A zero-crossing detection technique is used in the nonparametric system identification method on a pair of measured data
of the angular velocity and angular acceleration of a ship, and the detections are matched with the inverse solution at the same
discrete times. The procedure was demonstrated through a numerical model of a full nonlinear free-roll motion system in still
water to examine and prove its accuracy. Results show that the method effectively and efficiently identified the functional form of
the nonlinear added moment of inertia and damping moment.
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1 Introduction

In the shipbuilding and design industry, the ship dynamics and
stability are important design principles that consider the pose

and motion characteristics, including capsizing, of ships. Ship
motions have six modes or degrees of freedom (i.e., surge,
sway, heave, pitch, roll, and yaw). The roll mode has the
greatest impact to the capsizing of ships. Most accidents and
casualty losses occur due to the lack of understanding the
nonlinearity problem of the roll motion system that causes loss
of stability. Generally, the prediction methods of roll motion
are used as the bases of the equation of motion (EOM) that is
employed for determining the response of the roll mode. The
EOM consists of the inertia, damping, restoring, and external
load F (force or moment) terms, each term performing linear
or nonlinear functions. The nonlinear system has more accu-
racy than the linear system. Hence, the prediction of the non-
linear roll motion system has received attention nowadays.
The correction and accuracy of roll prediction depend on the
coefficient values or functions of the EOM.

In recent years, many researchers have examined nonlinear
characteristics of ship roll motion through experiments and
mathematical modeling. For example, Cotton and Spyrou
(2001) studied the nonlinear behavior of roll mode and
capsizing via experiments. Wassermann et al. (2016)
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proposed an estimation method of ship roll damping of the
decay and harmonic excited roll motion technique for a
panamax container ship. Oliva-Remola et al. (2018) proposed
an estimation method of damping through internally excited
roll motion tests. Haddara and Wu (1993) proposed a param-
eter identification method of nonlinear roll motion in random
seas. Taylan (1999) found the solution of the nonlinear roll
model by a generalized asymptotic analysis. Jang et al.
(2011b), Kianejad et al. (2019), and Irkal et al. (2019) pub-
lished articles about the prediction of ship roll damping mo-
tion via computational fluid dynamics method. Mancini et al.
(2018) published Verification and validation of numerical
modeling of DTMB 5415 roll decay. Sathyaseelan et al.
(2017) introduced an efficient Legendre wavelet spectral
method to the ship roll motion model to investigate nonlinear
damping coefficients. Lastly, Jang et al. (2009b) established a
novel procedure to identify the functional form of nonlinear
restoring forces in a nonlinear oscillatory motion of a conser-
vative system.

Nowadays, the identification of nonlinear system methods
has received great attention from many researchers. It has
been applied to various branches of science and engineering,
particularly in vibration and motion analysis field. The main
objective of this method is to obtain a mathematical model
based on the requirement of measured data. However, the
related studies only considered the nonlinear restoring force
or damping force or the simultaneous identification of both,
whereas some studies proposed a simultaneous identification
method of nonlinear damping and excitation force character-
istics (Jang et al., 2011a; Jang, 2013).

Some identification methods for nonlinear restoring force
were presented by Masri et al. (1993), Chassiakos and Marsi
(1996), and Liang et al. (1997, 2001), who preferred identifi-
cation based on neural networks. Spina et al. (1996) preferred
the nonlinear system identification method from transient data
using the Gabor transform based on the application of the
Hilbert transform. Moreover, Jang et al. (2009b) proposed a
novel method for the nonparametric identification of nonlinear
restoring forces in nonlinear vibrations from noisy response
data based on the inverse problem. For damping identification
only, Iourtchenko and Dimentberg (2002) proposed a proce-
dure for the identification of the damping characteristic from
measured stationary responses based on the stochastic averag-
ing method, and Jang et al. (2010a) presented a recovering
method for the functional form of nonlinear roll damping with
a system identification method using measured response data
from a real free-roll decay experiment. Other proponents of
the damping identification method are Mohammad et al.
(1992), Lazan (1968), Naprstek (1999), and Jang et al.
(2010b). The nonlinear identification method can simulta-
neously identify two force terms of EOM. For instance, Jang
(2011) proposed a nonparametric simultaneous identification
of the nonlinear damping and restoring characteristics. Jang

et al. (2011a) formulated a simultaneous identification method
of the nonlinear damping and external harmonic excitation
characteristics. Other authors who mentioned the system
identification method are Jang et al. (2011b) and Park et al.
(2014).

Despite these studies, nobody has examined the simulta-
neous identification of nonlinear inertia and damping terms
based on inverse formalism with measured free decay re-
sponse data. In fact, the roll motion of the floating body of a
single degree of freedom (SDF) in free induction decay con-
sists of acceleration, damping, and restoring moment terms.
The nonlinear restoring and damping moments are upon a hull
form that functions with the heel angle and angular velocity,
respectively. However, the moment due to mass moment of
inertia that functions with angular acceleration includes the
mass moment of inertia of a floating body and added mass
moment of inertia. The added mass moment of inertia is a
constant value that is determined by logarithmic decrement
(conventional method). Kianejad et al. (2019a, b) discovered
the nonlinear behavior of added mass moment of inertia.
These discoveries motivated the objective of this study.

The restoring moment can be identified through inclining
tests or calculations. The two unknown load functions are
added inertia and damping coefficients, and they are presented
in this paper based on an inverse problem (Massachusetts
Institute of Technology, 2002). The inverse problem seeks
to solve an integral equation, which is transformed from non-
linear second-order differential equation and is equivalent to
the Volterra-type integral equation of the first kind (Abdul-
Majid, 2011). Generally, integral operators are stable, whereas
differential operators are unstable. Hence, regularization has a
crucial role to solve ill-posed problems, such as numerical
instability. In this study, Landweber’s regularization method
was used to suppress the instability (Qinian, 2011) and the L-
curve criteria to determine the optimal solution of the iteration
number for the identification.

For the identification example, the proposed procedure was
applied to a nonlinear differential equation of the ship roll
motion. The numerical experiment reveals the workability of
the proposed method for identifying a functional form of both
the nonlinear damping and added mass force in a free-roll
decay motion.

2 Principles and Theory

To determine a ship roll motion characteristic through the
nonparametric identification method, we have to first under-
stand the basics of ship motions and their governing equation
(EOM). In reality, a ship simultaneously moves in six direc-
tions in a seaway (Volker, 2000), as shown in Figure 1.
However, finding all motion characteristics is difficult.
Therefore, determining only one direction, namely, SDF,
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helps reduce the complexity and difficulty. Second, the EOM
of SDF is transformed as an integral equation, which has an
unknown variable within an integral. Third, the unknown var-
iable is solved via inverse problem formalism and stabilized
by Landweber’s regularization method. The optimal solution
is chosen through the L-curve criterion. Finally, the results of
the zero-crossing detection technique of measured data are
compared with other solutions to identify the added mass mo-
ment of inertia and damping moment and then their nonlinear
function formulated.

2.1 Ship Rolling and Its Governing Equation

Figure 2 shows an illustration of ship roll motion. It involves
restoring moment, damping moment, and moment due to
mass moment of inertia that functions with roll angle θ, angu-

lar velocity θ̇, and acceleration
::
θ, respectively. Normally, a

small roll angle of less than 7°–8° (Anthony, 2008) is a linear
system. However, in a real seaway, the roll angle should be
higher and should have a nonlinear roll motion behavior.

The nonlinear rolling system is governed by a nonlinear
EOM that is applied from ordinary differential equation
(ODE), which is widely used in the ship motion field.

I
::
θþ D θ̇

� �
þ R θð Þ ¼ M ext ð1Þ

where I
::
θ is the nonlinear moment due to mass moment of

inertia function, D θ̇
� �

is the nonlinear damping moment

function, R(θ) is the nonlinear restoring moment function,
and Mext is the external moment function. I is composed of
the mass moment of inertia of Ixx and added mass moment of
inertia of the ship Ixxa

::
θð Þ. The addedmassmoment of inertia is

functioned with
::
θ because it easily identifies and formulates a

recovery function.

I ¼ I xx þ Ixxa
::
θ
� �� � ð2Þ

The function of the restoring moment of a ship can be

rewritten in the form GZ θð Þ or, as shown in Eq. (3).

Accordingly, GZ θð Þ is formulated from the GZ curve in
Figure 3 by the curve fitting method with a polynomial func-
tion. Moreover, Δ is a ship displacement.

R θð Þ ¼ GZ θð Þ ¼ ΔGM θð Þsinθ ð3Þ

By substituting Eqs. (2) and (3) into Eq. (1), the governing
equation becomes

Ixx þ Ixxa
::
θ
� �� � ::

θþ D θ̇
� �

þΔGZ θð Þ ¼ M ext ð4Þ

This study considers the free-roll decay motion method;
thus,Mext = 0. By rearranging Eq. (4), the governing equation
becomes

Ixx
::
θþ kθ ¼ − Ixxa

::
θ
� � ::

θþ D θ̇
� �

þΔGZ θð Þ
h i

þ kθ ð5Þ

where kθ is the dummy restoring force, which is added to both
sides of Eq. (5), and k is the dummy restoring coefficient
value, which is an arbitrary constant value. Let us define

Figure 1 Modes of ship motion

Figure 2 Instantaneous ship roll motion Figure 3 Example of a GZ curve versus the heel angle θ
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F tð Þ ¼ − Ixxa
::
θ
� � ::

θþ D θ̇
� �

þΔGZ θð Þ−kθ
h i

ð6Þ

and substitute Eq. (6) into Eq. (5); hence, the governing equa-
tion becomes Eq. (7), with the initial values in Eq. (8).

Ixx
::
θþ kθ ¼ F tð Þ ð7Þ

θ 0ð Þ ¼ α; θ̇ 0ð Þ ¼ β ð8Þ

Base on the constant of variation concept, the solutions of
Eq. (7) can be written as

θ ¼ v1θ1 þ v2θ2 ð9Þ
and

θ̇ ¼ v1 θ̇1 þ v2 θ̇2 ð10Þ

θ1 and θ2 in Eq. (9) are the homogenous solution of Eq. (7),
and v1 and v2 are the unknown variables. By differentiating
Eq. (9), we can obtain

θ̇ ¼ v̇1θ1 þ v1 θ̇1
� �

þ v̇2θ2 þ v2 θ̇2
� �

ð11Þ

Comparing Eqs. (10) and (11) yields the first condition on
v1 and v2:

v̇1θ1 þ v̇2θ2 ¼ 0 ð12Þ

Substituting Eqs. (9) and (10) into Eq. (7) yields the second
condition on v1 and v2:

v̇1 θ̇1 þ v̇2 θ̇2 ¼ F
Ixx

ð13Þ

Equations (12) and (13) are linear equations for v̇1 and v̇2,
whose solutions are as follows:

v̇1
v̇2

� �
¼ θ1 θ2

θ̇1 θ̇2

� 	−1 0
F tð Þ
IxxW

( )
¼ F tð Þ

I xxW
−θ2
θ1

� �
ð14Þ

where W ¼ θ1 θ̇2−θ̇1θ2 is called the “Wronskian.” The inte-
gration and substitution of Eq. (14) into Eq. (7) yield the
integral equation form called “the Volterra-type integral equa-
tion of the first kind.”

θ tð Þ ¼ α
μ
θ1 tð Þ þ β

ν
θ2 tð Þ

þ ∫
t

0

θ1 τð Þθ2 tð Þ−θ1 tð Þθ2 τð Þ
mW

F τð Þdτ ð15Þ

where θ1 and θ2 are chosen to ensure that they satisfy

Ixx
::
θ1 þ kθ1 ¼ 0; θ1 0ð Þ ¼ μ; θ̇1 0ð Þ ¼ 0; Ixx

::
θ2 þ kθ2

¼ 0; θ2 0ð Þ ¼ 0; θ̇2 0ð Þ ¼ ν ð16Þ

where the values of μ and ν are set to be a unit that make the
coefficients of first and second terms in the right-hand side of
Eq. (15) still equal to initial values as follows: μ = ν = 1 Eq. (8).
Thus, the harmonic solutions of Eq. (16) are

θ1 ¼ cos ωtð Þ
θ2 ¼ 1

ω
sin ωtð Þ ð17Þ

where ω ¼
ffiffiffiffiffi
k
Ixx

q
is the natural frequency that is a known value.

2.2 Integral Equation

To identify the two unknown quantities Ixx
::
θð Þ and D θ̇

� �
that

are embedded in F(t), Eq. (15) requires the measured system

response data, where θ(t) and θ̇ tð Þ and its initial conditions
follow Eq. (8). For a systematic identification, the method
requires a mathematical model that relates the response data
to the known variables. Thus, rearranging Eq. (15) to Eq. (18)
(Jang et al., 2010a; Jang, 2011) is the formulation for solving
F

θ tð Þ−αθ1 tð Þ−βθ2 tð Þ ¼ ∫t0K t; τð ÞF τð Þdτ ð18Þ
where

F τð Þ ¼ − Ixxa
::
θ
� � ::

θþ D θ̇
� �

þΔGZ θð Þ−kθ
h i

ð19Þ

and kernel K is defined as

K t; τð Þ ¼ θ1 τð Þθ2 tð Þ−θ1 tð Þθ2 τð Þ
mW

ð20Þ

The left-hand side of Eq. (18) is defined with a new vari-
able, which is a known value from measured data and was
called pseudo-displacement by Jang et al. (2011a):

η tð Þ≡θ tð Þ−αθ1 tð Þ−βθ2 tð Þ ð21Þ

Equation (18) is rewritten as

η tð Þ ¼ ∫t0K t; τð ÞF τð Þdτ ð22Þ

or can be rewritten in a symbolic form as

η ¼ L Fð Þ ð23Þ
where L is the linear integral operator (Jang et al., 2010b):

L Fð Þ ¼ ∫t0K t; τð ÞF τð Þdτ ð24Þ

20 Journal of Marine Science and Application



Equation (18) defines an inverse problem for the simulta-

neous identification of Ixx
::
θð Þ and D θ̇

� �
. It suffices to prove

that its null space is trivial: If θ −αθ1 − βθ2 = 0, then F = 0.
The proof is the same as that in Jang et al. (2009a) and shows
that the equation has a unique solution.

2.3 Solving F by Landweber’s Regularization Method

According to the integral equation mentioned above, the un-
known F can be calculated under the assumption that η is a
continuous function on the time domain, but in fact, the

measured data are discrete data: The data are sampled in each
time level and have noise. Thus, the noisy data cause the ill-
posed problems, the integral equation that makes their solu-
tions lack stability: a small amount of noisy data may amplify
a large noisy solution error.

To fix the ill-posed problems, regularization (a stabiliza-
tion) is used to inhibit the instability. At present, many regu-
larization methods have been used to fix ill-posed problems;
the present study has chosen Landweber’s regularization
method, which is the simplest iterative method. The Moore-
Penrose generalized solution (Jang, 2011; Ross, 2014) has to
satisfy

L* L Fð Þf g ¼ L* ηð Þ ð25Þ
where L is an integral operator and L∗ denotes the adjoint
operator of L. When a positive constant λ is multiplied to both
sides of Eq. (25), it becomes

F ¼ F−λL* L Fð Þf g þ λL* ηð Þ ð26Þ
and formulated to the iterative method of Landweber’s regu-
larization as

F j ¼ F j−1−λL* L F j−1
� �� �þ λL* ηð Þ; j ¼ 1; 2;… ð27Þ

The number of iterations and value of λ affect the solution
accuracy. The consideration about an optimal number of iter-
ations is decided through the L-curve criterion (Hansen,
2014), which is a stopping rule and is discussed in more detail
in “Numerical model example.”

2.4 Identifying Ixx(θ̈) and D(θ
.
) through the Integral

Equation

The two unknowns, i.e., a nonlinear added mass moment of

inertia Ixx
::
θ tð Þð Þ and nonlinear damping moment D θ̇ tð Þ

� �
, can

be determined through the inverse problemswhich is determined
through Landweber’s regularization method. Again, the inverse
solution F(t)inv is equivalent to the right-hand side of Eq. (5):

F tð Þinv ¼ − Ixxa
::
θ tð Þ� � ::

θ tð Þ þ D θ̇ tð Þ
� �

þΔGZ θ tð Þð Þ−kθ tð Þ
h i

ð28Þ

The pseudo-restoring moment is defined as

Fr tð Þ ¼ ΔGZ θ tð Þð Þ−kθ tð Þ ð29Þ

The pseudo-restoring moment is the known function that is
comprised of the nonlinear restoring and dummy moments.
The restoring moment can be identified through a heeling test
or calculation, whose function is upon hull geometry. In this
paper, the dummy moment is defined with the k value as a
unit.

(a) Angular velocity 

(b) Angular acceleration 

Figure 4 Detecting zero-crossing from the measured data of a angular
velocity and b angular acceleration

Figure 5 Model of the measured data generated by Eq. (41) with the
initial condition Eq. (42)
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By substituting Eq. (29) into Eq. (28) and rearranging, Eq.
(28) becomes

F re tð Þ ¼ F inv tð Þ þ Fr tð Þ
¼ − I xxa

::
θ tð Þ� � ::

θ tð Þ þ D θ̇ tð Þ
� �h i ð30Þ

where Fre(t) denotes the remaining moment that is the final
moment function; a required function is used for identifying

Ixxa
::
θ tð Þð Þ ::

θ tð Þ and D θ̇ tð Þ
� �

.

The separation between Ixxa
::
θ tð Þð Þ ::

θ tð Þ and D θ̇ tð Þ
� �

from

the remaining moment requires a zero-crossing time tech-
nique, as in Figure 4, where a number of intersection points

of the measured data curve of θ̇ with the time axis are found
when td ¼ td1 ; t

d
2;… In the same way, there is an intersection

of the curve of
::
θ with the time axis when tm ¼ tm1 ; t

m
2 ;…:

θ̇ tdi
� � ¼ 0 ð31Þ
::
θ tmi
� � ¼ 0 ð32Þ

The intersection point of both curves holds for the marking
point on the remaining moment curve shown in Figure 5.
Thus,

F tdi
� �

re
¼ − I xxa

::
θ tdi
� �� � ::

θ tdi
� �þ D θ̇ tdi

� �� �h i
ð33Þ

and

F tmi
� �

re
¼ − I xxa

::
θ tmi
� �� � ::

θ tmi
� �þ D θ̇ tmi

� �� �h i
ð34Þ

From Eq. (31), in the intersection point of θ̇, the damping
moment is zero. Hence, Eq. (33) becomes

F tmi
� �

re
¼ −D θ̇ tmi

� �� �
ð35Þ

Similarly, in the intersection point of
::
θ, the added moment

of inertia is zero. Hence, Eq. (34) becomes

F tdi
� �

re
¼ −Ixxa

::
θ tdi
� �� � ::

θ tdi
� � ð36Þ

where superscriptsm and d denote the mass moment of inertia
and damping measured data, respectively, and i denotes the
number of the intersection point.

Finally, when collecting all of the intersection points of
F tmi
� �

re and F tdi
� �

re, we can formulate the functions for each

moment function by the appropriate curve fitting method,
such as a polynomial function.

3 Numerical Model Example

The proposed scheme demonstrates its workability in identi-
fying the function form of nonlinear added mass moment of
inertia and nonlinear damping moment that were carried out
through the numerical example.

3.1 Fully Nonlinear EOM

The EOM considered in this study was proposed by Taylan
(2000) and is a typical equation of the nonlinear roll motion,
which considers that the ship is under the excitation of regular
sinusoidal waves:

Ixx þ Ixxað Þ ::
θþ D θ̇

� �
þΔGZ θð Þ ¼ ω2

eαmIxxcosωet ð37Þ

where ωe and αm are the encountered angular frequency and
wave slope, respectively. In this study, the proposed scheme is
used for free decay testing, so the right-hand side of Eq. (37) is
excluded. The three types of nonlinear damping moment func-
tions were classified by Taylan (2000). The nonlinear
damping moment function type B1 that is the quadratic

Figure 6 Phase diagram corresponding to Figure 5 Figure 7 Selecting the optimal iteration number from the L-curve
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equation fromTaylan’s classification (Taylan, 2000) is chosen
for this study:

D θ̇
� �

¼ DL θ̇þ DN θ̇ θ̇


 

 ð38Þ

where DL and DN are the linear and nonlinear damping coef-
ficients, respectively. The squared angular velocity term is

written as θ̇ θ̇


 

 because changing the sign of θ̇ changes the

sign of this term and ensures that damping always opposes the
motion.

In general, the cubic and quintic forms of restoring the
moment functions are most favorable because they are manip-
ulated easier than higher degree polynomials in the solution
procedure (Taylan, 2000). Thus, the restoring moment term is
considered by solving Eq. (39).

ΔGZ θð Þ ¼ Δ C1θþ C3θ
3 þ C5θ

5
� � ð39Þ

where Cn, n = 1, 3, 5 are the restoring coefficients of each order.
Ixxa in Eq. (37) is normally a constant value, but this study as-
sumed a nonlinear added moment of inertia and its function,
following Kianejad et al. (2019). Hence, its magnitude initially
increases by increasing the roll angle but quickly declines once
the peak value reaches a large roll angle range. However, in this
study, the added mass moment of inertia was functioned with
angular acceleration, so it was transformed. For simplicity, it was
limited to the range before it reaches the peak. Moreover, as the
moment of inertia, its function is impossible to be a negative sign
when the sign of angular acceleration changes. The expression of
the added moment of inertia is as follows:

(a) j=102            (b) j=103

(c) j=104             (d) j=105

Figure 8 Convergence behavior of Fj. The solid line is the exact solution, and the dot point is the regularized solution from Eq. (27). a j = 102. b j = 103.
c j = 104. d j = 105
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Ixxa
::
θ
� � ¼ Ixxa

::
θ
2 ð40Þ

Thus, Eq. (37) can be rewritten as

Ixx þ I xxa
::
θ
2

� �
::
θþ DL θ̇þ DN θ̇ θ̇



 


þΔ C1θþ C3θ

3 þ C5θ
5

� �
¼ 0 ð41Þ

with the initial conditions for this experiment given as

θ 0ð Þ ¼ 0:61 rad and θ̇ 0ð Þ ¼ 0 rad=s ð42Þ

For convenience, the values of Ixx and k in Eq. (5) are
normalized to units.

For the numerical solution of Eq. (41), the nonlinear ODE
was solved by the Runge-Kutta integration schemewith a time
step of 0.06 s. The solution and phase diagrams were expressed
for DL = 0.2, DN = 0.3, C1 = 0, C3 = 0.7, C5 = − 0.1, and

Ixxa
::
θð Þ ¼ 0:5

::
θ2, as shown in Figures 5 and 6, respectively.

This solution was used for the virtual measured data.

3.2 Noisy Data

The measured data of motion responses have noise. To model
the measured data, the noise was generated as follows:

η−ηδ
�� ��

2
≤δ ð43Þ

where ηδ is the left-hand side of Eq. (22) and δ is the noise
level, where δ > 0. In this study, δ = 0.001, where ‖·‖2 denotes
the L2 norm (Filaseta et al., 1992). Thus, we aim to solve the
perturbed equation:

ηδ ¼ ∫t0K t; τð ÞF τð Þdτ ð44Þ

(a) Zero-crossing points of angular velocity and acceleration 

(b) Inverse solution and restoring moment 

(c) Detecting moment of D(θ   and 
axx

I  on remaining 

moment 

Figure 9 Explaining the identifying method of nonlinear moment due to
added mass moment of inertia and nonlinear damping moment as follow
Eqs. (31)–(36). a Zero-crossing points of angular velocity and accelera-
tion. b Inverse solution and restoring moment. c Detecting moment of
D(θ′) and I xxa θ″ð Þθ″ on remaining moment

(a) Damping moment 

(b) Added inertia moment 

(c) Added moment of inertia 

Figure 10 Recovered nonlinear moment function: nonlinear damping
moment, nonlinear moment due to added mass moment of inertia, and
nonlinear added mass moment of inertia. a Damping moment. b Added
inertia moment. c Added moment of inertia
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3.3 L-Curve Criterion

To solve the perturbed equation, the iteration in Landwerber’s
regularization method was chosen. The number of iterations
plays an important role in the convergence of the solution. The
L-curve criterion helps decide the optimal iteration number
and results in the best solution.

For selecting the appropriate number of iteration to obtain
the optimal solution, the L-curve plots a log-log type of iter-
ated solution norms versus the norm of the corresponding
residual, which is represented as follows:

log LF j−η
�� ��

2
; log F j

�� ��
2

� �
ð45Þ

Equation (45) displays the shape of the curve as an “L”
shape. The optimum point corresponding to the optimal solu-
tion is located at the corner of the curve.

The L-curve is plotted in Figure 7, with δ = 0.001 and λ =
0.001 for Landweber’s method in Eq. (27), and obtained the
optimal point at jopt = 103. The convergence behaviors of the

iterative solutions in Figure 8 were observe to match the op-
timal point from Figure 7 to examine the correct optimal so-
lution. Figure 8b presents the optimal solution obtained from
the inverse solution, which was plotted closest to the exact
solution and had acceptable stability.

3.4 Recovering Ixxa
::
θð Þ and D θ̇Þð

Following the procedure described in “Identifying Ixx
::
θð Þ and

D θ̇
� �

through the integral equation,” the zero-crossing points

of
::
θ and θ̇ were detected and shown at the top of Figure 9 and

were held on for comparison with the final inverse solution.
The optimal solution from Landweber’s regularization meth-
od is shown by a dot in the middle part of Figure 9, which also
consists of the moments that were explained in Eq. (28). The
pseudo-restoring moment Fr in Eq. (29) (known parameter) is
plotted with the optimal inverse solution to describe the su-
perposition method for removing Fr from Eq. (28). Thus, the
inverse solution F(t)inv became the final inverse solution Fre
that resulted from Eq. (30), which is shown at the bottom of
Figure 9. The remaining moments were the final inverse so-
lution that consisted of the moment due to added mass mo-
ment of inertia I xxa

::
θ tð Þð Þ ::

θ tð Þ and the damping moment

D θ̇ tð Þ
� �

. Finally, the separation of these moments was per-

formed through the comparison of detected zero-crossings of
::
θ and θ̇ at the top of Figure 9, which they gave the damping
moment and moment due to added mass moment of inertia
values at the same time levels, respectively, and were shown at
the bottom of Figure 9. The obtained results show that the
changing of the positive and negative signs of the moment
due to added mass moment of inertia values is similar as that

of
::
θ at each time level of the θ̇ zero-crossing. However, the

changing of signs of damping moment values is similar as that

of θ̇ at each time level of the
::
θ zero-crossing. The signs are

written in the anti-symmetric form as follows:

D −θ̇ tð Þ
� �

¼ −D θ̇ tð Þ
� �

ð46Þ
Ixxa −

::
θ tð Þ� �

⋅ −
::
θ tð Þ� � ¼ −I xxa

::
θ tð Þ� � ::

θ tð Þ ð47Þ

The detected points of the damping and moment due to
added mass moment of inertia in the bottom of Figure 9 were
re-plotted versus the roll angular velocity and acceleration at
the middle and top of Figure 10, respectively. The results of
dividing the moment due to added moment of inertia values
by the angular accelerations at the same time level became the
added mass moment of inertia values that are plotted at the
bottom of Figure 10.

However, the correct position of a function from data
points is still unknown, but hypothetically speaking with

(a) Damping moment 

(b) Moment due to added mass moment of inertia 

(c) Added mass moment of inertia  

Figure 11 Comparison between the exact solution of Eq. (41) and the
estimated solution from the recovering nonlinear added mass moment of
inertia and nonlinear damping moment function. a Damping moment. b
Moment due to added mass moment of inertia. c Added mass moment of
inertia
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experience, a curve from a guessed function must lay on data
points as closely as possible. The use of the curve fitting
method by a polynomial function is simple and widely used.
Thus, in this case, the nonlinear damping moment was fitted
by a third-order polynomial function, the nonlinear moment
due to added mass moment of inertia was fitted by a fourth-
order polynomial function, and the nonlinear added moment
of inertia was fitted by a second-order polynomial function.
All of the fitted curves were plotted and compared with the
exact solution: The top of Figure 10 shows the nonlinear
damping moment, the middle of Figure 10 shows the nonlin-
ear moment due to mass moment of inertia, and the bottom of
Figure 10 shows the nonlinear added mass moment of inertia.
The comparison between the recovered function and exact
function gave very good results.

To check and prove the correction and accuracy of the
identified moments, Figure 11 shows the plot of the recovered
::
θ, θ̇, and θ, which were compared with the exact solution.
However, the detected zero-crossing point with one of the
initial conditions may not be sufficient to recognize all of the

shapes of Ixxa
::
θð Þ and D θ̇

� �
. For more accuracy, it may need

more measured data with different initial conditions.

4 Conclusions

To determine the nonlinear added mass moment of inertia and
damping moment, a nonparametric identification system was
used. In this study, the nonparametric identification required
an inverse problem that was formulated from the nonlinear
EOM. The inverse solution from the numerical method be-
came unstable because of a small amount of noisy data, which
can be amplified and lead to unreliable solutions.
Accordingly, Landweber’s regularization method was used
to select the optimal number of iterations through the L-
curve criterion. The workability of the proposed procedure is
depicted through a numerical example that is fully nonlinear
EOM. The results show that the proposed method identified
the functional form of the nonlinear added mass moment of
inertia and damping moment.
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