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Abstract
Roll motion of ships can be distinguished in two parts: an unavoidable part due to their natural movement while turning and an
unwanted and avoidable part that is due to encounter with waves and rough seas in general. For the attenuation of the unwanted
part of roll motion, ways have been developed such as addition of controllable fins and changes in shape. This paper investigates
the effectiveness of augmenting the rudder used for rejecting part of the unwanted roll, while maintaining steering and course
changing ability. For this purpose, a controller is designed, which acts through intentional superposition of fast, compared with
course change, movements of rudder, in order to attenuate the high-frequency roll effects from encountering rough seas. The
results obtained by simulation to exogenous disturbance support the conclusion that the roll stabilization for displacement can be
effective at least when displacement hull vessels are considered. Moreover, robust stability and performance is verified for the
proposed control scheme over the entire operating range of interest.
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1 Introduction

In the present study, the problem of roll stabilization by exclu-
sive use of the rudder as an anti-roll countermeasure is exam-
ined. The idea that makes this technique possible is the spectral
separation of the rudder effect on ship motion. Specifically, the
low-frequency part of rudder motion may be used for

establishing and maintaining ship course, as it influences yaw,
while the high-frequency part develops a rolling torque and, in
effect, if appropriately employed, may be used for reducing roll.

Before proceeding to the analysis and control system synthe-
sis, a visit to the roll problem and the various ways to eliminate
or, at least, reduce it are given. Although roll existed as an issue
since the first surface vessels were built, it increased tremen-
dously in importance in the nineteenth century, when the first
steel-hull, motor vessels became mainstream. The main reason
was the large reduction of the friction coefficient, due to the use
of steel instead of wood; this reduced damping of roll motion.
Furthermore, the motorization of propulsion turned the sails and
mast gear obsolete; however, this gear has proven to provide a
positive roll stabilization effect, which was thus eliminated.

The effects of roll are not negligible onboard modern ships
as well. Especially onboard naval vessels, nausea attributed to
roll motion may reduce crew performance significantly, de-
spite training. This is due to even trivial reasons, such as the
need to use one hand for maintaining balance when the vessel
is subject to roll motion, or the loss of concentration and men-
tal focus due to nausea distress. In Faltinsen (1990), a more
detailed study has been conducted and a classification of the
nausea effects to humans has been proposed. Also, some nau-
sea countermeasures are proposed. For example, it has been
observed that the nausea effects are significantly reduced at
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the centerline and the bow; when constant visual contact with
the exterior is available; when an intellectual task distracts the
mind from the roll motion. The fact remains, however, that the
vast majority experiences great difficulty due to nausea espe-
cially when the roll motion obtains circular frequency around
1.07 rad/s. Unfortunately, for most conventional-hull vessels,
this value lies in the vicinity of the roll resonance frequency.

Otherwise, a range of other situations occurring specifically
onboard naval vessels require enhanced roll stabilization. Such
cases include the extension of the utilization of high-cost equip-
ment and weaponry to a broader range of operating conditions.
For example, missiles cannot be launched and radars cannot be
operational if a certain limit of either roll or pitch oscillatory
motion is exceeded. Furthermore, the need, especially when
ASW (Anti-Submarine Warfare) operations are performed, for
sea-based helicopter (or airplane) support requires roll motion
attenuation in both aircraft takeoff and touchdown phases.

Commonly used roll countermeasures include, except
Rudder Roll Stabilization (RRS) that is the subject of this work,
the use of anti-roll, U-shaped tanks, bilge keels, and active fin
stabilizers. The drawbacks and benefits of each one of these
techniques can be found in the literature (Fossen 2011; Perez
2005; Roberts 1992). However, for naval vessels, the RRS sys-
tem has been proposed as a very suitable solution, due to a
number of advantages. These include the low acoustic signature
of the RRS system and the low spatial requirements, as the idea
is based on modifying the existing shipboard steering gear(s). A
more decisive factor is cost vs. performance. The main cost
component of an RRS system is the installation of a reliable,
fast, and accurate steering gear; required speed is in the range
of 15–20(°)/s, when a common steering gear, used only for ma-
neuvering, cannot develop speeds larger than 5(°)/s. On the other
hand, an active fin stabilizer system, which is the usual evalua-
tion reference for the RRS technique, requires a hydraulic servo
for actuating the fin(s) with similar specifications. Furthermore, a
typical RRS system used onboard frigates may achieve roll re-
duction of up to 75% while a fin stabilizer more than 90%. It is
mentioned here that both systems demonstrate reduced roll sta-
bilization capacity as ship forward speed is reduced. This fact is
one of the major drawbacks of both stabilization systems.

It is necessary before proceeding to the analysis of the prob-
lem to distinguish between roll motion and heeling. Heeling is a
hydrostatic situation whereas rolling is a dynamic one. Although
heeling has an effect on the roll characteristics of a ship, heeling
is not due to the sea waves but to the loading conditions of the
ship. Therefore, it can be reduced before departure by appropri-
ately ballasting and rearrangement of the loading.

Although RRS remains as a research subject, there are
companies such as SKF and BeckerMarine Systems that have
commercialized the RRS idea, offering solutions for either
cargo or naval ships. The work and analysis presented here
assess vis-à-vis the application of H∞ and H2 robust control
theory for linear, time-invariant, multi-input, multi-output

systems in state space. The linearization process for the vessel
considered is following familiar lines. However, some signif-
icant modifications have been introduced including the use of
the describing function approach to model the nonlinearities
(mainly saturation and rate limitation) for the steering gear
driving the actuating rudder. Also, a general framework for
the wave disturbance is introduced in the design process for
both the H∞ and the H2 approaches. This unified framework
allows better comparisons and more useful conclusions.

Regarding paper structure: Section 2 begins with the equa-
tions that describe the ship motion dynamics. The formulation
of an approach for disturbances of motion follows. The sec-
tion finishes with the provision of models for the steering gear
that will be used.

Section 3 begins with the shipmodel uncertainties, presents
the selected vessel for evaluation of the proposed controller,
and provides information regarding the selection of the ship
nominal advance speed used as reference. It then advances to
steering gear uncertainty modeling and specifies the frequen-
cies of the actuating signal. Next, it deals with roll and yaw
movements and the disturbances to these induced by waves. It
finishes with two sections providing information regarding the
control scheme and methodology.

Section 4 describes the synthesis of a controller based on
the H∞ design method of robust control theory.

Section 5 presents results of simulating the presented
methods.

Finally, there are two appendixes providing some theoretical
background to aid in understanding the paper content.
Appendix 1 provides theoretical background for employing de-
scribing functions as a mathematical tool for treating nonlinear-
ities. Appendix 2 provides mathematical formulation elements
of robust stability and performance treatment for linear systems.

2 Open-Loop System and Exogenous
Disturbance Modeling

2.1 Ship Rolling and Coupled Motions Dynamics

The model used for depicting the roll motion dynamics in this
work has been developed in the framework of linearized anal-
ysis. In specific, although the starting point is the dynamic
equation of motion of the vessel in calm sea conditions, line-
arization is applied on the basis of the small signal assump-
tion. In effect, the state-space equation obtains the following
general form (Christensen and Blanke 1986).
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In the above, φ is the angular deflection in the sense of roll,
p ¼ φ̇,ψ is the angular deflection in the sense of yaw, r ¼ ψ̇, and
δR is the actual rudder angle; finally, v is the sway velocity. In the
above, it is evident that no exogenous disturbance has been in-
cluded; furthermore, a method to determine the values of the
various system matrices elements is needed. The main conclu-
sion, however, that may be derived from the above is that the
open-loop system exhibits decoupled dynamics between the
yaw-sway and roll motion, provided that the small signal assump-
tion, required for linearization, holds.

A simplified model has been proposed by Van der Klugt
(1987) which maintained only the significant interactions be-
tween the various ship motions. In the complex frequency
Laplace domain, the simplified model is defined by the fol-
lowing transfer functions.

v0 sð Þ ¼ kdv
1þ Tvs

δR sð Þ

ψ sð Þ ¼ 1

1þ Trsð Þs kdrδR sð Þ þ kvrv0 sð Þ þ wψ sð Þ� �
ϕ sð Þ ¼ ωn

2

s2 þ 2ζωnsþ ωn
2

kdpδR sð Þ þ kvpv0 sð Þ þ wϕ sð Þ� �
ð2Þ

Van Amerongen et al. (1990) have shown that the above
model is of enhanced value for autopilot and RRS system
designs. Furthermore, note that this simplified model contains
wave-induced disturbances in both the roll and yaw senses of
motion, termed wφ and wψ, respectively. Finally, the sway
velocity v has been replaced by a new variable v', which is
the sway velocity component due to exclusively rudder activ-
ity. A drawback, however, is that this variable is not directly
measurable but can be deduced from measurements only by
use of a state observer, e.g., a Kalman filter. The open-loop
transfer functions of Eq. (2) may be converted to the following
state-space expression in the time domain.
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U m=s½ �; Tv s½ � ¼ 78

U
; Tr s½ � ¼ 13
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ð4Þ
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Both in the above expression and more prominently in the
transfer functions introduced in Eq. (2), the spectral separation
between the yaw/sway dynamics and the roll motion dynam-
ics is clearly manifested, at least as far linearized analysis is
concerned. Indeed, the scalar transfer functions involved in
the yaw/sway motions obtain low-frequency pole(s) while
the one involved in roll demonstrates the typical structure of
the second-order linear oscillator. This fact lies at the heart of
the RRS concept.

2.2 Wave Disturbance Modeling

The standard practice to model the wave field acting on a
floating vessel as a stochastic process is pursued in this work
(Van der Klugt 1987; Fossen 1994; Lauvdal 1998). According
to this approach, a power spectral density (PSD) characterizes
the frequency spectrum of the sea waves, i.e., the Fourier
transform of the autocorrelation function of the free surface
elevation, when integrated over all wave directions. A wide
variety of such PSD functions has been proposed. The most
popular are these formulated by Neumann (1952),
Bretschneider (1959), Pierson and Moskowitz (1964). The
latter two bear significant similarities as they were conceived
on the basis of data for fully developed, wind generated seas in
the North Atlantic Ocean. The mathematical expression for
the PSD according to Pierson and Moskowitch is given by
the following.

S ωð Þ ¼ Agω
−5exp −Bwvω

−4� �
m2⋅s
� � ð6Þ

In the above, Ag and Bwv are constants; Ag depends exclu-
sively on the gravity constant, g, whereas Bwv is determined by
the wind speed. By adopting the additional assumption that
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the sea waves may be modeled as a narrow-band Gaussian
stochastic process, constant Bwv may be linked to significant
wave height, Hs. In SI units, the following relationships hold
for these two constants (Faltinsen 1990; Fossen 2011).

Ag ¼ 0:0081g2 ¼ 0:78;Bwv ¼ 3:14
�
H2

s
ð7Þ

Furthermore, the modal frequency, i.e., the frequency at
which the maximum of the PSD is observed may be deter-
mined as the root of the derivative of S(ω).

d

dω
S ωð Þ ¼ 0⇒ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
4Bwv

5
4

r
ð8Þ

The above results have been used in order to construct a
rational approximation of the above sea wave spectrum. In spe-
cific, the transfer function of a strictly proper, realizable, linear,
and time-invariant system is sought after. The main requirement
of such a transfer function is that, when driven by white
Gaussian noise, it generates a colored Gaussian noise response
whose PDF approximates, in some sense, the one in Eq. (6).

A variety of such transfer functions has been proposed in
the literature (Balchen et al. 1980; Saelid and Jenssen 1983;
Triantafyllou et al. 1983; Fossen 1994). The prominent com-
mon characteristic of all is their band-pass nature which comes
as a consequence of the narrow-band shape of the PDF in Eq.
(6). However, as the expression in Eq. (6) is irrational, it is
expected that by increasing the order of the approximating
transfer function, the accuracy of approximation will be in-
creased; for example, in Triantafyllou et al. (1983), a 6th-order
transfer function is proposed. However, for robust control
purposes, a rougher approximation is sufficient. Therefore, a
resonant 2nd-order transfer function, as in Saelid and Jenssen
(1983) and Fossen (1994), is selected for modeling the sea
wave disturbance generation.

hw sð Þ ¼ kws
s2 þ 2ζwω0sþ ω0

2
⇒

s¼jω

jhw ωð Þj ¼ kwωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω0

2−ω2ð Þ2 þ 2ζwω0ωð Þ2
q ð9Þ

By using the above, the following may be obtained.

hw ωð Þk k∞≜ sup
ω≥0

jhw ωð Þj ¼ jhw ω0ð Þj ¼ kw
2ζwω0

ð10Þ

Commonly, for convenience, constant kw is set equal to the
quantity (2ζwω0) and, therefore, ‖hw(ω)‖∞ = 1. If the above
system is driven by zero-mean, white Gaussian noise of unity
standard deviation, the output will be a narrow-band, colored,
Gaussian, stochastic process with PSD |hw(ω)|

2. For robust
control synthesis purposes, it is sufficient that the peak value
of the wave model in Eq. (9) is equal to the one given by the
non-parametric spectrum of Eq. (6). In the case that the

driving white noise standard deviation is not unity, but σw ≠
1, the following is obtained.

σ2
w ¼ S ω0ð Þ ¼ Age

−1:25ω0
−5 m2⋅s

� � ð11Þ

Note that the roll-off characteristics of the wave spectrum
are not adequately modeled through the use of the second-
order model of Eq. (9). However, as explained later, this
modeling simplification may be overcome by employing ro-
bust control theory.

Another aspect of concern when designing a control system
for roll motion mitigation is the encounter frequency. When the
vessel moves towards a certain direction, conventionally re-
ferred to as forward direction, with constant average speed, the
wave frequency experienced shipboard, referred to as encounter
frequency, differs from the one measured at the fixed reference
frame. The calculation of the encounter frequency is based on
the Doppler effect experienced by a moving wave receiver.

ωe ¼ ω0−ω0
2 U
g
cosβw ð12Þ

In the above, U is the ship’s average forward speed,
g the gravity constant, and βw is the so-called encounter
angle of the waves by the ship (0 < βw < π with zero
corresponding to following seas). The way to deal with
this problem in a robust control framework is to use a
weighting filter that allows a variable resonance fre-
quency, by considering it as uncertain.

2.3 Steering Gear Modeling

The steering gear in an RRS system is the control system
actuator for both the conventional autopilot course-keeping
function and the active stabilization system (Fig. 1). The lim-
itations imposed by a slow and/or inaccurate to the tuning of
the control law are analyzed later. At this point, however, the
model of a hydraulic steering gear, suitable for the controller
synthesis task, needs to be presented.

A common way to model the effect of a linear, noiseless
actuator, without the need to employ a detailed physical mod-
el, is a first-order transfer function of the form given below
(Golnaraghi and Kuo 2010).

Nsteer ω;Aδ; 0ð Þ ¼
1; 0 < Aδ < δLIM
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A variety of methods exists for determining the time con-
stant of the model shown above, mainly in system identifica-
tion literature (Christensen and Blanke 1986; Cowley and
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Lambert 1972; Eda and Crane 1965; Fossen 2011; Healey
1992; Perez 2005; Smith 1977; SNAME 1989; Son and
Nomoto 1981; Van Amerongen and Van Cappelle 1981;
Zhou 1987). The central idea is to drive the actuator with
either deterministic or deterministic small amplitude signals,
in order for the linearity to be preserved, and study the re-
sponse mainly in terms of cross-correlation with the input
signal. On the other hand, the transfer function structure is
better manifested in the manipulated form given in the last
of the equations in Eq. (13). In this form, the transfer function
takes the negative feedback form of Fig. 2.

In typical marine hydraulic steering gears, two major non-
linearities appear that make the predictions of the transfer
function model of Eq. (13) rather inaccurate in both in terms
of timing and of amplitude, when large and/or rapid transients
arise. The first has to do with the capacity of the feeding
pump(s) providing the hydraulic power required for actuation.
The fact that this capacity is finite sets an upper limit to the
turning (rotational) speed that can be achieved by the gear; in
effect, the value of jδ̇R tð Þj cannot be arbitrarily large. The
second nonlinearity is the one connected with the rudder angle
of deviation with respect to the vessel’s centreline; this is
limited commonly somewhere between 35 and 40 degrees.
Note that this feature is rather universal for all ships. In effect,

jδ˙set tð Þj must be limited. Note that a linear controller does not
provide with an inherent capability of saturating its output;
therefore, the control signal has to be saturated externally.
By introducing these two nonlinearities in the transfer

function model shown in Fig. 2, the one shown in Fig. 3 is
obtained.

3 Formulation of the Robust Control Problem

3.1 Ship Model Uncertainty Characterization

The ship model introduced in Eq. (3) contains a number
of coefficients. These coefficients may be determined by
either tank model experiments or sea trials or hydrody-
namic calculations (numerical or analytic). In any case,
however, their value will not be constant; commonly,
they can be parameterized on the basis of a small num-
ber of major operational variables. In most analyses, the
vessel’s mean forward advance speed, U, is included in
such a parameterization.

Although intuitively, such dependence or trends are expect-
ed; the fact is that a universally valid mathematical expression
may not be in general assumed. On the other hand, for a given
vessel, curve-fitting techniques may be employed, in order to
yield empirical relationships between the coefficients in the
linearized state-space model of Eq. (3) and mean advance
speed U.

In this work, a Dutch, M-type frigate was used as a
test case. The first reason for this choice was that the
effect roll is more prominent on naval vessels, especial-
ly high-speed ones with considerable maneuverability
requirements such as frigates. A second reason was that
the Hellenic Navy has expressed interest in acquiring a
number of vessels of this type during the mid 1980s.
Although finally the German MEKO-200 design has
been selected, the two designs bear significant similari-
ties. Furthermore, the Dutch M-type was one of the first
frigate types to be fitted with an RRS system. Another
frigate type, with similar characteristics to the M one,
fitted with an RRS system was the German F-124.
Actually, the RRS system was one of the main differ-
ences between the F-124 and its predecessor F-123; the
F-123 was equipped with a more conventional active fin
stabilization system.

The main reason for choosing the M-type frigate as the test
case in this work, however, is the fact that several pieces of

Fig. 1 Linear actuator model used for the steering gear

Fig. 2 Model with transfer function and saturation nonlinearities used for
the steering gear

Fig. 3 Feedthrough system with static nonlinearity followed by low-pass
transfer function
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literature can be found concerning its RRS system technical
specification (Kallstrom and Schultz 1990; Lloyd 1975;
Roberts 1992; Sorensen et al. 1995; Smith 1977; SNAME
1989; Son and Nomoto 1981). Therefore, the ship’s main
particulars and, more important, the values of the coefficients
in Eq. (3) may easily be determined. Furthermore, the perfor-
mance achieved by the proposed RRS system controller may
be assessed against the one obtained by alternative controller
synthesis methods in a straightforward manner.

In this respect, the dependence of the model coeffi-
cients in Eq. (3) on the ship’s advance speed has been
quantified in the following semi-empirical formulae
(Kallstrom and Schultz 1990; Lloyd 1975; Roberts
1992; Sorensen et al. 1995; Smith 1977; SNAME
1989; Son and Nomoto 1981):

U m=s½ �; Tv s½ � ¼ 78

U
; Tr s½ � ¼ 13

U
;

ωn rad=s½ � ¼ 0:63;
ζ −½ � ¼ 0:064þ 0:0038U ;
kvr °ð Þ=m½ � ¼ −0:46;

kdr Hz½ � ¼ −
0:0027

U
;

kdp 1=rad2
� � ¼ −0:0014U 2;

kdv m= s⋅ °ð Þð Þ½ � ¼ 0:01U ;
kvp s⋅ °ð Þð Þ= m⋅rad2

� �� � ¼ 0:21U

ð14Þ

The above formulae have been employed in the de-
sign stages of the first operational RRS system by the
Royal Netherlands Navy and have been deduced
through campaigns of scale model experiments as well
as field measurements. In the end of porting the above
relationships to the standard form in the robust control-
ler synthesis literature, the forward speed of U0 = 15 kn =
7.7175 m/s will be considered the nominal advance
speed of the vessel. Such speed is in the range of typ-
ical service speeds for various naval vessels such as
frigates and destroyers. Finally, it is noted that the range
of forward speed, U, for which RRS is intended to be
employed spans the range between 5 kn (2.5725 m/s)
and 25 kn (12.8625 m/s).

This speed value will be used for the calculation of the
nominal system matrices in Eq. (3) and the nominal transfer
function coefficients in Eq. (2). Specifically, the system ma-
trices are expressed as follows.

A ¼ A0 þΔU ⋅AU ;
B ¼ B0 þΔU ⋅BU ;
Φ ¼ Φ0 þΔU ⋅ΦU ;

ΔU≜
U−U 0

U0
⇒

5−15
15

¼ −
2

3
≤ΔU ≤

25−15
15

¼ 2

3

ð15Þ

The numerical values of nominal matricesA0,B0, andΦ0 as
well as the uncertainty coefficient matricesAU,BU, andΦU are
calculated on the basis of numerical formulae (14) using the
value ofU0 and finally substitution in Eq. (3). Also, as readily
verified above, the uncertainty in forward speed is bounded,
i.e., |ΔU| < 0.667.
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0 0
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0 0
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ΦU ¼

0 0
0 0
0 0
0 0:5937
0 0

2
66664

3
77775

ð16Þ

In the above, units have been omitted for the sake
of simplicity.

3.2 Steering Gear Uncertainty and Nonlinearity
Characterization

The main source of uncertainty in the hydraulic steering gear
modeling comes from linearization. Indeed, in order to employ
a variant of the linear robust controller design theory, lineariza-
tion of the actuator dynamics is a prerequisite. However, due to
the fact that the nonlinearities involved belong to the hard type
(saturations) standard linearized analysis, through Taylor ex-
pansion and elimination of terms with order higher than one
is of limited value. Such an approach cannot reveal the possible
effects due to the steering gear nonlinearities.
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In order to avoid the above limitation, an alternative method-
ology of linearization is employed, based on the describing func-
tion. In the literature (Nagrath and Gopal 1986; Smith 1977;
Zhou 1987), the describing function is introduced in the purpose
of linearization in the frequency domain, of open or closed-loop
systems with dynamic or static nonlinearities at the feedforward
or feedback path. However, a requirement for the applicability of
the analysis with the describing function approach is that the
output signal of the nonlinear system is the response of a linear
low-pass filter. This filter mitigates higher-order harmonics from
the output signal that might be generated by the nonlinearities
present either in the feedforward or in the feedback path.

Coming back to Fig. 3, it is easily seen that this condition is
met by the nonlinear steering gear model employed. Indeed,
the first-order linear filter, due to the small signal, linear
steering gear dynamics, plays this role. As mentioned in
Appendix 1, the describing function technique consists of lin-
earization in the frequency domain by neglecting the higher-
order harmonics of the response, provided that an output low-
pass filter is present. This frequency domain linearization is
practically implemented by assuming sinusoidal inputs of var-
ious frequencies. In the case of the steering gear model of Fig.
3, and by neglecting the turning rate limiter, it can be seen that
the steering gear linear dynamics are given by Eq. (13). In
effect, with respect to Eqs. (A.6) and (A.7), the describing
function of the steering gear with the turning rate limiter non-
linearity excluded assumes the following form.

Nsteer ω;Aδ; 0ð Þ ¼
1; 0 < Aδ < δLIM

2

π

arcsin
δLIM

Aδ


 �
þ δLIM

Aδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

δLIM

Aδ


 �2
s2

664
3
775;Aδ ≥δ LIM

8>>>><
>>>>:

9>>>>=
>>>>;

1

jωτ þ 1
ð17Þ

In the above, δLIM is the limiter saturation value, which as
said, lies commonly between 35 and 40 degrees; Aδ is the am-
plitude and ω the frequency of the command signal as follows.

δset tð Þ ¼ Aδ cos ωt ¼ Re Aδe
jωt� 
 ð18Þ

The describing function in Eq. (17) may be rewritten as a
product of a variable, uncertain gain and the linear dynamics
of the steering gear. In this form, the describing function is a
linear, but uncertain, transfer function.

N steer ω;Aδ; 0ð Þ ¼ kR Aδð Þ⋅ 1

jωτ þ 1
⇒

N steer ω;Aδ; 0ð Þ ¼ kR0 þ δkR Aδð Þ½ �⋅ 1

jωτ þ 1

ð19Þ

The block diagram of this steering gear dynamic represen-
tation is given in Fig. 4. It is noted here that the describing
function introduced and used in this text represents the linear-
ized, in the frequency domain, steering gear dynamics for a
sinusoidal input. However, this suffices in the case of anti-roll

action using RRS systems, because the disturbance signal is a
waveform commonly sinusoidal, or very close to that. Indeed,
the sea wave disturbance model to be used is the 2nd-order,
resonant transfer function of Eq. (9), which as argued gives rise
to a narrow-band Gaussian stochastic process. This narrow-
band stochastic signal generates the ship roll motion, when
propagated through the linearized dynamics of Eq. (3). The
vessel’s roll motion, in turn, drives the RRS system controller
which is also a linear system. Therefore, the control signal may
be expected to be a close to sinusoidal waveform of frequency
equal to that of the disturbance. This argumentation supports
the use of the sinusoidal input describing function.

In order to calculate the nominal value, δkR0, and the range
of the uncertainty, δkR0, of the gain in Eq. (19), the range of
amplitude A is needed. As the motion of the steering gear is
rotary, it is evident that the values of the command signal, δset, is
wrapped in an interval with width 2π radians, e.g., interval (−π,
π]; therefore, in degrees, the maximum absolute value of Aδ is
180°. Furthermore, for the calculations below, it is assumed that
δLIM = 35° .

kR 180°ð Þ ¼ 0:2460≤kR Aδð Þ≤1
kR0 ¼ 1þ 0:2460

2
¼ 0:6230

jδkRj≤ 1−0:2460
2

¼ 0:3770

ð20Þ

In order to take into account the turning rate limitations of
an actual steering gear, which have been omitted from the
describing function above, inclusion of the turning rate in
the cost function, involved in any optimal control synthesis
method, suffices if combined with a high-pass filter, penaliz-
ing gravely the high-frequency spectral content of the com-
mand signal, δset. Indeed, if such a technique is adopted, the
resulting controller practically is driven to generate low-
frequency control signals.

A common choice for analog or digital filters in a variety of
engineering applications is that of Butterworth filters. The
main advantage of these filters is the maximally flat amplitude
frequency response demonstrated in the pass band and, in
general, smooth and monotonic amplitude frequency re-
sponse. In order to achieve maximal flatness, however, one
has to sacrifice roll-off steepness. Thus, a Chebyshev or

Fig. 4 Uncertain linear model used for the steering gear
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elliptic filter of the same order demonstrates much steeper roll-
off characteristic than their Butterworth counterpart.

In the case examined here, the steering gear turning rate
filter synthesis was based on a cascaded interconnection of
two third-order, high-pass Butterworth filters.
HB;3;hp sð Þ ¼ 1

ωc
s

� �3 þ 2 ωc
s

� �2 þ 2
ωc

s

� �
þ 1

⇔

HB;3;hp sð Þ ¼ s3

s3 þ 2ωcs2 þ 2ωc
2sþ ωc

3
⇔

HB;3;hp sð Þ ¼ s3

sþ ωcð Þ s2 þ ωcsþ ωc
2ð Þ

ð21Þ

The cutoff frequency of the first filter is 0.25 rad/s ≈ 14 (°)/s
and of the second one is 0.26 rad/s ≈ 15 (°)/s. These values
have been selected in accordance with turning rate values
achieved by steering gears already in service onboard naval
vessels equipped with RRS systems (Cowley and Lambert
1972; Fossen 2011; Kallstrom and Schultz 1990; Lloyd
1975; Perez 2005; Son and Nomoto 1981; Van Amerongen
and Van Cappelle 1981). However, in order to moderate the
effect of the triple zero at s = 0 demonstrated by high-pass
Butterworth filters, the zeros have been relocated slightly on
the negative real semi-axis. The transfer functions of the fil-
ters, as finalized after fine tuning and trial-and-error, are given
below.

H steer;1 sð Þ ¼ sþ 0:005ð Þ sþ 0:007ð Þ sþ 0:009ð Þ
sþ 0:25ð Þ s2 þ 0:25sþ 0:0625ð Þ

H steer;2 sð Þ ¼ sþ 0:004ð Þ sþ 0:006ð Þ sþ 0:008ð Þ
sþ 0:26ð Þ s2 þ 0:26sþ 0:0676ð Þ

ð22Þ

By combining the above and incorporating a penalization
gain of 500 for exceeding the turning rate of 15 (°)/s, the
following performance weighting filter for the control signal
is obtained.

H steer;0 sð Þ ¼
500⋅

s3 þ 0:021s2 þ 1:43� 10−4sþ 3:15� 10−7

s3 þ 0:5s2 þ 0:1252sþ 0:01568
⋅

s3 þ 0:018s2 þ 1:04� 10−4sþ 1:92� 10−7

s3 þ 0:52s2 þ 0:1351sþ 0:01756

ð23Þ

The amplitude Bode plot, i.e., the amplitude frequen-
cy characteristic, of Hsteer(s) is shown in Fig. 5. The
incorporation of the control signal, δset, weighted by
the filter above, in the cost function, during controller
synthesis leads to control law gains that do not empha-
size high frequencies; therefore, the requirement for
maintaining steering gear turning rate below a specified
threshold is met.

3.3 Roll and Yaw Weighted Performance

As was the case for the steering control action, the roll
and yaw performance must, also, be properly weighted

before contributing to the optimal control cost function.
However, in this case, the fact that these signals are
outputs of the open-loop system, instead of inputs, has
to be taken into account. By combining the relationships
in Eq. (2) with the one in Eq. (9), the following ex-
pression is obtained for the roll and yaw motions due to
wave disturbance only.

ψw sð Þ ¼ HW;ψ sð Þ⋅wψ sð Þ ¼ 1

s 1þ Trsð Þ ⋅wψ sð Þ⇒

ψw sð Þ ¼ 1

1þ Trs
⋅

2ζwω0σw;ψ

s2 þ 2ζwω0sþ ω0
2
⋅wG;1

ϕw sð Þ ¼ HW ;ϕ sð Þ⋅wϕ sð Þ ¼ ωn
2

s2 þ 2ζωnsþ ωn
2
⋅wϕ sð Þ⇒

ϕw sð Þ ¼ ωn
2

s2 þ 2ζωnsþ ωn
2
⋅

2ζwω0σw;ϕs
s2 þ 2ζwω0sþ ω0

2
⋅wG;2

ð24Þ

In the above, σw,ψ and σw,ϕ are the standard devia-
tions of the white noise signals driving the wave models
for yaw and roll, respectively. In general, their values
are different. However, the maximum values expected
fo r these paramete r s may be assumed equa l .
Furthermore, the wave model parameters ω0 and ζw
are expected to assume the same value for both yaw
and roll. The vector wG = [wG,1 wG,2]

Τ consists of two
scalar, mutually independent, white, Gaussian stochastic
processes of zero mean and unity standard deviation.

Also, note that the zero at s = 0 appearing in the wave
model for yaw, wψ(s), is canceled due to the pure integrator
of the yaw motion dynamics.

The expressions in Eq. (24) can be used in order to
estimate the scaling factors needed for optimal control
synthesis. As in the case of the steering gear turning
rate, the values of yaw and roll deflection have to be
scaled (normalized) before contributing to the cost func-
tion associated with the performance of the optimal con-
trol system. Although the colored disturbance inputs are
expected to assume the same maximum frequency

Fig. 5 Weight filter applied to the steering control action
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response value, i.e., ‖wψ(s)‖∞ = ‖wϕ(s)‖∞, in general, it
will hold that ‖ψ(s)‖∞ ≠ ‖ϕ(s)‖∞. This is due to the fact
that they propagate through different transfer functions.
Therefore, they may contribute in a distorted manner to
the value of the optimal control cost function. In con-
clusion, the following scaling needs to be applied to the
yaw and roll outputs.

ψ∅ ¼ 1

j 1
jω0;min 1þTr jω0;minð Þ j

⋅ ψ ⟺

ψ∅ ¼ ω0;min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

rω
2
0;min

q
⋅ ψ

ϕ∅ ¼ 1

j 1
2ζ j

⋅ϕ ¼ 2ζ⋅ϕ

ð25Þ

As can be seen, variables ψ∅, ϕ∅ are the scaled yaw and
roll, respectively, to be used in the optimal control cost func-
tion. The rationale of the scaling weights applied is based on
Eq. (24) and the form of the spectrum of the driving wave
disturbances wψ, wϕ.

For the yaw variable, the zero-pole cancelation at s = 0
allows to select a purely positive frequency value where
the yaw transfer function, HW,ψ(s), assumes a finite val-
ue. In order to choose the appropriate frequency value,
one has to take into account the minimum frequency at
which the wave spectrum may demonstrate a peak. As
seen in Fig. 6, the resonance frequency of the wave
spectrum for significant wave height of 10 m is no less
than 0.3 rad/s. Here, it is noted that the probability to
observe waves with significant wave height 10 m or
above has been reported to less than 2%; furthermore,
the wave PSD peak value increases for decreasing reso-
nance frequency, as a consequence of the significant
wave height.

However, in order to account for the encounter frequency,
as calculated in Eq. (12), the frequency value ω0,min is calcu-
lated as follows.

ω0;min ¼ 0:3 rad=s− 0:3 rad=sð Þ2 � 12:8625 m=s

9:81 m=s2
� 1⇔

ω0;min ¼ 0:1820 rad=s
ð26Þ

The speed value used in the above is the maximum within
the vessel’s operational envelope, i.e., equal to (U0 +
maxΔU). On the other hand, the nominal speed value is used
for the calculation of time constant Tr according to Eq. (14),
without major loss in accuracy. Note that, because the selected
ω0, min is rather small, the effect of this time constant on accu-
racy is rather limited as can be seen from Eq. (25).

For the roll variable, it can be seen that the relative transfer
function,HW, φ(s), assumes finite values for every frequency ω.
Thus, the straightforward choice for the scaling factor is

‖HW;φ sð Þ‖−1∞ ¼ jHW;φ jωnð Þj−1. For this calculation, the value
of the damping coefficient ζ is set to the one calculated by
using the minimum speed value, (U0 + minΔU), in the related
expression of Eq. (14). By employing the above, the following
scaling formulae are deduced.

ψ∅ ¼ 0:1904⋅ψ;ϕ∅ ¼ 0:1476⋅ϕ ð27Þ

3.4 The Full Control Model

By combining the aforementioned elements, the control mod-
el of the naval vessel at hand with autopilot and RRS system,
shown in Fig. 6, is constructed. As can be seen, the output of
the model is the weighted yaw and roll performance as well as
the weighted control action, i.e., δR, ∅. These are the variables
that will contribute to the optimal control cost function during
the controller synthesis method. In the figure, matrix C0 is
defined as follows.

C0 ¼ 0 0 0:1476 0 0
0 0 0 0 0:1904

� �
ð28Þ

Also, note that matrices A, B, and Φ are uncertain as spec-
ified in Eq. (15). Furthermore, gain kR is uncertain according
to Eq. (20).

The system shown in Fig. 6 is closed-loop. Therefore, ma-
trix C is determining which components of the state vector x,
as defined in Eq. (3), are available for real-time

C ¼ I5 ¼

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775 ð29Þ

As can be seen, due to the employment of gyrocom-
passes and GPS, all yaw and roll deflection angles,
angular speeds, and sway speeds are considered

Fig. 6 Pierson-Moskowitch sea wave PSDs for two significant wave
heights (denoted by Hs)
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available for feedback to the control system. However,
the measurement vector is corrupted by the noise vector
η = [η1 η2 η3 η4 η5]. Such measurement noise arises to
any practical control system due to non-ideal sensors
and instrumentation. In order to make a conservative
assumption, the noise vector consists of five mutually
uncorrelated, scalar, white, Gaussian noise components.
The covariance (PSD) for each one of them is consid-
ered to be 10% of the maximum value expected for the
corresponding variable, in the open-loop system. These
values are calculated using the expressions in Eq. (24)
which result to the ones in Eq. (25). Note that the

temporal derivative expressions, i.e., ψ˙
�

w;
,φ˙

�

w;
are connected

according to the following with the expressions in Eq.
(25).

ψ˙ w sð Þ ¼ sψw sð Þ;ϕ˙ w sð Þ ¼ sϕw sð Þ ð30Þ

Furthermore, the other input signals arising are the process
(wave) disturbances. Indeed, as seen in Fig. 6, the wave dis-
turbances wψ and φ participate in the system according to the
following.

wψ sð Þ ¼ 2ζwω0σw;ψs
s2 þ 2ζwω0sþ ω0

2
⋅wG;1

wϕ sð Þ ¼ 2ζwω0σw;ϕs
s2 þ 2ζwω0sþ ω0

2
⋅wG;2

o
⇔

wψ sð Þ
wϕ sð Þ

� �
¼ hw sð Þ σw;ψ 0

0 σw;ϕ

� �
wG;1 sð Þ
wG;2 sð Þ

� � ð31Þ

It is reminded here, that the vector wG ¼ wG;1 wG;2
� �T

consists of two scalar, mutually independent, white, Gaussian
stochastic processes of zero mean and unity standard deviation.
According to the analysis given in Section 2.2, the parameters
σw,ψ and σw,φ are uncertain with ranges given below.

0≤σw;ψ;σw;ϕ≤S ω0ð Þ≤10:0; 0:3≤ω0≤1:3 ð32Þ

On the other hand, ζw may be set to a constant value; a
typical one is 0.1. A highly convenient approach is to use Eq.
(11) and the first inequality in Eq. (32), in order to use [S(ω0)]

−1

as a scaling factor, taking advantage of the fact that ‖hw(s)‖∞ =
1. This scaling factor normalizes the disturbance inputs in the
same manner that the outputs are normalized by Eq. (25).

3.5 Partitioning of the Full Control Model

The general control problem according to the recent literature
(Green and Limebeer 1995; Tempo and Blanchini 1996; Zhou
et al. 1996) may be posed on the basis of linear fractional
transformations (LFTs). Linear fractional transformations
have been introduced in order to represent any type of uncer-
tainty arising in Single-Input, Single-Output (SISO) orMIMO

linear systems, including multiplicative, additive, or feedback
uncertainties. Moreover, apart from uncertainties, the LFTcan
be used for representing and analyzing elegantly the effect of
feedback control. A brief reference to the robust stability and
performance analysis in the LFT framework is given in
Appendix 2.

The task here is to clearly establish the uncertain control
model of Fig. 6 in an LFT framework as shown in Fig. 8. In
this end, input vectors uu, u0, uℓ and output vectors yu, y0, yℓ
need to be defined.

Starting from vectors yu and uu that enter and exit the un-
certainty, respectively, we need to apply the procedure referred
to as Bpulling out the Δ’s^ in the literature (Zhou et al. 1996;
Zhou and Doyle 1998; Tempo and Blanchini 1996; Skogestad
and Postlethwaite 1996). Recalling which elements in the
model of Fig. 7 are uncertain, the following consolidated ma-
trix Δ is obtained.

Δ ¼
ΔU ⋅AU 0 0 0

0 ΔU ⋅BU 0 0
0 0 ΔU ⋅ΦU 0
0 0 0 δkR

2
664

3
775 ð33Þ

Matrix with real-valued entries, this matrix is not square.
Furthermore, in accordance with the Δ defined above the
following yu and consequently uu are defined.

yu ¼
x
δR
w
δr

2
664

3
775; uu ¼ Δ⋅yu⇒uu ¼

ΔU ⋅AU 0 0 0
0 ΔU ⋅BU 0 0
0 0 ΔU ⋅ΦU 0
0 0 0 δkR

2
664

3
775⋅

x
δR
w
δr

2
664

3
775

ð34Þ

The second pair of vectors that will be constituted is yℓ and
uℓ that enter and exit the controller, respectively. As explained
in Section 3.4, the following inputs and outputs are associated
with the RRS controller.

yℓ ¼ C⋅xþ η ¼
r
ψ
p
ϕ

2
664

3
775þ

η1
η2
η3
η4

2
664

3
775; uℓ ¼ δset ð35Þ

In order to partition the process block to the nine sub-
blocks, as indicated in Eq. (B.1) and Fig. 8, the following
input and output vectors u0 and y0 respectively are defined.

y0 ¼ C0⋅x
H steer;0 sð Þ⋅δset

� �
¼

0:1904⋅ψ
0:1476⋅ϕ

H steer;0 sð Þ⋅δset

2
4

3
5; u0 ¼ w

η

� �
ð36Þ

Vector w ¼ wψ wϕ

� �T
is the exogenous disturbance vector

appearing in Eq. (3) and the vector η is the measurement noise
vector appearing in Fig. 6 consisting of two scalar, mutually
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independent, white, Gaussian stochastic processes of zero
mean and unity standard deviation. By employing the above
definitions, the following sub-blocks of the process block P
may be defined.

P11 ¼
sI5−A0ð Þ−1 sI5−A0ð Þ−1
01�5

02�5

01�5

01�5

02�5

01�5

sI5−A0ð Þ−1 sI5−A0ð Þ−1B0

01�5

02�5

01�5

1
02�1

0

2
664

3
775

P12 ¼
sI5−A0ð Þ−1Φ0 05�4

01�2 01�4

I2 02�4

01�2 01�4

2
664

3
775

P13 ¼
sI5−A0ð Þ−1B0kR0H sð Þ

kR0H sð Þ
02�1

H sð Þ

2
664

3
775

ð37Þ

P21 ¼ C0 sI5−A0ð Þ−1
01�5

C0 sI5−A0ð Þ−1
01�5

C0 sI5−A0ð Þ−1
01�5

C0 sI5−A0ð Þ−1B0

0

� �

P22 ¼ C0 sI5−A0ð Þ−1Φ0 02�4

01�2 01�4

� �

P23 ¼ C0 sI5−A0ð Þ−1B0kR0H sð Þ
H steer;0 sð Þ

� �

ð38Þ

P31 ¼
"
C sI5−A0ð Þ−1 C sI5−A0ð Þ−1 C sI5−A0ð Þ−1 C sI5−A0ð Þ−1B0

#

P32 ¼ C sI5−A0ð Þ−1Φ0 I4
� �

P33 ¼ C sI5−A0ð Þ−1B0kR0H sð Þ
h i

ð39Þ

4 Frigate RRS Robust Controller Synthesis
and Validation

4.1 Synthesis of the RRS Suboptimal H∞ Robust
Controller

In the majority of the cases where a naval vessel might need
roll stabilization support, the ship speed is high or equal to the
nominal value of 15 kn assumed in Section 3.1. Therefore, a
good practice would be to design an RRS system controller
for this speed value by neglecting the uncertainty. After a
controller is obtained, by employing the LFT framework as
in the well well-known study (Doyle et al. 1989), the uncer-
tainty is re-attached in order to investigate the robustness of
the closed-loop system.

As has been shown in Appendix 2, if the uncertainty Δ is
identically zero in Fig. 8, then Eq. (B.4) holds. Synthesis aims
to design the controller K(s) so that an H∞-norm objective isFig. 8 The linear fractional transformation framework

Fig. 7 Full control system model of naval vessel with autopilot and RRS system
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met. However, as theH∞ norm is the L2 to L2-induced norm of
G =Fℓ(P,K), if this norm is minimized, then the worst case
energy of response signal vector y0 over all bounded energy
excitation signal vectors u0 is minimized as well.

Denote as γ(K), the closed-loop value achieved a par-
ticular controller K, i.e., γ(K) = ‖Fℓ(P,K)‖∞. It can be ex-
pected that a specific choice of a stable controller, main-
taining the stability of the closed-loop, minimizes γ(K).
This stable and stabilizing controller is denoted as Kopt

and the achieved value of γ(K) as γopt. However, in our
RRS controller design problem, γopt is not known a priori.
Therefore, the calculation procedure of Kopt involves some
form of optimization. In Doyle et al. (1989) and Glover
and Doyle (1988), the optimization is implemented
through a numerical, iterative technique, which leads to a
value of close to γopt, but not to γopt, exactly.

In our case, the controller calculation procedure involves the
selection of an initial guesstimate for γ. For this value, the fol-
lowingHamiltonianmatrices are used. Note that the partitioning
of the process plant matrices given in Section 3.5 is used.

H∞≜
A γ−2B1BT

1−B2BT
2

−CT
1C1 −AT

� �

J∞≜
AT γ−2CT

1C1−CT
2C2

−B1BT
1 −A

� � ð40Þ

Having formulated H∞, J∞, the following conditions are
checked: (a) H∞, J∞ must not obtain purely imaginary eigen-
values. (b) The stabilizing solutions of the Algebraic Riccati
Equations, associated with the Hamiltonian matrices H∞, J∞,
denoted as X∞ = Ric(H∞), Y∞ = Ric(J∞) are positive,

semidefinite matrices (Doyle et al. 1989; Glover and Doyle
1988). (c) The spectral radius ρ(X∞Y∞) < γ2. If these condi-
tions are met, then a stable and stabilizing controller, K∞, may
be calculated using the calculated matrices H∞, J∞, X∞, Y∞.
The controller obtained achieves ‖G(s)‖∞ = ‖Fℓ(P,K)‖∞ ≤ γ. If
this value of γ is not satisfactory, then it is reduced and the
procedure is iterated until stopped either because the obtained
value of γ ¼ γ̂ is satisfactorily small or because one of the
conditions is not met. The controller obtained in this manner,
K∞, is referred to as suboptimalH∞ controller, as it achieves a
value of γ generally larger than γopt.

(a) Yaw angle

(b) Roll angle

(c) Rudder angle

Fig. 9 Control performances of the autopilot with RRS based on compact
H∞ design

(a) Wave-induced

(b) Rudder-induced

(c) Output

Fig. 10 Roll angles comparison of the autopilot with RRS based on
compact H∞ design

Fig. 11 Power spectral density estimate via Yule-Walker of roll angles
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Note that the describing function of the saturation nonline-
arity, defined above, for zero bias sinusoidal excitation is purely
real. An alternative expression for Nsat (Aδ, 0) is given below.

N sat Aδ; 0ð Þ ¼
γ; Aδj j < ρ

2γ
π

ψþ cos ψð Þsin ψð Þ½ �;ψ≜arcsin ρ
Aδ


 �
; Aδj j > ρ

8<
:

8<
: ð41Þ

5 H2 Linear Quadratic Gaussian Regulator
for Rudder Roll Stabilization

The linear quadratic Gaussian (LQG) control problem for a
stochastic system like the vessel in this work undergoing roll
motion due to exogenous disturbances is historically the most
prominent and basic optimal control problem (Zhou and Doyle
1998; Skogestad and Postlethwaite 1996; Martin 1985). The
problem setup concerns a linear, time-invariant system where
both the process disturbance and the measurement noise are
modeled as Gaussian white noise stochastic signals, uncorrelat-
ed between themselves and to other inputs to the system.

x
⋅ ¼ Axþ Buþ d

y ¼ Cxþ η
ð42Þ

The process disturbance d as well as the measurement noise
η above are both white and Gaussian with covariance matrix
W and V, respectively (Zhou and Doyle 1998; Skogestad and
Postlethwaite 1996). However, no uncertainty is accounted
for. In the context of a rolling vessel, vectors x, u, y, d, and
η as well as matrices A, B, and C have been defined before
and will not be repeated here in the interest of brevity. The
standard LQG problem is to find a control signal u(t) so that
the cost function defined hereafter is minimized.

JLQG ¼ E lim
T→∞

1

T
∫
T

0
xTQxþ uTRu
� �

dt

( )
ð43Þ

In the above, Q and R are appropriate real, symmetric,
positive-definite matrices holding design parameter or
weighing values.

This problem can be solved by a full state feedback control
law of the form (Zhou and Doyle 1998; Skogestad and
Postlethwaite 1996):

u ¼ −Ks x;K s ¼ R−1BTX ð44Þ

Matrix X is determined as the unique symmetric real
positive-semidefinite solution of the following algebraic
Riccati equation (Zhou and Doyle 1998; Skogestad and
Postlethwaite 1996):

ATX þ XA−XBR−1BTX þ Q ¼ 0 ð45Þ

In case that the full state vector is not available for feed-
back, a Kalman filter can be employed to generate an estimate
for the state vector that can be used instead (Zhou and Doyle
1998; Skogestad and Postlethwaite 1996). The Kalman filter
obtains the familiar form of a state observer.

χ̂̂˙ ¼ Aχ̂̂þ K f y−C χ̂̂

� � ð46Þ

In the above, Bhat^ implies estimate. Kf is chosen so that
the expectation value of the state error vector as follows is
minimum.

minE χ−χ̂̂ð ÞT χ−χ̂̂ð Þ
n o

ð47Þ

The value ofKf that achieves minimum state square error is
proven to be the following.

K f ¼ YCTV−1 ð48Þ

Matrix Y above is the unique symmetric real positive-
semidefinite solution of the following algebraic Riccati equation
(Zhou and Doyle 1998; Skogestad and Postlethwaite 1996):

Table 1 Performance of
H2 and H∞ controllers at
U = 5 kn

Performances ℜ % ψ (°) δ (°)

SISO H2 45.4 0.42 20.8

H∞ 45.4 0.79 21.1

MIMO H2 45.5 0.32 20.3

H∞ 47.4 0.45 20.8

Table 2 Performance of
H2 and H∞ controllers at
U = 10 kn

Performances ℜ % ψ (°) δ (°)

SISO H2 52.4 0.48 20.6

H∞ 45.8 0.55 20.9

MIMO H2 51.3 0.29 19.3

H∞ 48.1 0.40 21.1

Table 3 Performance of
H2 and H∞ controllers at
U = 15 kn

Performances ℜ % ψ (°) δ (°)

SISO H2 57.7 0.38 19.3

H∞ 38.7 0.58 20.3

MIMO H2 48.5 0.41 19.3

H∞ 44.8 0.49 21.3

Table 4 Performance of
H2 and H∞ controllers at
U = 20 kn

Performances ℜ % ψ (°) δ (°)

SISO H2 55.5 0.44 18.8

H∞ 31.9 0.55 20.0

MIMO H2 42.7 0.47 19.2

H∞ 39.6 0.56 22.0
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YAT þ AY−YCTV−1CY þW ¼ 0 ð49Þ

As a concluding remark, wemention that the LQG problem
presented here can be put in the more general framework ofH2

control synthesis where the standard optimal control problem
is to find a stabilizing controller K so that the H2 norm of the
following LFT is minimized.

‖F sð Þ‖2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2π
∫

þ∞

−∞
F mathrmjωð ÞFT jωð Þdω

s
; F≜Fℓ P;Kð Þ

ð50Þ

The generalized plant P in the above is appropriately de-
fined in order to incorporate the original system dynamics as
well as covariance matricesW and Vand weighing matrices R
and Q introduced earlier (Zhou and Doyle 1998; Skogestad
and Postlethwaite 1996). The generalized plant’s structure and
form resembles closely that for H∞ controller synthesis.

6 Numerical Simulation

6.1 Simulation Configuration

The nominal test is done for water speed 15 kn. The wave
encountering period is set to 10 s, that is 0.63 rad/s in frequen-
cy, the standard deviation of the wave-induced roll is 6.65°
with a max roll angle 20°, the standard deviation of the wave-
induced yaw is 1.05° with a max course error 3°, the rudder
angle of deviation ∣δset(t)∣ and its turning rate jδ̇R tð Þj are no
greater than 35° and 15°/s. Since the linearized vessel model is
employed, the set course (reference value) is 0 in the simula-
tion runs. The wave encounter frequency is defined in Eq. (12)
in Section 2.2 as well as in Eq. (26) in Section 3.2.

6.2 Simulation Results

The simulation results of the proposed H∞ controller applied
to a vessel in a seaway are shown in Figs. 9, 10, and 11. As can
be seen, the H∞ control system achieves good performance of
joint course keeping and RRS. In the nominal simulation test
of the compact H∞ design, the wave-induced yaw disturbance
has been attenuated by 53.9% without any steady steady-state
error. At the same time, the RRS effect is remarkable with a
damping ratio of 48.5%. Such control performance is more
prominent when the upper high-frequency input of the rudder
angle is greatly increased as shown in Fig. 9.

Figures 10 and 11 demonstrate the operating principle of
rudder roll stabilization. Specifically, the non-zero-mean, low-
frequency, aperiodic activity to maintain heading and course
of the vessel is augmented by superposition of a high-frequen-
cy, zero-mean periodic steering to counter roll motion.
Furthermore, as clearly seen in Fig. 10, the instantaneous roll
angle induced by the waves and the one induced by the rudder
activity are clearly of opposite phase. The same conclusion is
also supported by the frequency domain (Fourier) analysis
shown in Fig. 11.

Tables 1, 2, 3, 4, and 5 show the comparative performance
of the proposed controllers at different ship speeds. It is evi-
dent that all four robust control designs exhibit excellent ro-
bustness in the face of the model perturbation caused by speed
variation. In general, H2 controllers employ significant less
rudder activity to achieve better anti-rolling rate and smaller
course error as compared withH∞ controllers in both the SISO
and MIMO design. As speed increases, control performance
improves first and then decreases.

Control performance of the H2 controller (SISO) demon-
strates the typical normal distribution patterns with the opti-
mum occurring in the vicinity of speed of 15 kn. The optimal
control performance for the other three controllers (Tables 6,

Table 5 Performance of
H2 and H∞ controllers at
U = 25 kn

Performances ℜ % ψ (°) δ (°)

SISO H2 48.8 0.51 18.9

H∞ 38.8 0.98 25.5

MIMO H2 36.2 0.51 19.2

H∞ 37.2 0.57 22.1

Table 6 Performance of
H2 and H∞ controllers at
ω0 = 0.3rad/s, ϕwave =
6.7, ψwave = 4.4

Performances ℜ % ψ (°) δ (°)

SISO H2 60.7 1.64 23.2

H∞ 58.2 1.74 25.2

MIMO H2 64.2 1.40 25.5

H∞ 54.7 1.94 27.5

Table 7 Performance of
H2 and H∞ controllers at
ω0 = 0.5rad/s, ϕwave =
7.4, ψwave = 1.9

Performances ℜ % ψ (°) δ (°)

SISO H2 61.8 0.58 20.5

H∞ 48.8 0.71 21.4

MIMO H2 58.3 0.58 20.8

H∞ 46.4 0.74 22.8

Table 8 Performance of
H2 and H∞ controllers at
ω0 = 0.7rad/s, ϕwave =
5.8, ψwave = 0.9

Performances ℜ % ψ (°) δ (°)

SISO H2 55.7 0.35 18.4

H∞ 38.9 0.48 19.7

MIMO H2 46.0 0.36 18.6

H∞ 48.7 0.49 21.2
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7, and 8) appears at speed around 10 kn; also, note that control
performance at low speed is better than that at high speed.

As can be seen in Table 2, in the wave frequency domain, the
roll response due towave disturbance is greatest about the natural
rolling frequency of the ship, while the wave-induced yaw de-
creases with increase in frequency. The H2 controller achieves
better anti-rolling rates over thewhole frequency domain. TheH2

SISO design achieves in average 6.9% higher than that of the
MIMO design. A similar behavior is also observed for course
control. Compared with the H2 designs, H∞ controllers perform
slightly worse with higher rudder activity.H∞controllers perform
better at lower frequencies than at higher ones (Table 9). It is
worth noting that H∞ controllers configured by SISO design fail
to attenuate the wave-induced disturbances when the wave fre-
quency is higher than 1.1 rad/s (Table 10), although the high-
frequency response is relatively small. Furthermore, MIMO H∞

controllers work better than SISO ones, but they have similar
shortcomings at the frequency of 1.3 rad/s (Table 11). In brief,
H2 control design shows good robustness and effectiveness over
the whole wave frequency domain while H∞ cannot achieve the
same in the high-frequency range.

In order to verify the robustness of the control system and
the performance under different interference conditions, two
sets of comparative experiments were conducted. Firstly, com-
parative tests are done with the ship speeds ranging from 5 to
25 kn, which is to detect the robustness and effectiveness of
the proposed control system in the case of model perturbations
caused by velocity changing; secondly, the effectiveness of
the control system is tested in the full wave frequency domain
ranging from 0.3 to 1.3 rad/s, with ship speed is set to 15 kn.
The roll reduction rate is defined as follows

ℜ% ¼ wφ−ΦRRS

wφ
ð51Þ

where wφ is the STD value of wave-induced roll and ΦRRS is
the STD value of roll with RRS control.

It is worth noting that, because the sea state interference is
driven by random white noise, the experimental results are of
some randomness, but the accuracy and physical significance
are not affected.

7 Conclusions

This paper investigates the effectiveness of augmenting the rud-
der use for rejecting part of the unwanted roll, while maintaining
steering and course changing ability. Specifically, an anti-rolling
action is enabled through intentional superposition of fast, high-
frequency rudder activity as compared with rudder movement to
implement course change and keeping.

The high-frequency movements of the rudder are in the
frequency range of the roll excitation due to exogenous envi-
ronmental wave disturbances. In effect, this superimposed
rudder activity attenuates the high-frequency roll effects from
encountering rough seas when appropriately tuned. For this
purpose, H∞ and H2 robust controllers are designed. To test
and evaluate those controllers, an appropriate control model of
the ship dynamics and the steering gear which is the critical
piece of actuator equipment allowing this technique to be used
is implemented. Random wave disturbances and noise com-
ponents are applied to the model; to generate them the sto-
chastic processes involved are properly modeled and
validated.

The results presented concern a fast naval combat ship,
specifically a displacement frigate vessel. However, with ap-
propriate modifications, this technique can be applied to other
displacement hull types. With further modifications and anal-
ysis, it can be adapted to entirely different vessel types like
planing craft and hydrofoil boats. The only fundamental pre-
requisite is the use of a single or multiple conventional rudders
for steering rather than, e.g., waterjets or pods. These applica-
tions will be investigated in future works.

Appendix 1: Describing Functions of SISO
Nonlinearities

The describing function is a very useful tool for the analysis of
SISO nonlinear systems, especially in the case of limit cycle
oscillations. Therefore, they may be of value for the analysis

Table 9 Performance of
H2 and H∞ controllers at
ω0 = 0.9rad/s, ϕwave =
3.0, ψwave = 0.5

Performances ℜ % ψ (°) δ (°)

SISO H2 58.1 0.26 17.0

H∞ 33.2 0.37 19.2

MIMO H2 48.6 0.26 17.1

H∞ 49.2 0.41 21.2

Table 10 Performance
of H2 and H∞ controllers
at ω0 = 1.1rad/s, ϕwave =
1.6, ψwave = 0.3

Performances ℜ % ψ (°) δ (°)

SISO H2 60.1 0.21 15.4

H∞ 0.5 0.36 20.0

MIMO H2 48.6 0.20 15.7

H∞ 32.5 0.36 23.1

Table 11 Performance
of H2 and H∞ controllers
at ω0 = 1.3rad/s, ϕwave =
1.0, ψwave = 0.2

Performances ℜ % ψ (°) δ (°)

SISO H2 62.9 0.14 13.4

H∞ − 52.9 0.35 20.0

MIMO H2 52.2 0.13 13.6

H∞ 1.2 0.29 23.4

Journal of Marine Science and Application506



and synthesis of control loops involving actuating elements
with nonlinear behavior. This behavior is quite unrestricted in
form; e.g., it may be multi-valued and/or discontinuous and soft
or hard. In the sequel, the following input-output representation
of a causal SISO nonlinear dynamic system is considered.

y tð Þ ¼ f x ξ;−∞ < ξ≤ tð Þð Þ ðA:1Þ

In the above, x(t) is the input or excitation signal and y(t) is
the output or response signal of the nonlinear system.
Functional f(•) is the nonlinear input-output relationship of
the system. The class of input signals to be considered will
be of the following form.

x tð Þ ¼ a0 þ a1cos ωtð Þ ¼ a0 þ Re a1e jωt
� 
 ðA:2Þ

Therefore, the triad (ω,α1,α0) fully defines the input wave-
form in our context. In this case, an approximation the output
signal obtains the following form.

y tð Þ≃b0 þ b1cos ωt þ ϕð Þ ¼ b0 þ Re b1e jϕe jωt
� 
 ðA:3Þ

In this respect, the describing function is defined as the
following complex number.

N ω; a1; a0ð Þ ¼ b1
a1
e jϕ ðA:4Þ

The most common approximation criterion is the mean
square error (MSE) over one fundamental period of the input.
A rather useful manner to obtain N(ω, α1, α0) analytically is
by minimization of the MSE.

J 2 ¼ ∫
2π
ω
0 f a0 þ a1cosωtð Þ−b0−Re a1N ω; a1; a0ð Þe jωt� 
� �2

dt

ðA:5Þ
In our context, it can be shown that b0 and [a1N(ω, a1, a0)]

are the constant (DC) bias and first harmonic coefficients,
respectively, of the Fourier expansion of the output waveform
f(a0 + a1 cos ωt) (Nagrath and Gopal 1986; Zhou 1987). Note
that this approximation of a nonlinear characteristic actually
retains two important properties: amplitude dependence and
the coupling between the DC bias and fundamental harmonic
terms. The latter property is a result of the fact that superpo-
sition does not hold for nonlinear systems; thus, the describing
function, N(ω, a1, a0), is a transfer function parameterized by
input signal amplitude (i.e., function of a1) and operating point
(i.e., function of the bias a0).

Although in related literature (Nagrath and Gopal 1986;
Zhou 1987), f(•) may assume much more general forms, for
the purpose of steering gear modeling of a system consisted of
a static nonlinearityM(•) followed by a low-pass transfer func-
tion G(ω) will be considered, as depicted in Fig. 3. It can be
seen that the describing function of a static memoryless non-
linearity is not frequency dependent. In effect, for the nonlin-
ear system in Fig. 3, the following holds.

N ω; a1; a0ð Þ ¼ NΜ a1; a0ð ÞG ωð Þ ðA:6Þ

In the above, NM (α1, α0) is the frequency independent
describing function of the standalonememoryless nonlinearity
M(•). In the case of the saturation nonlinearity for zero bias
sinusoidal excitation, the describing function is given below.

M sat xð Þ

¼
−μ; x < −ρ
γx; xj j≤ρ;μ
þμ; x < þρ

≜ργ⟹N sat A; 0ð Þ ¼ γ

8<
:

�1; ξj j > 1; ρ≜Aξ
2

π
arcsin ξð Þ þ ξ

ffiffiffiffiffiffiffiffiffiffi
1−ξ2

q
; ξj j≤1

� �8<
:

9=
;þ j0

ðA:7Þ

Note that the describing function of the saturation nonline-
arity, defined above, for zero bias sinusoidal excitation is purely
real. An alternative expression for Nsat (Ac, 0) is given below.

N sat Ac; 0ð Þ

¼
γ; Acj j < ρ
2γ
π

ψþ cos ψð Þsin ψð Þ½ �;ψ≜arcsin ρ
Ac


 �
; Acj j > ρ

8<
:
KN ¼

K ; ∀X < s

K
2

π
β þ sin βð Þ � cos βð Þð Þ;∀X < s

(

ðA:8Þ

Appendix 2: Robust Stability
and Performance of Linear Systems

The generic framework for the representation of a MIMO
uncertain linear system with feedback control is given in
Fig. 8. The following partitioning of the process matrix P is
considered.

yu
y0
yℓ

2
4

3
5 ¼

P11 P12 P11

P21 P22 P23

P31 P32 P33

2
4

3
5 uu

u0
uℓ

2
4

3
5 ðB:1Þ

Fig. B1 The linear fractional transformation setup for checking robust
performance
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Furthermore, the following hold.

uu ¼ Δ⋅yu; uℓ ¼ K ⋅yℓ ðB:2Þ

For the open-loop plant, i.e., K ≡ 0⇒ uℓ, yℓ = 0, the follow-
ing input-output relationship is concluded.

y0 ¼ P21Δ I−P11Δð Þ−1P12 þ P22

h i
⋅u0⟺

y0 ¼ Fu P;Δð Þ⋅u0
ðB:3Þ

In the above,Fu(P, Δ) stands for the upper LFTof processP
by the uncertaintyΔ. In the samemanner, ifΔ ≡ 0⇒ uu, yu = 0,
the lower LFT of process P by the controller K is obtained.

y0 ¼ P22K I−P32Kð Þ−1P33 þ P23

h i
⋅u0 ⟺

y0 ¼ Fℓ P;Kð Þ⋅u0
ðB:4Þ

Evidently, the following relationships hold in the general
case where both a controller and uncertainty are present.

y0 ¼ Fℓ Fu P;Δð Þ;Kð Þ⋅u0 ¼ Fu Fℓ P;Kð Þ;Δð Þ⋅u0 ðB:5Þ

The reason to use the formulation above for an uncertain,
linear system, as in the case of a vessel with RRS, is that the
robust stability and performance checks may be performed in
a straightforward manner. But first, the robust stability and
performance problems must be set into perspective. For intro-
ducing the concepts, the formulation of Eq. (B.3) will be used
with no loss of generality, as the second of Eq. (B.5) guaran-
tees that any conclusions can be extended to the case where a
controller is present by substituting P by Fℓ(P,K).

In this respect, robust stability of uncertain linear plantsmay be
guaranteed in anH∞-norm framework, provided that the Bsize^ of
the perturbationΔ does not exceed the following upper bound.

‖P11‖∞ <
1

γ
⟺‖Δ‖∞≤γ ðB:6Þ

It is reminded here that the H∞ norm of a multivariable
linear system G is defined as follows.

‖G sð Þ‖∞≜ sup
ω≥0

σmax G s ¼ jωð Þð Þ ðB:7Þ

In the above, σmax(•) stands for the maximum singular val-
ue of a possibly complex matrix. The H∞ norm is often re-
ferred to as the L2 to L2-induced norm due to the following
fundamental property.

G sð Þk k∞ ¼ max
uk k2<∞

yk k2
uk k2


 �
ðB:8Þ

In the above, u is the input signal vector, y the output one,
and ‖•‖2 stands for the L2 norm (Euclidean norm).

If condition in Eq. (B.6) is met by any admissible pertur-
bationΔ in the specified set, then the perturbed nominal plant
P is said to be robustly stable under any specified perturbation
Δ. Several additional technical conditions (Skogestad and
Postlethwaite 1996; Tempo and Blanchini 1996; Zhou and
Doyle 1998) are also needed for the validity of the robust
stability check given in Eq. (B.6); for example, the nominal
plant Pmust be stable, if unperturbed. However, the test of Eq.
(B.6) is significant and useful as it allows to determine the
Bmaximum^ perturbation that does not have a destabilizing
effect to the perturbed closed-loop system.

A robust performance test is obtained by extending the
robust stability criterion of Eq. (B.6). The extension requires
the introduction of the structured singular value (SSV or μ)
(Zhou and Doyle 1998; 1996). SSV allows to structure any
uncertainty. Indeed, employing the notation above, the SSVof
a complex matrix, P, under the admissible perturbation set of,
possibly complex,Δ’s, denoted μΔ(P) = μΔ(P11), is the min-
imum value of the H∞ norm of those perturbations Δ that
cause matrix (I − P11Δ) to become singular, i.e., cause ∣I −
P11Δ ∣ = 0; in the case that no suchΔ exists, then μΔ(P) = 0.
It can be seen that the robust stability condition of Eq. (B.6)
obtains the following form in the SSV framework.

‖μΔ P sð Þð Þ‖∞ < 1 where ‖μΔ P sð Þð Þ‖∞≜ sup
ω>0

μΔ s¼ jωð Þ P s ¼ jωð Þð Þ ðB:9Þ

The manner to check robust performance is to convert this
problem to a robust stability one and then apply Eq. (B.9). In
literature, this is achieved by augmenting the original uncer-
tainty block, Δ, by a generic, complex-valued one of appro-
priate dimensions, Δ0, as shown in Fig. B1. Again, with no
loss of generality, the conclusions will be presented with re-
spect to the uncontrolled process P as they can be extended to
the case where a controller is present by substituting P by
Fℓ(P,K). The objective is to obtain a feedback system without
any exogenous inputs or outputs. Robust performance is guar-
anteed provided that the following condition is true.

‖μΔ̂ P sð Þð Þ‖∞ < 1where Δ̂ ¼ diag Δ;Δ0ð Þ ðB:10Þ

A prerequisite of the above to suffice is nominal perfor-
mance, as given below without loss of generality.

‖P sð Þ‖∞ < 1 or; in the case of a controller present ‖Fℓ

�
P;K

�
‖∞ < 1 ðB:11Þ
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