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Abstract
Elastic critical buckling load of a column depends on various parameters, such as boundary conditions, material, and cross-
section geometry. The main purpose of this work is to present a new method for investigating the buckling load of tapered
columns subjected to axial force. The proposed method is based on modified buckling mode shape of tapered structure and
perturbation theory. The mode shape of the damaged structure can be expressed as a linear combination of mode shapes of the
intact structure. Variations in length in piecewise form can be positive or negative. The method can be used for single-span and
continuous columns. Comparison of results with those of finite element and Timoshenko methods shows the high accuracy and
efficiency of the proposed method for detecting buckling load.
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1 Introduction

Structures, such as beams and columns, are widely used as
slender structures in engineering applications, including in
bridges, aerospace, and marine industries. To maximize the
load capacity of structures and minimize the total weight
for the optimized design, scholars have proposed the use of
non-uniform column with cross section varying along their
length.

When a column is exposed to compressive load greater
than its capacity, it deviates from the original stable equi-
librium state and buckling occurs. Buckling loads must be
investigated to avoid catastrophic failure in stepped

columns. The presence of stepped parts depends on the
proportion and location of variations and will result in
changes in stress distribution within the member buckling
load and mode shapes.

Studies about the stability of non-uniform columns have
been published. Different methods have been used to calculate
the buckling load of columns. Dinnik (1929) and Timoshenko
and Gere (1961) found closed solutions for differential equa-
tion of buckling. Gere and Carter (1962) reached an exact
solution for buckling of non-uniform columns with simply
supported boundary condition by using Bessel’s functions.
O’Rourke and Zebrowski (1977) presented an approximated
method based on finite difference method to calculate the
buckling load of non-prismatic columns. Ermopoulos (1986)
investigated the buckling load of non-uniform columns under
axial concentrated forces. Smith presented an analytic solution
for buckling of non-uniform members. Comparison of his
results with those provided by Dinnik showed that, for small
taper ratios, the error is small but increases as the taper be-
comes severe (Smith 1988). Williams and Aston (1989) de-
veloped some diagrams and used them to calculate the
buckling load of tapered columns. Arbabi and Li (1991) pre-
sented a nonlinear method for buckling of elastic columns
with gradually various thicknesses. Bazeos and Karabalis
(2006) proposed an approximate method based on a series
of dimensionless design-oriented charts relating the critical
load of linearly tapered columns of I section to the taper
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ratio and boundary condition. Rahai and Kazemi
(2008) formulated a procedure for buckling analysis
of tapered column members by using modified vibra-
tional mode shape and energy method.

Atay and Coşkun (2009) developed a variational iter-
ation method to solve the stability problem of homoge-
neous Euler column with elastic restraint. Huang and Li
(2012) proposed an analytic approach to determine crit-
ical buckling loads of non-uniform columns with elastic
restraint along their length; they transform the problem
into a Fredholm equation and then to a system of linear
equations. Serna et al. (2011) presented a closed-form
solution for buckling of uniform members under non-
uniform axial load; they proposed an equivalent load
approach for non-uniform members subjected to non-
uniform axial load distribution. Yilmaz et al. (2013) in-
troduced a localized differential quadrature method for
buckling analysis of axially functionally graded non-
uniform columns with elastic restraints. Rajasekaran
(2013) used differential transformation (DT)–based dy-
namic stiffness approach to solve the buckling equation
of axially functionally graded non-uniform beams.
Afsharfard and Farshidianfar (2014) investigated the
buckling load of non-uniform columns by using iteration
perturbation method. Trahair (2014) presented a finite
element method to calculate the buckling capacity of
tapered beam structures under out-of-plane loads. Zhang
et al. (2016) developed the Hencky bar-chain model for
buckling and vibration analyses of non-uniform beams
resting on partial variable elastic foundation.

In this work, a new method is presented to calculate
buckling load by using modified mode shape in columns
with cross section varying along their length. Variations
in the length of the column are considered as piecewise.
The proposed method can be used to calculate buckling
load of continuous columns with variable cross section
that is difficult to solve analytically.

Several numerical examples concerning stability be-
havior of tapered columns will be discussed to demon-
strate the efficiency and accuracy of the developed ap-
proach. In these examples, the effects of boundary con-
ditions, column length, and increase or decrease in stiff-
ness variation were investigated.

2 Buckling Theory of Tapered Structure

For an intact structure, eigenbuckling equation is given by:

K−λiKGð Þφi ¼ 0 ð1Þ
where K(n × n) and KG(n × n) are stiffness and geometric stiff-
ness matrices of the structure, respectively. λi andφi are the ith

eigenvalue and buckling mode shapes of the structure, respec-
tively. The minimum value of λi is known as buckling load.
Buckling mode shape can be normalized as follows:

φi
TKGφ j

T ¼ δij ð2Þ

δij is the Kronecker’s delta.
Changes in structures can cause changes in the stiffness

matrix; as such, buckling load and mode shape will also
change. These changes are introduced by δλi and δφi, respec-
tively. Geometric stiffness will be changed, but it can be
neglected.

For damaged structure, the eigenbuckling equation using
perturbation method can be described as:

K þ δK− λi þ δλið ÞKGð Þ φi þ δφið Þ ¼ 0 ð3Þ

Ignoring upper the differential terms in Eq. (3):

Kδφi−λiKG δφi ¼ −δKφi þ δλiKGφi ð4Þ

Premultiplying Eq. (4) by φi
Tand using Eq. (2) yields:

φi
T K−λiKGð Þδφi ¼ −φi

TδKφi þ δλi ð5Þ

2.1 First Order

In this study, the change in buckling load is presented in two
orders. The change in mode shape is neglected in the first
order and is assumed as a linear combination of the mode
shape of the intact structure in the second order. Neglecting
the change in mode shape in Eq. (5) results in:

δλi ¼ φi
TδKφi ð6Þ

δλi is known as the change in buckling load excluding the
changes in mode shape.

These changes can be written as summation of changes in
each element’s stiffness to establish the relationship between
changes in stiffness matrix and eigenvalues. If Ke

j is the share

of jth element in stiffness matrix, then a new stiffness matrix
can be shown as:

K þ δK ¼ ∑
j¼1

ne

Ke
j 1þ δk j
� � ð7Þ

where ne is the number of elements with n degree of freedom.
δkj is the change in stiffness in jth element. Therefore, δk can
be described as:

δK ¼ ∑
j¼1

ne

Ke
j � δk j ð8Þ
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Equation (8) has below features:

1) The symmetry of stiffness matrix is kept.
2) The connection of nodes is kept.
3) The final changes in the global stiffness matrix are related

to changes in each element.

2.2 Second Order

In the second order, the change in mode shape is considered.
Therefore, Eq. (3) without deleting δφi is shown as:

δλi ¼ φi
TδKφi þ φi

TδKδφi ð9Þ

The changes in the mode shape of the structure can be
expressed as a linear combination of the mode shapes of the
intact structure by using Fox’s formulation.

φi
0
≅ ∑

n

j¼1
αijφ j ð10Þ

where αij is the linear coefficient of jth mode shape used in
calculation of changes in ith mode shape.

The derivation of Eq. (1) can be described by:

K−λiKGð Þφi
0 ¼ − K−λiKGð Þ0φi ð11Þ

Substituting Eq. (10) in Eq. (11) results in:

K−λiKGð Þ ∑
n

j¼1
αijφ j ¼ − K−λiKGð Þ0φi ð12Þ

Premultiplying Eq. (12) by φ j(k ≠ i) followed by
transporting and rearranging it yields:

∑
n

j¼1
αijφk

T K−λiKGð Þφ j ¼ −φk
T K−λiKGð Þ0φi ð13Þ

The expanded form of Eq. (13) is:

αi1φk
T K−λiKGð Þφ1 þ :::þ αinφk

T K−λiKGð Þφn

¼ −φk
T K−λiKGð Þ0φi

ð14Þ

Considering the orthogonality property of mode shapes,
Eq. (14) can be written as:

αikφk
T K−λiKGð Þφ j ¼ −φk

T K−λiKGð Þ0φi ð15Þ

Equation (15) can be simplified as:

αik λk−λið Þ ¼ −φk
T K

0
−λiK

0
G−2λ

0
iλiKG

� �
φi ð16Þ

Considering the orthogonality property of mode shapes:

φk
Tλ

0
iλiKGφi ¼ 0 ð17Þ

Assuming K
0
G ¼ 0, the rate of changes in ith mode shape

can be expressed as:

αik ¼ −φk
TδKφi

λk−λið Þ ð18Þ

when i = k, αik can be calculated by derivation of Eq. (2):

φi
TKGφi þ φi

TK
0
Gφi þ φi

TKGφ
0
i ¼ 0 ð19Þ

Using the symmetry property of the stiffness matrix, Eq.
(19) can be simplified as:

2φi
TKGφ

0
i ¼ φi

TK
0
Gφi ð20Þ

Substituting φ
0
i from Eq. (10) in Eq. (20) results in:

2φi
TKG ∑

n

j¼1
αijφ j ¼ φiK

0
Gφi ð21Þ

Assuming K
0
G ¼ 0 and the orthogonality property of mode

shapes:

αij ¼ 0 ð22Þ

Fig. 1 Simply supported column under compressive tip load

Fig. 2 First- and second-order error percentage

Table 1 Column
parameters Parameter Value

E/GPa 200

I/m4 5.4 × 10−10

L/m 4
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Therefore, αik can be written as:

αik ¼ −φk
TδKφi

λk−λið Þ i≠k

αii ¼ 0 i ¼ k

8<
: ð23Þ

Finally, the change in buckling load is given as:

δλi ¼ φi
TδKφi−φi

T φk
TδKφi

λk−λið Þ φk

� �
ð24Þ

2.3 Stiffness and Geometric Stiffness Matrices

In analysis of the stability of structures, if the value of load
causes elastic behavior, then linear elasticity theory may be
used. However, if load increases largely, the structure could
behave in a geometrically nonlinear manner, in a materially
nonlinear manner, or their combination. For beam element
stiffness and geometric stiffness, the matrices are:

K ¼ EI
L3

12 6L −12 6L
6L 4L2 −6L −2L2
−12 −6L 12 −6L
6L −2L2 −6L 4L2

2
664

3
775 ð25Þ

KG ¼ T
30L

36 3L −36 3L
3L 4L2 −3L −L2

−36 −3L 36 −3L
3L −L2 −3L 4L2

2
664

3
775 ð26Þ

3 Numerical Results

3.1 General

Equation (24) describes the changes in buckling load due
to existence of tapered member, in which the change in
mode shape is considered. In similar works, vibration
mode shapes are used instead of buckling mode shapes.
This practice might be usable for single-span columns but
not for multi-span columns, where vibration mode shapes
do not have analytical calculation. Thus, employing this
method is invalid for multi-span columns. Current meth-
od utilizes eigenvalue equation to calculate buckling
mode shapes of uniform columns and then uses αik in
Eq. (18) to calculate the buckling mode shapes of non-
uniform columns.

The numerical procedure based on developed formula-
tion was programmed on a desktop computer, and the
numerical results are presented to demonstrate their ver-
satility and accuracy in solving buckling problems of
stepped columns in the following sections.

Example 1: Buckling of Simply Supported Tapered Columns
In theory, section buckling load is described in two orders:

first order and second order. In the first order, the change in
mode shape is neglected. In this example, error due to this
neglect is investigated.

For this purpose, a simply supported column is consid-
ered. In the finite element model, the total number of
elements is eight. Table 1 shows the column parameters,
and the column is shown in Fig. 1.

The first- and second-order results are compared with
those obtained by exact solution. The error percentage of
these orders is shown in Fig. 2. The flexural rigidity of
three elements is increased by 20% in differential analysis
to obtain the error percentage.

As shown in Fig. 2, considering the change in mode
shape increases the accuracy of calculation. Moreover,
the error percentage is less regardless of the variation
close to the boundaries.

Fig. 3 Cross-section variations along the length of column

Table 2 Comparison of buckling load of simply supported tapered
column obtained by the proposed method and other methods

L/m λ μ Pcr/N

Timoshenko FEM Present method

5 0.2 1.66 77.245 77.232 78.391

5 0.2 1.25 70.965 70.976 72.392

5 0.4 1.66 90.636 90.561 92.462

5 0.4 1.25 76.194 76.167 77.309

8 0.6 1.66 39.943 39.947 40.466

8 0.6 2.5 55.182 55.182 56.231

8 0.8 1.66 42.278 42.278 43.757

8 0.8 2.5 62.703 62.732 64.237

Table 3 Beam column
properties Parameter Value

E/GPa 200

I/m4 8.3 × 10−10

L/m 10

Fig. 4 Simply supported continuous column subjected to axial loading
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3.2 Example 2: Buckling of Simply Supported Tapered
Column; Middle Section Fatted

Figure 3 shows a tapered column that is simply supported on the
ends and subjected to axial compression Pcr. The unknown pa-
rameters are length of column L and flexural stiffness of column
EI, where E is the Young’s modulus of elasticity, E = 200 (GPa)
and I is the column flexural moment of inertia, I0 = 8.3e −
10 m4. The middle section of this column has an abrupt change
with length of λL, and the flexural stiffness changes with rate of
μ. The buckling loads for different values of stiffness ratio μ and
changes in length λ are presented in Table 2.

The results are compared with those obtained by finite
element method and exact method presented by Timoshenko
and Gere (1961). A good agreement is observed.

3.3 Example 3: Buckling of Continuous Tapered
Columns with Different Boundary Conditions

In this section, two types of continuous columns are presented
to investigate buckling load. Different types of boundary con-
dition and cross section changes are used in the two columns.
Table 3 shows the main parameters of both continuous
columns.

In this section, the effects of boundary conditions and lo-
cation of tapered member on buckling load are investigated.

Example 4: Continuous Column No. 1
For continuous column No. 1 (Fig. 4), three cases are con-

sidered. In the first case, the flexural rigidity values of ele-
ments 2 and 6 are reduced by 20% and 30%, respectively. In
the second case, the flexural rigidity values of elements 1 and
4 are increased by 25% and 20%, respectively. In the third
case, the stiffness of elements 3 and 17 is reduced by 15%.
Table 4 shows the results obtained by the proposed method
and finite element analysis performed by ANSYS.

For tapered members near the boundary conditions, the
change in buckling load and error in the proposed method
is low. If the variation in stiffness occurs in greater span,
then more changes in buckling load are observed.

Example 5: Continuous Column No. 2
pt?>In the other continuous column (Fig. 5), boundary

conditions are a combination of clamped and simply sup-
ported type. In this column, three cases are also considered.
In the first case, the flexural rigidity values of elements 1
and 6 are increased by 30% and 15%, respectively. In the
second case, the flexural rigidity values of elements 7 and 8
are reduced by 20% and 10%, respectively. In the third case,
the stiffness values of elements 4 and 9 are increased by
30% and 20%, respectively. Table 5 shows the results ob-
tained by the proposed method and finite element analysis
performed by ANSYS.

In general, the presence of more supports decreases the
span length, thereby increasing the buckling load.

Example 6: Buckling of Cantilever Tapered Column

Table 4 Comparison of buckling
load of simply supported
continuous column obtained by
the proposed method and FEM

Cases of changes Pcr/N

Case No. Change type Element No. Variation/% FEM Present method

1 Decrease 2 20 130.579 133.062
6 30

2 Increase 1 25 147.187 149.541
4 20

3 Decrease 3 15 142.492 144.201
4 15

Fig. 5 Continuous column subjected to axial loading with combined
boundary conditions

Table 5 Comparison of buckling
load of continuous column
obtained by the proposed method
and FEM

Cases of changes Pcr/N

Case No. Change type Element No. Variation/% FEM Present method

1 Increase 1 30 101.681 104.528
6 15

2 Decrease 7 20 94.548 96.249
8 10

3 Increase 4 30 103.139 105.821
9 20
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A steel tapered cantilever column used by Timoshenko and
Gere (1961) as a numerical example for calculating the critical
buckling load is shown in Fig. 6. The material and cross-
sectional properties are as follows E = 200 (GPa), I = 5.4 ×
10–9 m4, and stiffness ratio μ = 1.5. The proposed method is
compared with finite element analysis performed by ANSYS
and the analytic solution by Timoshenko and Gere (1961).
The results of the comparison are shown in Table 6.

4 Conclusion

This study proposes a new approach for calculating the buckling
load of tapered columns with variable cross section by using
modified mode shapes. The mode shapes of a column depend
on structural stiffness parameters. The proposed method can be
used for single-span and continuous columns with piecewise
variation in their length. The mode shape of the damaged struc-
ture can be expressed as a linear combination of the mode shapes
of the intact structure. This property is used to accurately deter-
mine buckling load. Several examples are presented to illustrate
the capability of the method. The results are also compared with
finite element method and Timoshenko method.

For future work, the proposed method can be used for sensi-
tivity analysis to reduce columnweight. Using sensitivity analysis,
the method can detect the magnitude and location of the damaged
elements to which the buckling aspect of the structure is intended.
The method can also be developed for tapered columns with
elastic foundation. The buckling load of tapered columns of
linearly varying section must also be investigated in the future.

5 Concrete Application

Marine structures, such as ships and platforms, are composed
of various elements, including beams, columns, and plates. In
all of these structures, buckling is an important issue. In plat-
forms, buckling problem is considered at the installation phase
and in the piles due to the axial force caused by the impact. In
cases where the platform’s buckling capacity should be in-
creased, the proposed method can be used to find the element
or elements to increase the stiffness.

The ship’s plates are referred to as other examples. The
presence of variable cross sections in the ship plates that are
strongly corroded also significantly increases the buckling
capacity and flexural stiffness.

Fig. 6 Cantilever column with varying cross section

Table 6 Comparison of buckling load of cantilever column obtained by
the proposed method and FEM

L/m λ Pcr/N

Timoshenko FEM Present method

2 0.2 762.943 762.943 764.351
2 0.3 815.218 815.166 818.332
2 0.4 866.62 866.616 870.102
2 0.5 913.425 913.424 917.754
4 0.2 190.735 190.735 192.419
4 0.3 203.792 203.791 207.421
4 0.4 216.654 216.654 220.943
4 0.5 228.355 228.356 233.149

Nomenclature

K stiffness matrix
KG geometric stiffness matrix
λi eigenvalue of the structure
φi mode shape of the structure
δij Kronecker’s delta
δλi variation of eigenvalue
δφi variation of mode shape
δKi variation of stiffness matrix
αij linear coefficient of jth mode shape
φ’i changes in mode shape of the structure
E Young’s modulus of elasticity
I column flexural moment of inertia
T internal load of elements
L beam length
Pcr critical buckling load of column
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