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Abstract
Scattering of oblique flexural-gravity waves by a submerged porous plate in a finite water depth is investigated under the
assumptions of linearized surface waves and small-amplitude structural response. The study is carried out using eigenfunction
expansions and the corresponding orthogonal mode-coupling relations associated with flexural-gravity waves in uniform water
depth. The characteristics of the roots of the complex dispersion relation are examined using the principle of counting argument
and contour plot. Characteristics of the flexural-gravity waves are studied by assuming both the floating elastic plate and the
submerged porous plate are infinitely extended in horizontal directions. The effectiveness of the submerged porous structure on
the reflection, transmission, and dissipation coefficients is analyzed for various wave and structural parameters.

Keywords Flexural-gravity wave . Mode-coupling relation . Dispersion relation . Porous plate . Reflection and transmission
coefficients

1 Introduction

Over the past two decades, coastal engineering has seen a
growing interest in wave–structure interaction as demanded
by the need for the attenuation of waves in order to create a
tranquil nearshore zone. Compared with vertical structures,
which tend to block current and are subject to large wave
loading, the use of submerged horizontal structures as a break-
water is more preferable as these structures do not hamper the
seascape and does not block the incoming waves. The inter-
action of surface waves with a submerged structure may result
in a phase shift of the waves, which may then lead to a de-
structive interference of the incoming and reflected waves.
Moreover, structural porosity helps in dissipating the wave
energy. Although interaction between surface waves and a

submerged plate was studied as early as Heins (1950), an
effective use of submerged structures as a breakwater in a
coastal setting was not studied until Ijima et al. (1970). A
detailed review on the performance of submerged horizontal
plates for wave control can be found in Yu (2002).

A model for a wave absorbing system, developed by Cho
and Kim (1998), involved an inclined submerged horizontal
perforated plate and a vertical wall. Their mathematical model
was formulated based on the linearized wave theory and
Darcy’s law for flow past porous structures. They validated
their theoretical and computational results through full-scale
experiments. Liu and Li (2011) analyzed interaction of surface
gravity waves with an offshore submerged horizontal porous-
plate bymeans of the matched eigenfunction-expansion meth-
od. Evans and Peter (2011) studied the interaction of surface
gravity waves with a submerged semi-infinite porous plate via
the Wiener-Hopf technique, and a finite porous plate via the
residue technique. Hu and Wang (2005) studied wave past a
system consisting of a submerged horizontal plate and a
vertical porous wall, and demonstrated that, for a suitable
configuration, the system can reduce wave transmission
effectively. More studies on wave interaction with a suitable
arrangement of submerged porous plates can be found in Liu
et al. (2007) and the references cited therein. Apart from wave
interaction with submerged structures, an extensive work has
been done on wave interaction with submerged flexible
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porous structures. These types of structures are very light in
weight and cost-effective. Apart from energy loss by structural
porosity, wave energy can also be dissipated through structur-
al deformation, which will attenuate both the incident and
scattered waves. Cho and Kim (1998) investigated oblique
wave interaction with a submerged horizontal flexible mem-
brane using the boundary element method and eigenfunction
expansion method. The work was later extended by Cho and
Kim (2000) to wave diffraction by a submerged porous flex-
ible membrane. In both studies, the analytical and numerical
results were supported by experimental validations. On the
other hand, Hassan et al. (2009) analyzed the surface wave
interaction with submerged flexible plates of finite and semi-
infinite lengths by combining the dynamic and kinematic con-
ditions on the submerged plate. In this approach, the physical
problem was converted into a boundary value problem asso-
ciated with Laplace equations satisfying certain high-order
conditions on the structural boundary. Williams and Meylan
(2012) investigated the surface wave interaction with a semi-
infinite submerged elastic plate using the Wiener-Hopf tech-
nique. Recently, Behera and Sahoo (2015) looked into the
hydroelastic analysis of surface gravity wave interaction with
a submerged flexible porous plate in finite water depth.
Meylan et al. (2017) studied scattering of surface waves by a
floating porous elastic plate in three dimensions using coupled
boundary element and finite element method to account for
plates of arbitrary configurations. Behera and Ng (2017) in-
vestigated oblique wave scattering by a system of floating and
submerged porous elastic plates. Recently, Koley and Sahoo
(2017) analyzed oblique wave scattering by a floating flexible
porous membrane by converting the boundary value problem
into pairs of Fredholm integral equations in terms of the ve-
locity potentials and their normal derivatives along the
membrane.

Recently, significant progress has been made on the inter-
action of surface gravity waves with very large floating struc-
tures for ocean space utilization. Hydroelastic analysis of
these structures has been performed for understanding the
performance of these large-scale structures under the action
of waves. Wang and Tay (2011) reviewed various applica-
tions, research, and development of VLFS over two decades.
A parallel branch of study is the interaction of surface gravity
waves with floating ice sheet where the floating ice sheet is
modeled as an elastic plate and a state-of-the-art research on
wave–ice interaction can be found in Squire (2011). Various
two-dimensional investigations have been generalized to
study wave interaction with floating structures in three-dimen-
sions. Mondal et al. (2013) studied the wave-structure inter-
action problems in three-dimensions in case of homogeneous
fluids having a plate covered surface which was generalized
by Mondal and Sahoo (2012, 2014) to deal with such prob-
lems in cases of stratified fluids in two-layer and three-layer
fluid systems assuming the presence of plate covered surface

and interfaces. Mandal et al. (2017) studied various character-
istics of eigen-systems for flexural-gravity waves which is
generated due to the interaction of surface gravity waves with
large flexible floating structures. For mitigating the
hydroelastic response of the very large floating structures in
waves, several methods have been proposed and a review on
the same can be found in Wang et al. (2010) and Tavana and
Khanjani (2013). Ohta et al. (1999) investigated the effect of
submerged vertical as well as horizontal plate attached at the
fore end of the VLFS. Watanabe et al. (2003) examined the
effect of attached horizontal plates to VLFS. Cheng et al.
(2015) analyzed the hydroelastic response on a very large
floating structure edged with a pair of submerged horizontal
plates. Recently, Cheng et al. (2016) analyzed the role of dual
inclined perforated plates for mitigating hydroelastic response
of a VLFS using hybrid finite element-boundary element
method. It may be noted that in case of rigid submerged plates,
no edge conditions are prescribed as a part of the boundary
value problem for uniqueness of the solution unlike the case of
a flexible submerged plate in spite of the fact that the plates are
kept in position with appropriate supporting system. Recently,
Mohapatra and Sahoo (2014a) analyzed gravity wave interac-
tion with floating and submerged elastic plate system in two-
dimensions, which was generalized by Mohapatra and Sahoo
(2014b) to study oblique surface wave interaction with a float-
ing elastic plate in the presence of a flexible submerged plate.
Moreover, three-dimensional hydroelasticity theory is used to
predict the hydroelastic response of flexible floating intercon-
nected structures. Effective use of hinges or semi-rigid con-
nectors for reducing hydroelastic responses of VLFS have
been studied by Fu et al. (2007). Recently, Yoon et al.
(2014) performed hydroelastic analysis of floating plates with
multiple hinge connections in regular waves. Using Biot’s
consolidation theory, Das et al. (2016) studied the effect of
poroelastic bed on flexural-gravity wave motion in a single-
or two-layer fluid. Recently, Das and Sahoo (2017) studied the
effect of viscoelastic bed on the hydroelastic response of a
very large floating structure.

Meanwhile, significant progress has also been made on
scattering of flexural-gravity wave by vertical barriers for re-
ducing structural vibration of the large floating elastic struc-
ture. Takagi et al. (2000) proposed a simple anti-motion de-
vice, which a box-shaped body is attached to an edge of the
floating structure. The performance of this device was inves-
tigated theoretically and experimentally. The theorywas based
on the eigenfunction expansion method. Chakrabarti et al.
(2003) investigated a class of such surface water wave prob-
lems, involving the vertical barrier, under the assumption that
there exists a thin ice-cover on the surface of the deep water.
Using the method of multipoles, Das andMandal (2009) stud-
ied wave scattering by a circular cylinder half-immersed in
water with an ice-cover. Later, Maiti and Mandal (2010) used
the hyper singular integral equation method for flexural-
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gravity wave interaction with an inclined submerged vertical
barrier. Recently, Manam and Kaligatla (2011) provided an
explicit solution to study the scattering of flexural-gravity
waves by a rigid vertical barrier. However, to the author’s
knowledge, no study has been performed in the literature to
understand the role played by a submerged permeable hori-
zontal structure in attenuating the structural response of a large
floating structure/ice sheet.

The present study aims to look into the effect of a sub-
merged porous plate on the mitigation of hydroelastic re-
sponse of a very large floating structure. In terms of three-
dimensional Cartesian coordinates, a model is developed for
the interaction between waves and a very large floating struc-
ture, under the conditions of linearized water waves and small-
amplitude structural response. Moreover, Darcy law is used to
describe waves propagating past a submerged porous structure
as in Cho and Kim (2013). Moreover, since the submerged
porous plate is assumed to be rigid in nature, no edge condi-
tions are prescribed near the submerged plate edges at the
edges in spite of the fact that the submerged plate is kept is
position with appropriate support system. Moreover, since
emphasis is given to understand the effect of the submerged
porous plate on the hydroelastic response analysis of the float-
ing plate, role of support system which keep the structure in
position is not taken into consideration in the present study.
Here, it is assumed that the floating elastic plate is infinitely
extended both lengthwise and spanwise, while the submerged
porous plate can be of finite length and infinitely large
spanwise. In the limiting case where the submerged plate is
also infinitely extended both lengthwise and spanwise, its ef-
fect on the phase velocity of the flexural-gravity waves and
floating plate deflection is examined in detail. It may be noted
that the length of the floating elastic plate is assumed to be
very large compared to the length of the submerged porous
plate. Thus, for mathematical simplicity, the floating plate is
assumed to be infinitely extended. For flexural gravity wave
scattering by a finite submerged porous plate, the physical
problem is handled using the eigenfunction expansion method
and mode-coupling relation. Results are generated to reveal
the effect of various physical properties (porosity of the sub-
merged porous plate, rigidity and compressive force of the
very large floating plate, and wave incident angle) on the wave
reflection and transmission, and dissipation.

2 Mathematical Formulation

In this section, the problem of oblique flexural-gravity waves
scattered by a submerged horizontal finite porous plate is
mathematically formulated. A definition sketch of the prob-
lem is shown in Fig. 1. We introduce a three-dimensional
Cartesian coordinate system, wherein the x − y plane is a hor-
izontal plane and the z−axis is taken vertically downward into

the fluid region. It is assumed that an infinite ice-sheet or
elastic plate of small thickness d floats on the undisturbed
water surface z=0, and a finite submerged thin porous plate
of length B is kept horizontally at z = − h in water of finite
depth H, as shown in Fig. 1.

The whole fluid domain is decomposed into four regions:
region 1, 2, 3, and 4. It is assumed that the fluid is inviscid,
incompressible, and the motion is irrotational. Thus, the ve-
locity potentials Φj(x, y, z, t) for j = 1, 2, 3, 4 satisfy the three-
dimensional Laplace equation as given by

∂2

∂x2
þ ∂2

∂z2
þ ∂2

∂z2

� �
Φ j ¼ 0 ; for j ¼ 1; 2; 3; 4 ð1Þ

Assuming that the bottom bed is rigid, the bottom bound-
ary condition is given by

∂Φ j

∂z
¼ 0 on z ¼ −H ; for j ¼ 1; 3; 4 ð2Þ

The linearized kinematic condition on the plate covered
surface at z=0 is given by

∂Φ j

∂z
¼ ∂η

∂t
; for j ¼ 1; 2; 4 ð3Þ

where η is the deflection of the floating elastic plate. The
linearized hydrodynamic pressure in the j-th region is given by

Pj ¼ −ρ
∂Φ j

∂t
−gz

� �
ð4Þ

where ρ is the density of water and g is the acceleration due to
gravity. The thin elastic plate equation in the presence of uni-
form compressive force Tc, which is floating on the mean free
surface of water along the x − y plane at z=0, is given by

EI∇ 4
xy þ Tc∇ 2

xy þ ρed
∂2

∂t2

� �
η ¼ −Pj x; y; z; tð Þ

for j ¼ 1; 2; 4
ð5Þ

Fig. 1 Schematic diagram of flexural-gravity waves scattered by a sub-
merged finite horizontal porous plate
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where ∇ 2
xy ¼ ∂2=∂x2 þ ∂2=∂y2, and E, d and ρe are the

Young’s modulus, thickness, density of the elastic plate, re-
spectively with I = d3/[12(1 − ν2)] and ν is the Poisson’s ratio
of the elastic plate. Eliminating Pj and η, from Eqs. (4) and (5),
the linearized condition on the plate covered surface is obtain-
ed as

EI∇ 2
xy þ Tc∇ 2

xy þ ρed
∂2

∂t2

� �
∂Φ j

∂z
¼ ρ

∂2Φ j

∂t2
−g

∂Φ j

∂z

� �
on z ¼ 0 ; for j ¼ 1; 2; 4

ð6Þ

Assuming that the flexural-gravity wave is propagating by
making an oblique angle θ with the x−axis and the wave mo-
tion is simple harmonic in time with angular frequency ω, the
velocity potentials and plate deflection are written in the forms

Φ j x; y; z; tð Þ ¼ Re ϕ j x; zð Þe−i μy y−ω tð Þn o
f o r j ¼ 1; 2; 3; 4

and η x; y; tð Þ ¼ Re ζ xð Þe−i μy y−ω tð Þn o
with μy = k0 sin θ and

k0 being the wave number of the incident wave. Thus, the
spatial velocity potentials ϕj(x, z) for j ¼ 1; 2; 3; 4 satisfy
the Helmholtz equation which is given by

∂2

∂x2
þ ∂2

∂z2
−μ2

y

� �
ϕ j ¼ 0 ; for j ¼ 1; 2; 3; 4 ð7Þ

along with the rigid bottom boundary condition

∂ϕ j

∂z
¼ 0 ; on z ¼ −H ð8Þ

The linearized kinematic boundary condition on the float-
ing elastic plate is given by

D
∂4

∂z4
−Q

∂2

∂z2
þ 1

� � ∂ϕ j

∂z
þ Kϕ j ¼ 0 ð9Þ

where j=1,2,4, D = EI/(ρg − msω
2), Q = Tc/(ρg − msω

2),
K = ρω2/(ρg −msω

2), ms = ρed. The continuity of pressure
and velocity at x=0 and x = B yield

ϕ j ¼ ϕ2;
ϕ3;

and
∂ϕ j

∂x
¼

∂ϕ2

∂x
∂ϕ3

∂x

8><
>:

8><
>: ð10Þ

where j=1 at x=0 and j=4 at x = B. The boundary condition on
the submergedporousplate isgivenby,as inChoandKim(2013),

∂ϕ2

∂z
¼ ∂ϕ3

∂z
¼ iσ ϕ3−ϕ2ð Þ; on z ¼ −h; 0 < x < B ð11Þ

Eq. (11) is the Darcy’s model which indicates that the ver-
tical mass fluxes between region 2 and 3 are continuous at the
porous plate and the vertical flow velocity across the porous
plate is linearly proportional to the pressure difference be-
tween each plate sides. The imaginary part of the proportion-
ality constant σ is related to the inertia effect and thus has
nothing to do with energy dissipation. It can be neglected
when the porous plate is thin and the size of holes is not large.
The positive real value of σ is called the porous-effect param-
eter and represents viscous effects and can directly be obtained
from experiment. The porous-effect parameter G is recently
defined as (see Cho and Kim (2013)):

G ¼ 2πσ
k0

ð12Þ

It is assumed that the plate deflection, slope of deflection,
bending moment and shear force are continuous at x=0 and
x = B, which yield

ϕjz ¼ ϕ2z; ϕjxz ¼ ϕ2xz;

EI ∂2x−νμ
2
y

� �
ϕjz ¼ EI ∂2x−νμ

2
y

� �
ϕ2z;

EI∂2x− 2−νð Þμ2
y∂x

n o
þ Tc∂x

h i
ϕjz

¼ EI∂2x− 2−νð Þμ2
y∂x

n o
þ Tc∂x

h i
ϕ2z;

9>>>>>=
>>>>>;

ð13Þ

where j=1 at x=0 and j=4, at x = B. Finally, the radiation con-
dition for oblique wave scattering by a floating elastic plate
over porous bed yield

ϕ j x; zð Þ ¼ I0 e−i q0 x þ R0 e
i q0 x� �

f 0 k0; zð Þ ; j ¼ 1 ; x→−∞
T0 e

−i q0 x f 0 k0; zð Þ ; j ¼ 4 ; x→∞

�
ð14Þ

where I0, R0, and T0 are the constants associated with the
incident, reflected and transmitted wave amplitudes, respec-

tively with q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k20−μ2

y

q
and f0(k0, z) being the associated

eigenfunctions.

3 Flexural-GravityWaves in the Presence of an
Infinitely Extended Submerged Porous Plate

In this section, it is assumed that both the floating elastic plate
and submerged porous plate are infinitely extended in the
horizontal direction as in Fig. 2. Further, one-dimensional
plane progressive flexural-gravity wave is considered with
the assumption that the deflection of the floating elastic plate
is of the form η = Re {η0e

−i (p x − ω t)} where η0 is the ampli-
tudes of the deflection of the floating plate. Thus, the velocity
potential in this case is of the form

Effect of a Submerged Porous Plate on the Hydroelastic Response of a Very Large Floating Structure 567



Φ x; z; tð Þ ¼ Ju p; zð Þ
J l p; zð Þ

� �
η ð15Þ

where

Ju p; zð Þ ¼ ig
ω

� �
coshp zþ Hð Þ−Fsinhp zþ Hð Þ

coshpH−FsinhpH
for − h < z < 0

ð16Þ

J l p; zð Þ ¼ ig
ω

� �
tanhp H−hð Þ−F
tanhp H−hð Þ

coshp zþ Hð Þ
coshpH−FsinhpH

for − H < z < −h
ð17Þ

F ¼ ptanh2p H−hð Þ
ptanhp H−hð Þ−ik0G 1−tanh2p H−hð Þ
 � ð18Þ

with the wave number p satisfying the dispersion relation

K− Dp4−Qp2 þ 1
� �

ptanhpH
¼ F KtanhpH−p Dp4−Qp2 þ 1

� �
 � ð19Þ

It may be noted that as G→∞, F→ 0, and the dispersion
relation as in Eqs. (19) reduces to the dispersion relation as-
sociated with the floating elastic plate without submerged po-
rous plate as in Karmakar et al. (2010) which in terms of k
satisfies the relation

Dk4−Qk2 þ 1
� �

ktanhkH ¼ K: ð20Þ

In particular, for D=0, Q=0, and ms=0, (K = ω2/g), the dis-
persion relations as in Eqs. (20) and (19) reduce to the disper-
sion relations for open water and submerged porous plate
regions in case of gravity wave scattering by a submerged
porous plate as in Liu et al. (2007). In the present study, the
solution of the complex dispersion relation in Eq. (19) is the
central to the solution method. The nature of the roots of the
dispersion relation are obtained using the principle of counting

argument as discussed in Fox and Squire (1990). In Fig. 3a,
behavior of the roots of the dispersion as in Eqs. (20) is plot-
ted. As earlier discussed by Fox and Squire (1990), it has two
real roots k0 and −k0, four complex roots kI, kII, kIII and kIV
with kI ¼ kIV and kII ¼ kIII and a sequence of purely imagi-
nary roots ±kn, n=1, 2, 3,..., and are shown in the contour plot
(as in Fig. 3a). However, all roots of the dispersion relation as
in Eq. (19) are complex in nature (as in Fig. 3b) and which has
certain close proximity with the roots discussed in Fig. 3a. The
complex roots p0 and −p0 are referred as the wave numbers
associated with the most progressive waves in flexural-gravity
modes whilst, the four complex roots PI, PII, PIII and PIV lying
in the four quadrants are referred to wave numbers associated
with the non-propagating wave modes. Further, the infinitely
many complex roots pj for j=2,3,.... which are close to the
imaginary axis of the p-plane are referred as the evanescent
wave modes. Assuming realistic nature of the physical

Fig. 2 Schematic diagram of flexural-gravity waves over a submerged
infinitely extended porous plate

(a) Contour plot of Eq. (20) 

(b) Contour plot of Eq. (19)

Fig. 3 Contour plots of roots of the dispersion relation for a flexural-
gravity wave without a porous plate and b flexural-gravity wave with a
porous plate forH=10m, T=5s, g=9.81m/s2, ν=0.3,G=1, E=5GPa, d=0.1
and Tc=0
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problem, the velocity potentials are assumed to be bounded,
and the roots of the dispersion relation in the first and fourth
quadrants are used in the computation.

In Fig. 4a, b, phase velocities ω/p0 versus real part of the
positive wave number p0 are plotted for different values of
compressive forceTc and depth ratio h/H, respectively.
Figure 4a reveals that phase velocity in the absence of sub-
merged porous plate (G = ∞ ) for Tc=2(EIρg)

1/2 is in close
agreement with the result of Mohanty et al. (2014).
Moroever, phase velocity decreases significantly in the pres-
ence of a solid submerged plate (G=0). In addition, phase
velocity decreases with an increase in compressive force. On
the other hand, Fig. 4b depicts that in the presence of an
impermeable submerged plate (G=0), the phase velocity is
less when the plate is close to the floating elastic plate.
However, the critical value of the compressive force for which
phase speed attains zero minimum is independent of the posi-
tion of the submerged impermeable plate.

In Fig. 5a, b, c, the phase velocities versus submergence
depth h/H are plotted for different values of porous-effect

parameter G, Young’s modulus E and compressive force Tc
respectively. Figure 5a reveals that in the absence of sub-
merged porous plate (G =∞), the phase velocity is more com-
pared to the presence of submerged porous plate. This is due
to the dissipation of wave energy by the submerged porous
plate.Further, the phase velocity is morewhen submergedplate
is nearer to the floating plate. This is due to the fact that the

(a) Phase velocity

(b) Phase velocity

Fig. 4 Variation of phase velocity versus wave number p0 for different
values of a compressive force Tc and b depth ratio h/H with H=10 m,
T=5s, ν=0.3, g=9.81 m/s2 and E=5 GPa. In a h/H=0.5 and b Tc=2(EIρg)

1/2

(a) Phase velocity

(b) Phase velocity

(c) Phase velocity

Fig. 5 Variation of phase velocity versus submergence depth h/H for
different values of (a) porous-effect parameter G, (b) Young’s
modulusEand (c) compressive force Tc with H=10m, T=5s, ν=0.3,
g=9.81m/s2, d=1m. In (a) E=5GPa and Tc=0, (b) G=2 and Tc=0, (c)
G=2 and E=5GPa
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wave energy concentration is more near the floating plate
when the submerged plate is close to the floating plate.

In general, when the position of the submerged plate goes
to the bottom, effect of submerged plate will be less on
flexural-gravity wave motion. Thus, phase velocity increases
with an increase in h/H. Moreover, the phase velocity in-
creases with an increase in G. This is due to the fact that more
wave transmit through the fine pores of the porous plate for
higher values of G. In Fig. 5b, it is seen that rigidity of the
floating plate has less effect on phase velocity when sub-
merged plate is nearer to the floating plate. However, with
an increase in Young’s modulus E, the phase velocity in-
creases for higher values of h/H. On the other hand, Fig. 5c
reveals that phase velocity decreases with decrease in com-
pressive force Tc.

In Fig. 6a, b, deflection of the floating plate η/H versus x/H
is plotted for various values of porous-effect parameter G and
submergence depth h/H respectively. Figure 6a reveals that in
the absence of submerged plate (G =∞), the amplitude of the
floating plate is more and follows a periodic pattern. However,
in the presence of the submerged plate, amplitude of floating
plate decreases significantly and follows a decay pattern

which is due the dissipation of wave energy by the porous
structure. In addition, amplitude of the floating plate decreases
rapidly and vanishes afterwards for lower value of porous-
effect parameter G. From Fig. 6b, it is observed that the am-
plitude of the floating plate is less and decaying rate is more
when submerged plate is becomes to nearer the floating plate.
Thus, the submerged porous plate plays an important role in
the reduction of the deflection of the floating elastic plate.

4 Scattering of Flexural-Gravity Wave
by a Finite Submerged Porous Plate

In this section, the solution procedure for oblique flexural-
gravity wave being scattered by a finite submerged porous
plate as in Fig. 1 is discussed briefly. All the boundary and
matching conditions remain the same as discussed in
Section 2. The spatial velocity potentials in regions 1, 2, 3
and 4 satisfying Eq. (7) along with boundary conditions in
Eqs.(8) and (9) are written as

ϕ j ¼

I0e−i q0 x f 10 k0; zð Þ þ ∑
∞

n¼ 0
Rne

i qn x f 1n kn; zð Þ; x < 0; j ¼ 1 ;

∑
∞

n¼ 0
Ane

−i Qn x þ Bne
i Qn x−Bð Þ

n o
f 2n pn; zð Þ; 0 < x < B; j ¼ 2 ;

∑
∞

n¼ 0
Ane

−i Qn x þ Bne
i Qn x−Bð Þ

n o
f 3n pn; zð Þ; 0 < x < B; j ¼ 3 ;

∑
∞

n¼ 0
Tne

−i qn x−Bð Þ f 1n kn; zð Þ; x > B; j ¼ 4

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð21Þ

where An, Bn and Tn for n=0, I, II, 1, 2, … are the unknown

coefficients to be determined with qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2n−μ2

y

q
and

Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p2n−μ2

y

q
. The eigenvalues kn satisfy the dispersion re-

lation as given in Eq. (20) for regions 1 and 4, and the eigen-
values pn satisfy the dispersion relation for regions 2 and 3 is
given in Eq. (19). Further, the eigenfunctions f1n(kn, z), f2n(pn,
z) and f3n(pn, z) are given by

f 1n kn; zð Þ ¼ ig
ω

� �
coshkn zþ Hð Þ

coshknH
f 2n pn; zð Þ ¼ J l pn; zð Þ
f 3n pn; zð Þ ¼ Ju pn; zð Þ

The eigenfunction f1n(kn, z) satisfy the orthogonal relation
as given as

f 1m; f 1nh i ¼ 0 ; for m≠n
En; for m ¼ n ¼ 0 ; I ; II ; 1; 2;…

�
ð22Þ

with respect to the mode-coupling relation given by (as in
Karmakar et al. (2010) and Mandal et al. (2017))

(a) Deflection 

(b) Deflection

Fig. 6 Variation of deflection of the floating elastic plate versus x/H for
different values of (a) porous-effect parameter G with h/H=0.5 and (b)
submergence depth h/H with G=2 for H=10m, T=5s, ν=0.3, g=9.81m/s2,
d=1m, E=5GPa and Tc=0
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f 1m; f 1nh i ¼ ∫0−H f 1m f 1ndz−
Q
K

f
0
1m 0ð Þ f 0

1n 0ð Þ

þ D
K

f 1m
0 0
0
0ð Þ f 0

1n 0ð Þ þ f
0
1m 0ð Þ f 1n0

0 0
0ð Þ

� � ð23Þ

where

En ¼
2 knH D k4n−Q k2n þ 1

� �þ 5D k4n−3Q k2n þ 1
� �

sinh2 knH

4kn D k4n−Q k2n þ 1
� �

cosh2 knH
ð24Þ

Next, using mode-coupling relation (23) on the velocity
potential ϕ1(x, z) and eigenfunction f1n(z) along with the con-
tinuity of pressure as in Eq. (10) at x=0 yields

ϕ1 0; zð Þ; f 1m zð Þh i ¼ ∫0−Hϕ1 0; zð Þ f 1m zð Þdz− Q
K
ϕ1z 0; 0ð Þ f 1m

0
0ð Þ

þ D
K

ϕ1zzz 0; 0ð Þ f 1m
0
0ð Þ þ ϕ1z 0; 0ð Þ f 1m0 0

0
0ð Þ

� �
¼ ∫−h−Hϕ3 0; zð Þ f 1m zð Þdzþ ∫0−hϕ2 0; zð Þ f 1m zð Þdz
−
Q
K
β10 f 1m

0
0ð Þ þ D

K
β30 f 1m

0
0ð Þ þ β10 f 1m

0 0
0
0ð Þ

� �

ð25Þ

where β10 = ϕ1z(0, 0) and β30 = ϕ1zzz(0, 0) for m=0, I, II, 1, 2,
…. Further, using the orthogonal property of the eigenfunction
f1m(z) as in Eq. (22) and the velocity potentials as in Eq. (21)
yields

Rm f 1m zð Þ; f 1m zð Þh i− ∑
∞

n¼ 0
An þ Bne

−iQnb
� �

Ynm þ Znmð Þ

−β10
D
K

f 1m
0 0
0
0ð Þ− Q

K
f 1m

0 0
0
0ð Þ f 1m

0
0ð Þ

� �

−β30
D
K

f 1m
0
0ð Þ

� �
¼ I0δm;

9>>>>>>>=
>>>>>>>;
ð26Þ

where

δm ¼ 0 ; for m ¼ I ; II ; 1; 2:::;
f 1m; f 1nh i; for m ¼ 0

Ynm ¼ ∫0−h f 2n zð Þ; f 1m zð Þdz; Znm ¼ ∫−h−H f 3n zð Þ; f 1m zð Þdz
�

Similarly, using continuity of velocity as in Eq. (10) and
mode-coupling relation (23) on the velocity potential ϕ1(x, z)
and eigenfunction f1n(z) at x=0 yields

ϕ1x 0 ; zð Þ; f 1m zð Þh i ¼ ∫0−Hϕ1x 0 ; zð Þ f 1m zð Þdz− Q
K
ϕ1xz 0; 0ð Þ f 1m

0
0ð Þ

þ D
K

ϕ1xzzz 0; 0ð Þ f 1m
0
0ð Þ þ ϕ1xz 0; 0ð Þ f 1m0 0

0
0ð Þ

� �
¼ ∫−h−Hϕ3x 0 ; zð Þ f 1m zð Þdzþ ∫0−hϕ2x 0 ; zð Þ f 1m zð Þdz
−
Q
K
β20 f 1m

0
0ð Þ þ D

K
β40 f 1m

0
0ð Þ þ β20 f 1m

0 0
0
0ð Þ

� �

9>>>>>>>>=
>>>>>>>>;

ð27Þ
where β20 = ϕ1xz(0, 0) and β40 = ϕ1xzzz(0, 0) form=0, I, II, 1, 2,
…. Further, using the orthogonal property of the eigenfunction
f1m(z) as in Eq. (22) and the velocity potentials as in Eq. (21)
yields

iqmRm f 1m zð Þ; f 1m zð Þh i− ∑
∞

n¼ 0
−An þ Bne

−iQnb
� �

iQn Ynm þ Znmð Þ

−β20
D
K

f 1m
0 0
0
0ð Þ− Q

K
f 1m

00
0
0ð Þ f 1m

0
0ð Þ

� �
−β40

D
K

f 1m
0
0ð Þ

� �
¼ iI0q0δm

9>>>=
>>>;

ð28Þ

Moreover, using mode-coupling relation (23) on the veloc-
ity potential ϕ4(x, z) and eigenfunction f1n(z) along with the
continuity of pressure as in Eq. (10) at x = B yields

ϕ4 B; zð Þ; f 1m zð Þh i ¼ ∫0−Hϕ4 B; zð Þ f 1m zð Þdz− Q
K
ϕ4z B; 0ð Þ f 1m

0
0ð Þ

þ D
K

ϕ4zzz B; 0ð Þ f 1m
0
0ð Þ þ ϕ4z B; 0ð Þ f 1m00

0
0ð Þ

� �
¼ ∫−h−Hϕ3 B; zð Þ f 1m zð Þdzþ ∫0−hϕ2 B; zð Þ f 1m zð Þdz
−
Q
K
β1b f 1m

0
0ð Þ þ D

K
β3b f 1m

0
0ð Þ þ β1b f 1m

0 0
0
0ð Þ

� �

ð29Þ
where β1b = ϕ4z(B, 0) and β3b = ϕ4zzz(B, 0) for m=0, I, II, 1, 2,
…. Further, using the orthogonal property of the eigenfunction
f1m(z) as in Eq. (22) and the velocity potentials as in Eq. (21)
yields

Tm f 1m zð Þ; f 1m zð Þh i− ∑
∞

n¼ 0
Ane

−iQnb þ Bn
� �

Ynm þ Znmð Þ

−β1b
D
K

f 1m
00
0
0ð Þ− Q

K
f 1m

0 0
0
0ð Þ f 1m

0
0ð Þ

� �
−β3b

D
K

f 1m
0
0ð Þ

� �
¼ 0

ð30Þ
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In addition, using continuity of velocity as in Eq. (10) and
mode-coupling relation (23) on the velocity potential ϕ4(x, z)
and eigenfunction f1n(z) at x = B yields

ϕ4x B; zð Þ; f 1m zð Þh i ¼ ∫0−Hϕ4x B; zð Þ f 1m zð Þdz
−
Q
K
ϕ4xz B; 0ð Þ f 1m

0
0ð Þ þ D

K
ϕ4xzzz B; 0ð Þ f 1m

0
0ð Þ þ ϕ4xz B; 0ð Þ f 1m0 0

0
0ð Þ

� �
¼ ∫−h−Hϕ3x B; zð Þ f 1m zð Þdzþ ∫0−hϕ2x B; zð Þ f 1m zð Þdz
−
Q
K
β2b f 1m

0
0ð Þ þ D

K
β4b f 1m

0
0ð Þ þ β2b f 1m

0 0
0
0ð Þ

� �

ð31Þ
where β2b = ϕ4xz(B, 0) and β4b = ϕ4xzzz(B, 0) for m=0, I, II, 1, 2,
…. Using the orthogonal property of the eigenfunction f1m(z) as
in Eq. (22) and the velocity potentials as in Eq. (21) yields

iqmTm f 1m zð Þ; f 1m zð Þh i− ∑
∞

n¼ 0
Ane

−iQnb þ Bn
� �

iQn Ynm þ Znmð Þ

−β2b
D
K

f 1m
00
0
0ð Þ− Q

K
f 1m

0 0
0
0ð Þ f 1m

0
0ð Þ

� �
−β4b

D
K

f 1m
0
0ð Þ

� �
¼ 0

ð32Þ

Truncating the infinite series up toN terms, from (26), (28),
(30), and (32), it can be found a linear system of 4N equations.
Utilizing the continuity conditions as in Eq. (13) for the plate
deflection, slope of deflection, bending moment and shear
forces at (0,0), which yield

∑
N

n¼ 0
Rnkntanh knHð Þ−β10 ¼ I0k0tanh k0Hð Þ ð33Þ

∑
N

n¼ 0
Rnqnkntanh knHð Þ þ iβ20 ¼ I0q0k0tanh k0Hð Þ ð34Þ

∑
N

n¼ 0
Rn q2n þ νμ2

y

� �
kntanh knHð Þ þ β30

EI

¼ −I0 q20 þ νμ2
y

� �
k0tanh k0Hð Þ ð35Þ

∑
N

n¼ 0
Rnqnkntanh knHð Þ EI q2n þ

�
2−νð Þμ2

y

n o
−Q

h i
−iβ40

¼ I0q0k0tanh k0Hð Þ EI q20 þ 2−νð Þμ2
y

n o
−Q

h i ð36Þ

Similarly, utilizing the continuity conditions as in Eq. (13)
for the plate deflection, slope of deflection, bending moment,
and shear forces at (B, 0), which yield

∑
N

n¼ 0
Tnkntanh knHð Þ þ β1b ¼ 0 ð37Þ

∑
N

n¼ 0
Tnqnkn tanh knHð Þ− iβ2b ¼ 0 ð38Þ

∑
N

n¼ 0
Tn q2n þ νμ2

y

� �
kntanh knHð Þ−β3b

EI
¼ 0 ð39Þ

∑
N

n¼ 0
Tnqnkntanh knHð Þ EI q2n þ 2−νð Þμ2

y

n o
−Q

h i
þ iβ4b ¼ 0 ð40Þ

Finally, using Eqs. (33)–(40), a linear system of (4N +8)
equations is obtained for the determination of unknowns as
g i v e n b y R 0 , R I , R I I , R 1 , . . . , R n , A 0 , A I , A I I ,
A1 , . . . ,An ,B0 ,BI ,BII ,B1, . . . ,Bn ,T0 ,TI ,TII ,T1, . . . ,Tn ,β10,
β20,β30,β40,β1b,β2b,β3b, andβ4b . The determination of the un-
knowns will in turn provide the velocity potentials in the re-
spective regions. To analyze the effects of the submerged plate
on flexural-gravity wave motion, various wave and structural
parameters on the reflection, transmission and dissipation co-
efficients are computed and analyzed. Unless stated otherwise,
physical parameters such as h/H=0.5, T=5s, B/H=1, G=2,
g=9.81m/s2, θ=30º, ν=0.3, E=1GPa, d=0.1m, and Tc=0 are
kept fixed. From the general solution, physical quantities
such as reflection, transmission, and dissipation coeffi-
cients, Kr, Kt, and Kd respectively are computed using the
formulae

Kr ¼ jR0

I0
j; Kt ¼ jT 0

I0
j ð41Þ

and

Kd ¼ 1 − K2
r þ K2

t

� � ð42Þ

In Table 1, numerical values of reflection, transmission and
dissipation coefficients are computed for different values of N
for certain fixed values of k0H. Here, N=0 represents the
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progressive flexural-wave mode solution. Table 1 demon-
strates that the numerical results converge up to 4 decimal
accuracy for N larger than 15.

In the absence of floating elastic plate, to validate the pres-
ent computation with the standard results available in the lit-
erature, in Fig. 7a, the reflection and transmission coefficients
are plotted as a function of wave numberK0HwithD = 0,Q =
0 and ms = 0. Figure 7a reveals that the results agree well with
that of Fig. 3 of Cho and Kim (2013) for surface gravity wave
scattering by a submerged porous plate. On the other hand, in
Fig. 7b, c, d, the reflection, transmission, and dissipation co-
efficients versus non-dimensional wave number K0H are

plotted respectively, in the presence of floating elastic
plate for different values of porous-effect parameter G.
Fig. 7a, b reveals that in case of solid plate (G = 0), there
exist high wave reflection and low transmission. In this
case also, full reflection and zero transmission can be
found for higher values of flexural-gravity wave number
K0H. However, full reflection and zero transmission do
not occur in the presence of the submerged porous plate.
Further, wave reflection decreases, wave transmission in-
creases, and dissipation coefficient decreases with an in-
crease in porous-effect parameter G due to loss of wave
energy by the porous plate. In addition, in case of porous

Table 1 Convergence of the
reflection and transmission
coefficients for different values of
N and nondimensional wave
number K0H for E = 1 GPa, Tc =
0,B/H = 1,h/H = 0.5,G = 2 an d
θ = 0∘

k0H=0.5 k0H=1 k0H=2 k0H=3 k0H=4

N Kr Kt Kr Kt Kr Kt Kr Kt Kr Kt

0 0.1012 0.9104 0.2415 0.7895 0.3993 0.5607 0.4389 0.3700 0.4501 0.1968

3 0.1960 0.8939 0.4320 0.7113 0.6947 0.3557 0.7043 0.1735 0.2589 0.1696

5 0.1959 0.8938 0.4311 0.7117 0.6910 0.3571 0.6972 0.1743 0.2450 0.1634

10 0.1958 0.8938 0.4308 0.7118 0.6903 0.3577 0.6968 0.1749 0.2442 0.1635

15 0.1958 0.8938 0.4308 0.7118 0.6903 0.3577 0.6968 0.1749 0.2442 0.1635

(a) Kr& Kt

(b) Kr

(c) Kt

(d) Kd

Fig. 7 Variation of the aKr andKt

versus K0H in the absence of
floating elastic plate with B/H = 1,
θ = 30∘and h/H = 0.5, and b Kr, c
Kt, and d Kd versus in the
presence floating elastic plate for
different values K0H of porous-
effect parameterGwith h/H = 0.5,
B/H = 1, θ = 30∘, E = 1GPa and
Tc = 0
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plate, with an increase in G, the reflection and dissipation
coefficients follows certain oscillatory pattern, while wave
transmission becomes negligible. In thepresence of the
submerged plate, a part of the wave energy loss takes
place due to the interference of the incident and reflected

waves, while another part of energy is dissipated while
passing through the porous structure. Thus, a very small
portion of the incident wave energy transmit after passing
through the porous structure.

In Fig. 8a, b, c, the reflection, transmission, and dissipation
coefficients versus non-dimensional length of the porous plate
K0B are plotted respectively, for different values of porous
effect parameter G. Figure 8a depicts that with an increase in
K0B, initially the reflection coefficient increases and then de-
creases uniformly for larger values of K0b. On the other hand,
Fig. 8b, c reveals that the transmission coefficientKt decreases
and dissipation coefficient Kd increases with increase in the
absolute value of the porous-effect parameter G and structural
length. However, for impermeable plate withG = 0, no energy
loss takes place. Moreover, energy loss is more for higher
values of non-dimensional plate length K0B as larger amount
of energy dissipation takes place for larger plate. Further, as
the plate length approaches zero, all wave energy will transmit
and there is no loss takes place as expected.

(a) Kr

(b) Kt

(c) Kd

Fig. 8 Variation of the a reflection coefficient Kr, b transmission
coefficient Kt, and c dissipation coefficient Kd versus non-dimensional
length of the porous plate K0B for different values of porous-effect pa-
rameter G with h/H = 0.5, θ = 30∘, E = 1GPa and Tc = 0

(a) Kr

(b) Kt & Kd

Fig. 9 Variation of the a reflection coefficient Kr, and b transmission and
dissipation coefficients Ktand Kd versus non-dimensional length of the
porous plateK0B for different values of submergence depth h/HwithG =
2, θ = 30∘, E = 1GPa and Tc = 0
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In Fig. 9a, b, the reflection, transmission, and dissipation
coefficients versus non-dimensional length of the porous plate
K0B are plotted respectively, for different values of submer-
gence depth h/H.The general pattern in wave reflection, trans-
mission and dissipation coefficients are similar to the obser-
vation in Fig. 8. It is seen that the reflection and dissipation
coefficients increase, and transmission coefficient decreases
as the submerged plate becomes nearer to the floating plate.
This is due to the fact that when the submerged plate is near to
the surface, a major portion of the wave energy which con-
centrates near the floating plate is reflected by the plate and
another part is dissipated by the horizontal submerged porous
plate.

Further, certain shift in the optimum values in the reflection
coefficient is observed which is due to the constructive/
destructive interference of the incident and reflected waves.
However, significant decrease in the oscillatory pattern in
transmission coefficient is observed with an increase in K0B
due to the dissipation of wave energy while passing through
the submerged flexible porous plate.

In Fig. 10a, b, the reflection, transmission and dissipation
coefficients versus nondimensional length of the porous plate
K0B are plotted, respectively, for different values of Young’s
modulus E of the plate. From these figures, it is found that the
wave reflection increases with an increase in Young’s modu-
lus E of the floating elastic plate. However, wave transmission
decreases with an increase in E.

In Fig. 11a, b, the reflection, transmission, and dissipation
coefficients versus the non-dimensional length of the porous
plate K0B are plotted respectively, for different values of com-
pressive force Tc. From Fig. 11a, it is observed that the reflec-
tion coefficient increases and dissipation coefficient decreases
with an increase incompressive force. However, there is a
negligible effect in wave transmission with an increase in Tc.

In Fig. 12a, b, the reflection and transmission coefficients
versus angle of incidence θ are plotted respectively, for differ-
ent values of porous-effect parameterG. From these figures, it
is found that the wave reflection increases with an increase in
angle of incidence θ, while an opposite trend is observed for
wave transmission. Further, the wave reflection decreases
with an increase in the porous-effect parameter G, while an
opposite trend is observed for wave transmission.

(a) Kr

(b) Kt & Kd

Fig. 10 Variation of the a reflection coefficient Kr, and b transmission
and dissipation coefficients Kt and Kd versus non-dimensional length of
the porous plate K0B for different values of Young’s modulus EwithG =
2, θ = 30∘, E = 1GPa and Tc = 0

(a) Kr

(b) Kt & Kd

Fig. 11 Variation of the (a) Reflection coefficientKr, and (b) transmission
and dissipation coefficients Kt and Kd versus non-dimensional length of
the porous plate K0B for different values of the compressive force Tcwith
G = 2, θ = 30∘, h/H = 0.5 and E = 1GPa
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5 Conclusion

In the present study, a model is developed to study scattering
of oblique flexural-gravity waves by submerged horizontal
porous plate. The problem is solved by means of
eigenfunction expansions method and the associated orthog-
onal mode-coupling relations. Our results reveal that the phase
velocity and the amplitude of the deflection of the floating
elastic plate will significantly decrease in the presence of a
submerged porous plate. In particular, plate deflection will
follow a kind of decaying pattern in the presence of sub-
merged porous plate. Moreover, the study reveals that the
presence of a finite horizontal submerged plate will often lead
to full energy reflection and zero transmission which is due to
the constructive interference of the incident and reflected
waves. Also, with the introduction of structural porosity, inci-
dent wave can be partially reflected even if wave transmission
is zero, a consequence of dissipation of wave energy by the
porous structure.Wave transmissionmay decrease significant-
ly with an increase in the length of the submerged plate, while
the porous-effect parameter plays an important role in the
wave energy dissipation. In addition, wave reflection

increases while wave transmission decreases as the sub-
merged plate becomes closer to the floating plate. Thus, with
the help of a submerged porous plate of finite length, the
structural response of the floating structure can be reduced
significantly, which will be of immense importance in the
design of a very large floating structure. Since energy trans-
mitted onto the lee side of the submerged structure is negligi-
ble, wave-induced structural vibration of a large floating struc-
ture can also be much reduced with the aid of a submerged
porous structure.
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