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Abstract: In this paper, we present the results of our numerical 
seakeeping analyses of a 6750-TEU containership, which were 
subjected to the benchmark test of the 2nd ITTC–ISSC Joint 
Workshop held in 2014. We performed the seakeeping analyses 
using three different methods based on a 3D Rankine panel method, 
including 1) a rigid-body solver, 2) a flexible-body solver using a 
beam model, and 3) a flexible-body solver using the eigenvectors 
of a 3D Finite Element Model (FEM). The flexible-body solvers 
adopt a fully coupled approach between the fluid and structure. We 
consider the nonlinear Froude–Krylov and restoring forces using a 
weakly nonlinear approach. In addition, we calculate the slamming 
loads on the bow flare and stern using a 2D generalized Wagner 
model. We compare the numerical and experimental results in 
terms of the linear response, the time series of the nonlinear 
response, and the longitudinal distribution of the sagging and 
hogging moments. The flexible-body solvers show good agreement 
with the experimental model with respect to both the linear and 
nonlinear results, including the high-frequency oscillations due to 
springing and whipping vibrations. The rigid-body solver gives 
similar results except for the springing and whipping. 
Keywords: Rankine panel method, fluid-structure interaction, 
benchmark test, containership, springing, whipping 
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1 Introduction1 

For many years, potential flow has been used as the basis 
of seakeeping analysis methods. Initially, 2D methods such 
as the slender-body and strip theories attracted enormous 
attention from researchers and designers (Korvin- 
Kroukovsky and Jacobs, 1957; Newman, 1964; Ogilvie and 
Tuck, 1969; Salvesen et al., 1970). To overcome the 
limitations of the 2D methods, 3D boundary element 
methods (BEM) were later developed, which use either a 
wave Green’s function or a Rankine source as the source 
potential. The wave analysis program developed at MIT 
(WAMIT) is a very well-known program that uses a wave 
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Green’s function in the frequency domain (Korsmeyer et al., 
1988). Ship wave analyses (Nakos and Sclavounos, 1990; 
Kring, 1994) and the Large Amplitude Motions Program 
(Lin and Yue, 1991) comprise another set of well-known 
programs that use a Rankine source in the time domain. 
Bishop and Price (1979) proposed a 2D hydroelastic 
analysis method for seakeeping analysis that takes into 
account linear springing vibrations, based on the strip and 
Timoshenko beam theories. Jensen and Dogliani (1996) 
proposed a quadratic strip theory for second-order springing. 
Malenica and Tuitman (2008) proposed a 3D hydroelastic 
method for springing and whipping vibrations. Hirdaris and 
Temarel (2009) summarized the recent advances and future 
trends of the hydroelastic method. Computational Fluid 
Dynamics (CFD) methods have also been also employed for 
seakeeping analysis (Gentaz et al., 1999; Sadat-Hosseini et 
al., 2013; Yang et al., 2013). 

There are many seakeeping analysis programs worldwide, 
but it is difficult to decide which program to use without 
comparing their results. A benchmark test could be useful 
for providing reliable comparative data. The ITTC 
committee conducted a comparative study on ship motions 
and loads for the S175 containership (ITTC, 1978), for 
which the respective codes were based on strip theories. 
Another comparative study on the S175 containership was 
performed in 2010 by one of the authors of this study as part 
of an ITTC workshop on seakeeping. Cooperative Research 
Ships also conducted a comparative containership study 
(Bunnik et al., 2010). A benchmark test on the motions and 
loads of a 6750-TEU containership was performed as part of 
the 2nd ITTC–ISSC Joint Workshop in 2014 (Kim and Kim, 
2016). In the latter three studies, the results were obtained 
by using and then comparing the results of various 
seakeeping analysis methods. Seoul National University 
(SNU) participated in the benchmark test of the 6750-TEU 
containership by the development and use of WISH 
computer programs that are based on a 3D Rankine panel 
method for seakeeping analysis (Kim et al., 2011). In this 
paper, we discuss the theoretical background, numerical 
model, and results of the WISH programs, which include 
rigid-body and flexible-body solvers based on either a beam 
theory or the eigenvectors of s 3D Finite Element Model 
(FEM). We compare the motion and load responses 
generated by different solvers with experimental results and 
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discuss the requirements of flexible-body solvers. 

2 Theoretical background 

We used three seakeeping analysis codes—WISH, 
WISH-FLEX BEAM, and WISH-FLEX 3DM—in our 
seakeeping test simulations. Table 1 compares these codes. 
WISH, which was developed as the core program, is a 
rigid-body motion solver based on a 3D Rankine panel 
method. We developed the WISH-FLEX BEAM code by 
coupling WISH and a beam-based motion solver (Kim et al., 
2009) and we developed the WISH-FLEX 3DM code by 
coupling WISH with eigenvectors of the 3D FEM (Kim and 
Kim, 2014). The WISH-FLEX codes adopt a fully coupled 
approach and support the simulation of springing and 
slamming–whipping. We compared the results of the 
WISH-FLEX codes with those of other numerical methods 
and experiments provided in previous work (Kim and Kim, 
2014; Shin et al., 2016).  

 
Table 1  Comparison of analysis codes based on the 3D 

Rankine panel method 

Code 
name 

WISH 
WISH-FLEX 

BEAM 
WISH-FLEX 

3DM 
Fluid 

domain 
3D Rankine panel method 

Structural 
domain 

Rigid-body 
Beam 

approximation 

Eigenvectors 
of 

3D FEM 
Slamming 

model 
Not 

supported 
2D wedge approximation/ 

2D generalized Wagner model 

 

2.1 3D Rankine panel method 
The fluid flow surrounding a ship structure is assumed to 

be a potential flow, and we can use a 3D Rankine panel 
method to obtain a solution for the potential flow. The 
numerical implementation of this solution is based on the 
works of Kim and Kim (2008), Kring (1994), and Nakos 
and Sclavounos (1990). 

 
Fig. 1  Coordinate system of 3D Rankine panel method 

 
The coordinate system moves with the advancing ship, as 

shown in Fig. 1, and the origin is located at the projection of 
the center of mass on the water plane. A set of equations for 
a boundary value problem can be expressed as follows: 
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where   is the velocity potential, U  is the forward speed 

vector, n  is the normal vector on the body surface, u  is 

the translational displacement vector, BS  is the body 

surface, F  is the fluid domain,   is the free surface 

elevation, and g  is the gravitational acceleration. 

To linearize the boundary conditions of Eqs. (2)–(4), we 
decompose the velocity potential into the double-body 

basis potential  , the incident potential I , and the 

disturbed potential d . In the same manner, we 

decompose the free surface elevation into the incident wave 

elevation I  and the disturbed wave elevation d . We 

then lineraize Eqs. (2)–(4) at the mean position using 
Taylor series expansion, as follows: 

 

2

2
( )

          ( )     on  = 0

d d
d d

I

t z z
z

   

 

 
      

  
  

U

U
 (6) 

 
( )

1
( )  on  = 0

2

d
d d

I

g
t t

z

   

    

 
      

 
         

U

U U
 (7) 

 
 ( )( ) (( ) )

    on 

d

I
B

n

S
t n

  




       


 

 
 

u U U u n

u n
 (8) 

All the terms of Eqs. (6)–(8) are in the order ( 1)  . 

Using the form presented by Ogilvie and Tuck (1969), we 
modify the body boundary condition of Eq. (8) as follows: 
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where jA  is the eigenvector of the jth mode and jm  is 

the so-called m term. Once we have determined the 
boundary values, we can obtain the velocity potential using 
the following equation: 
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where G  is the Rankine source term. We derive Eq. (10) 
from the Laplace equation and Green’s second identity. We 
then evaluate the boundary values on the discretized panels 
and interpolate them using a bi-quadratic spline function. 
Once we obtain the velocity potential by solving Eq. (10), 
we can calculate the dynamic pressure using the Bernoulli 
equation. In addition, we adopt a weakly nonlinear approach 
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to consider nonlinear the Froude–Krylov and restoring 
forces. The explicit forms of the dynamic and static 
pressures have been provided by Kim and Kim (2014). 

2.2 2D generalized Wagner model 
To consider the slamming loads on the bow flare and 

stern, we apply a 2D Generalized Wagner Model (GWM) to 
water-entry events. We use a space-fixed coordinate system 
whose origin is located at the intersection of the vertical 
axis of symmetry and the free surface of the calm water, as 
shown in Fig. 2. In this study, the solution is limited to a 
symmetric water-entry problem without any flow separation. 
A set of equations for the initial value problem is expressed 
as follows (Zhao et al., 1996; Khabakhpasheva et al., 2014): 

 2 0   (11) 
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where   is the velocity potential of GWM; ( )H t  is the 

free surface elevation at the contact point defined as 

 ( ) ( ),H t S c t t ; ( , )S x t  is the free surface elevation; 

subscripts x, y, and t denote partial derivatives with respect 
to their values; ( )f x  is the slope of the body geometry; 

( )h t  is the relative vertical velocity of the body and free 

surface; and ( )c t  is the x-coordinate at the contact. We 

then solve the initial boundary value problem using 
conformal mapping, according to the work of 
Khabakhpasheva et al. (2014). We express the final pressure 
distribution as follows: 
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where   is the water density,   is the x-coordinate on 

the wetted body surface normalized by c , ( )F c  is the 

coefficient in the far-field asymptotic of the conformal 
mapping, and ( )N c , ( )f X , and ( )f c  are functions from 

the Wagner equation. Using offsets in the splash-up of the 
free surface, we can relate a preprocessed solution based on 
a zero initial condition to other water-entry events with 
nonzero initial conditions. This approach is adequate 
because the gravity term is neglected in the free surface 
boundary condition, which implies that the splash-up 

depends on the vertical displacement of the current. Thus, 
we used the preprocessed solution to evaluate slamming 
loads in the seakeeping analysis (Kim et al., 2015). 

 
Fig. 2  Coordinate system of 2D generalized Wagner model 
 
2.3 Rigid-body approximation 

Rigid-body approximation is a classical approach for 
approximating the structure of a ship. It can be interpreted 
from the viewpoint of modal decomposition as follows. 
Once the ship structure is discretized into nodes in a 
Cartesian coordinate system, the equation of motion can be 
expressed in terms of matrices and vectors as follows: 
 ( ) ( ) ( ) ( ( ), ( ), ( ), )u t u t u t u t u t u t t  M C K f     (21) 

where M  is the mass matrix, C  is the damping matrix, 

K  is the stiffness matrix, ( )tu  is the displacement vector 

of six DOFs, the dot over the vector represents the time 
derivative, and f  is the external force vector. The 

displacement vector of the body can be decomposed into 
each component of eigenvectors as follows: 
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where ( )tu  is the approximated displacement vector, j  

is the modal displacement of the jth mode, jA  is the 
eigenvector of the jth mode, m is the total number of nodes, 
and n is the sufficient number of lower modes, which satisfies 
Eq. (22). By multiplying Eq. (21) by the transpose of the 
eigenvector matrix and substituting Eq. (22) into Eq. (21), we 
obtain the equation of motion as follows: 
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where subscripts L and H of the modal matrices indicate the 

lower and higher modes, respectively, and 1~f  is the 

modal external force. If the ship structure is assumed to be 
rigid, Eq. (23) is reduced to the following: 
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We obtain Eq. (24) without the need for an eigenvalue 
analysis because the eigenvectors of six rigid-body motions 
are already known. For better stability, we add an 
infinite-frequency added mass to the both sides as follows: 
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where ( )A M  is the matrix of the infinite-frequency 

added mass. 
We obtain the acceleration by solving Eq. (25), and 

calculate the velocity and displacement vectors using the 
4th-order Adams–Bashforth–Moulton method. In the 
rigid-body approximation, the external force consists of the 
linear hydrodynamic pressure, nonlinear Froude–Krylov 
and restoring forces, the restoring forces of soft spring and 
gravity, and the damping forces of soft spring and roll 
motions. 

2.4 3D FEM with modal decomposition  
If we assume the ship structure to be flexible, the number 

of lower modes should be larger than six in Eqs. (22) and 
(23). By assuming that the responses of the higher modes 
are quasi-static, we decompose Eq. (23) into two equations 
as follows: 
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To derive Eqs. (26) and (27), we use the 3D FEM to 
obtain the eigenvectors and modal stiffness matrices of the 
flexible modes. We recalculate the eigenvectors on the grids 
of the panel models to estimate the external modal forces due 
to fluid pressures. We note that Eq. (26) couples fluid and 
structure with respect to springing and whipping. Eq. (27), 
on the other hand, is decoupled and need not be solved in 
seakeeping analyses. We add an infinite-frequency added 
mass to both sides of Eq. (26) as follows: 
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Typically, the number of lower modes is smaller than 20, 
which includes the global vertical bending and torsion 
modes. Consequently, the DOF of Eq. (28) is much smaller 
than that of Eq. (21). In this approach, we include a 
slamming load in the external force, which we obtain using 
the 2D GWM. 

2.5 Beam representation  
To model the ship structure as a beam, we used the 

Timoshenko beam theory because this theory produces good 
approximated solutions to bending problems. In recent years, 
a beam theory for warping-torsion has been required when 
modeling ship structures with large openings on the deck. In 
the beam representation, the ship structure is discretized into 
beam nodes located along the longitudinal axis. The 
motions on the grids of the panel models are related to the 
beam nodal motions via the cubic polynomials. In the same 
manner, the pressures of the panel modes are related to the 
nodal forces via the cubic polynomials. The stiffness matrix 
is provided by the Vlasov beam theory with 14-DOF beam 
elements. The two additional DOFs are related to warping. 

Although the structural damping matrix is modeled using 
Rayleigh damping, it tends to suppress rigid-body motions 
due to its mass matrix component. 

We integrate the equation of motion in time using the 
Newmark-beta method, which is unconditionally stable with 
respect to the size of the time step. This stability is necessary 
for performing a direct integration because all the natural 
modes are included in the direct integration. We can express 
the acceleration and velocity of the next time step as follows: 
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where α and   are 0.5 and 0.25, respectively. By 

substituting Eqs. (29) and (30) into Eq. (21), we can express 
the equation of motion at the next time step as follows: 
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   (31) 

We can solve Eq. (31) using an iterative sequence because 
of the external force term on the right-hand side. We can 
successfully apply a fixed point iteration using an Aitken 
acceleration scheme. This acceleration scheme is necessary 
because of the impulsiveness of the added mass, the details 
of which can be found in the work of Kim et al. (2009). 

3 Numerical modeling of the 6750-TEU 
containership 

Table 2 lists the principal dimensions of the 6750-TEU 
containership and that of its experimental model. The 
experimental model, constructed by the Korea Research 
Institute of Ship and Ocean Engineering (KRISO)/Korea 
Institute of Ocean Science and Technology, consists of an 
eight-segment hull and a rectangular backbone, as shown 
in Fig. 3. The backbone has a hollow rectangular section 
200 mm wide, 50 mm high, and 2.3 mm thick (1/70 scale). 
We used a fixing system to connect the hull and backbone, 
which consists of upper and lower supporting plates, and 
which is expected to slightly increase the bending rigidity of 
the structure. We created a set of numerical models using 
the above model data, including a linear panel model for the 
boundary value problem of the 3D Rankine panel method, a 
nonlinear panel model for considering the nonlinear 
Froude–Krylov and restoring forces, a slamming model for 
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the water-entry event of the 2D GWM, and a structural 
model of the rigid-body, beam, or 3D FEM. More details 
can be found in the recent publication by Kim and Kim 
(2016).  

 

Table 2  Principal dimensions of the 6750-TEU containership 

Item Real scale Model scale

Scale 1/1 1/70 
LBP/m 286.6 4.094 

Breadth/m 40 0.571 
Draft at AP and FP/m 11.98 0.171 

Displacement 85 562.7 t 249.454 kg 
KG/m 16.562 0.237 

LCG from AP/m 138.395 1.977 
Kxx/m 14.6 0.206 
Kyy/m 70.144 1.002 
Kzz/m 70.144 1.002 

Neutral axis/m 7.35 0.105 
Wet natural frequency  
of two-node VB/Hz 

0.645 5.396 

Wet damping ratio  
of two-node VB/% 

2.0 2.0 

 

 
Fig. 3  Experimental model of the 6750-TEU containership 

 
3.1 Fluid models 

The hull form is described by 30 cross-section lines and 
two forward-perpendicular (FP) and aft-perpendicular (AP) 
center lines, as shown in Fig. 4. We generated the body 
surface using these lines and then discretized it into panels. 
First, we created a linear panel model by distributing 400 
panels on the mean body surface and 2 500 panels on the 
free surface, as shown in Fig. 5. In the model, the center of 
buoyancy was located at (138.2 m, 0.0 m, 6.64 m) and the 
displacement was 85 001.7 m3. Next, we created a nonlinear 
panel model using 3 000 panels for the whole body surface. 
Finally, we sliced the nonlinear model into 40 cross-sections 
for use as a slamming model, as shown in Fig. 6. We used 
convergence tests to determine the mesh densities. 

 
Fig. 4  Lines of the hull form 

 
(a) Linear panel model 

 
 

 
(b) Nonlinear body panel model 

Fig. 5  Hydrodynamic panel models 

 
 

 
(a) FP                       (b) AP 

Fig. 6  Vertical cross-sections of the slamming model 

 
3.2 Structural models 

Next, we generated three different structural models, as 
shown in Fig. 7. First, we constsructed a rigid-body model 
by distributing 32 lumped masses. The mass property of 
each segment was satisfied by four lumped masses. Then, 
we created a beam model using 16 beam elements and eight 
lumped masses. Each of the lumped masses had both 
translational and rotatory inertias. Lastly, we exactly 
reproduced the experimental model using a 3D FEM, using 
55 000 shell elements to represent the backbone and hull. As 
in the beam model, we modeled the mass property of each 
segment using eight lumped masses. We extracted the 
eigenvectors of the 3D FEM using the fine element analysis 
program NASTRAN, and Fig. 8 shows the vertical bending 
modes. We used the beam and 3D FEMs to perform a 
hammering test in water for the two-node vertical bending. 
The natural frequencies of the two models were 0.71 Hz and 
0.72 Hz, respectively, which were 10% larger than those of 
the experimental model. This difference might be due to the 
configuration of the experimental model, but as yet the 
reason for this is not clear. We modified the stiffnesses of 
the beam and 3D FEMs to obtain the natural frequencies 
identical to that of the experimental model. 

 

 
(a) Rigid-body 
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(b) Beam 

 
(c) 3D FEM 

Fig. 7  Structural models 
 

 
(a) Two-node bending 

 
(b) Three-node bending 

 
(c) Four-node bending 

Fig. 8  Eigenvectors of vertical bending modes 

4 Comparison of results 

We performed a computation in the head-sea test 
conditions given in Table 3, where λ is the wave length, L is 

the ship length, and H is the wave height. These conditions 
consist of one linear response and three nonlinear responses. 
We compared three items in the response amplitude 
operators (RAOs) of heave, pitch, and vertical bending 
moment at x = 112.97 m (VBM4). In addition to these three 
items, we compared the longitudinal distributions of the 
sagging and hogging moments in the nonlinear results. 
Although we did not include the still-water load in the 
results, the motions and loads can have mean values due to 
the forward speed effect or nonlinear excitations of sagging 
and hogging. 

 
Table 3  Test conditions for benchmark test 

Test ID λ/L H/λ Froude No.

RAO 0.54~3.68 small value 0 
NL1 1.07 1/50 0.05 
NL2 1.07 1/28 0.05 

NL3 1.07 1/50 0.12 

 
4.1 Linear response: RAO 

Figs. 9–11 compare the linear responses of the 6750-TEU 
containership in terms of heave, pitch, and VBM4. Our 
proposed models show almost the same heave, which was 
slightly smaller than that of the experimental model. The 
beam model underestimated the pitch compared to the other 
models, which might be due to the restoring and Rayleigh 
damping models. The restoring model must be improved 
and the Rayleigh damping model should be replaced by a 
damping matrix proportional only to a stiffness matrix. In 
the VBM4 results, all the models showed similar responses. 
The rigid-body approximations seem to be valid because 
there were no springing responses. We also compared the 
numerical results of 17 participants in the benchmark test 
(Kim and Kim, 2016) in terms of the average (Mean), 
standard deviation (SD), and the maximum (Max) and 
minimum (Min) values, which are plotted in Figs. 9–11. The 
results of our proposed models were similar to the average 
benchmark test results. 

 

 
(a) Proposed method                                       (b) Benchmark test 

Fig. 9  RAOs of heave 
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(a) Proposed method                                         (b) Benchmark test 

Fig. 10  RAOs of pitch 

 

 
(a) Proposed method                                           (b) Benchmark test 

Fig. 11  RAOs of VB

 
4.2 Nonlinear response NL1 

The NL1 test case was not highly nonlinear because H/λ 
was just 1/30. Fig. 12 shows a comparison of the time series 
of heave, pitch, and VBM4. We note that we shifted the time 
series to match the peaks of the pitch. We can observe a time 
lag between the numerical and experimental results, which 
we have also observed between other numerical and 
experimental results (Kim and Kim, 2016). To investigate 
this time lag, we must precisely measure the inertial 
properties of the experimental model. The time lag seemed 
to particularly affect the time lag of the VBM4 between the 

numerical and experimental results. 
The numerical models tended to underestimate heave 

compared to the experimental model. However, the pitch 
was slightly overestimated in the numerical results. We 
found the differences between the numerical results to be 
negligible. Fig. 13 shows a comparison of the longitudinal 
distributions of VBM. We can see that the sagging moment 
is larger than the hogging moment due to changes in the 
wetted surface of the bow flare and stern. This nonlinearity 
was successfully considered by the weakly nonlinear 
approach. 

 

 
(a) Heave                                 (b) Pitch                               (c) VBM4 

Fig. 12  Time series in the case of NL1 



Jung-Hyun Kim, et al. Numerical Computation of Motions and Structural Loads for Large Containership using 3D Rankine Panel Method 424 

 
(a) Present method                                      (b) Benchmark test 

Fig. 13  Longitudinal distribution of sagging and hogging moments in the case of NL1

4.3 Nonlinear response NL2 
We used the NL2 test case to simulate nonlinear springing 

and slamming–whipping. In the rigid-body computation, we 
did not consider the slamming load. However, we took it 
into account by using the 2D GWM in the computations of 
the beam and 3D FEMs. The experimental model showed a 
large heave compared to the numerical models, as shown in 
Fig. 14, but the reason for this is unclear. The rigid-body 
computation showed a slightly smaller heave and a slightly 
larger pitch than the flexible-body computations when a 
slamming load on the bow flare was expected.  

In the VBM4 time series, in both the flexible-body 
computation and experiment, we observed significant 
high-frequency oscillations, which were due to springing and 
whipping. The oscillation results showed a time lag, but their 

magnitudes were similar. As mentioned in section 3.2, the 
VBM4 time lag might be due to the time lag of the heave 
motions. Unfortunately, it was difficult to investigate the 
cause of the time lags based on the available experimental 
data. 

The 2D GWM might calculate a slamming load similar to 
that of the experiment. Fig. 15 shows a comparison of the 
longitudinal distributions of the sagging and hogging 
moments, both of which were significantly increased by 
springing and whipping. Thus, the rigid-body computation 
underestimated the sagging and hogging moments. The 
benchmark test result also revealed the difficulty in 
calculating the slamming and whipping due to the large SD 
and the far-from-average maximum and minimum values. 

 
 

 
(a) Heave                                 (b) Pitch                                 (c) VBM4 

Fig. 14  Time series in the case of NL2 

 
(a) Present method                                       (b) Benchmark test 

Fig. 15  Longitudinal distribution of sagging and hogging moments in the NL2case  
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4.4 Nonlinear response NL3 
The last condition, NL3, is the same as NL1 except for 

forward speed. The Froude number of NL3 was 0.12, 
whereas that of NL1 was 0.05. Fig. 16 shows a comparison 
of the time series of heave, pitch, and VBM4. We can see 
that the experimental model showed a larger heave than the 
numerical models. However, the experimental and 

numerical models showed good agreement in pitch and 
VBM4. In the experimental and flexible-body VBM4 results, 
we an observed high-frequency components, but their 
magnitudes were small. As shown in Fig. 17, all the results 
showed good agreement with respect to the sagging and 
hogging moments.  

 
 

 
(a) Heave                                 (b) Pitch                                (c) VBM4 

Fig. 16  Time series of heave (top), pitch (middle), and VBM4 (bottom) in the NL3 case  
 

 
(a) Present method                                      (b) Benchmark test 

Fig. 17  Longitudinal distribution of sagging and hogging moments in the NL3 case  

 
5 Conclusions 

In this study, we applied three seakeeping analysis 
codes—WISH (rigid-body), WISH-FLEX BEAM, and 
WISH-FLEX 3DM—to the analyses of the linear and 
nonlinear motions and loads on the 6750-TEU containership. 
Based on our comparison of the computational and 
experimental results, we present the following findings and 
conclusions: 

1) The hydroelastic analysis codes predicted similar 
results for heave, pitch, and VBM. All codes showed good 
agreement with the experimental measurements. 

2) The results obtained with the rigid-body analysis code 
were almost identical to those of the hydroelastic analysis 
codes, except in the NL2 case. 

3) In the nonlinear cases of NL1 and NL3, the sagging 
moments were larger than the hogging moments, which 
were mainly due to changes in the wetted surfaces of the 
bow flare and stern. We were able to successfully consider 

this nonlinearity using a weakly nonlinear approach. 
4) Significant nonlinear springing and whipping were 

induced in the highly nonlinear NL2 case. The results of the 
flexible-body computations with the 2D GWM showed good 
agreement with the experimental results. 

5) The experimental model showed a larger heave 
compared to the numerical models in the NL3 case, 
although the experimental and numerical results for pitch 
and VBM4 were similar. 
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