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Abstract: A helical wire is a critical component of an unbonded 
flexible riser prone to fatigue failure. The helical wire has been the 
focus of much research work in recent years because of the 
complex multilayer construction of the flexible riser. The present 
study establishes an analytical model for the axisymmetric and 
bending analyses of an unbonded flexible riser. The interlayer 
contact under axisymmetric loads in this model is modeled by 
setting radial dummy springs between adjacent layers. The contact 
pressure is constant during the bending response and applied to 
determine the slipping friction force per unit helical wire. The 
model tracks the axial stress around the angular position at each 
time step to calculate the axial force gradient, then compares the 
axial force gradient with the slipping friction force to judge the 
helical wire slipping region, which would be applied to determine 
the bending stiffness for the next time step. The proposed model is 
verified against the experimental data in the literature. The bending 
moment–curvature relationship under irregular response is also 
qualitatively discussed. The stress at the critical point of the helical 
wire is investigated based on the model by considering the local 
flexure. The results indicate that the present model can well 
simulate the bending stiffness variation during irregular response, 
which has significant effect on the stress of helical wire. 
Keywords: unbonded flexible riser, interlayer interaction, helical 
wire stress, local flexure, bending stiffness variation, irregular 
response 
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1 Introduction1 

The flexible riser is a key component of an oil and gas 
production system comprising polymeric and metallic layers 
with different functions. Polymeric layers often provide 
sealing or insulation for internal and external fluids and 
reduce metallic friction. Metallic layers generally include 
the innermost carcass, profiled Z-shaped pressure armor 
layer, and tensile armor layer. The first two kinds of layers 
are interlocked and wound at a lay angle close to 90° and 
mainly resist the inward and outward pressures, respectively. 
The tensile armor layers with rectangular cross-section 
helical wires have two or four layers, and are cross-wound at 
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lay angles between 20° and 55° (De Sousa et al., 2012). This 
kind of layer is designed to carry the tension, torque, and 
pressure end cap effect. 

Compared with the conventional steel riser, the flexible 
riser can withstand large bending deformation without 
compromising the axial stiffness and the pressure integrity. 
It also has advantages in the aspects of storage in long 
lengths on the reel and in the installation cost (de Sousa et 
al., 2009). However, its complex construction significantly 
increases the difficulty of performance assessment, thereby 
attracting much research attention. A helical wire is one of 
the critical components prone to fatigue failure. An 
integrated model for the flexible riser should first be 
established to predict the fatigue damage of the helical wire. 
The commonly used method is analytical formulation, 
which can partly explain the nonlinear mechanism of 
flexible pipes and is time efficient (Wang and Chen, 2011). 
Witz and Tan (1992a; 1992b) proposed an analytical model 
to predict the axial–torsional and bending structural 
behaviors of a flexible pipe. Kraincanic and Kebadze (2001) 
investigated the slip initiation and progression in the helical 
wire of a flexible pipe and derived the bending 
moment–curvature relationship, which showed good 
agreement with the experimental data. Bahtui et al. (2009) 
proposed an approach to model the axisymmetric and 
bending response in a whole matrix and compared it with a 
detailed FE model. 

The helical wire stress can be further investigated based 
on analytical formulations. Leroy and Estrier (2001) studied 
the dynamic stress in the helical wire based on its 
geometrical, friction, and equilibrium equations. They then 
validated the proposed method using the measured strain. 
Sævik (2011) applied two alternative approaches to predict 
the bending stress in the helical wire of a flexible pipe, in 
which the nonlinear bending moment–curvature relationship 
and the sandwich beam theory were used to describe the 
stick–slip behavior of the helical wire. The obtained stress is 
compared with the experimental data, and the results 
showed good agreement. Skeie et al. (2012) investigated the 
helical wire stress considering the local bending, and 
demonstrated the stress range at different circumferential 
positions. Tang et al. (2015) studied the validity and 
limitation of several analytical models for the bending stress 
calculation of the helical wire by using a detailed FE model. 
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The traditional method for fatigue damage assessment 
often first performs a global analysis of the flexible riser 
using constant bending stiffness and then transports the 
global response to the local model for the stress calculation 
of the helical wire (de Sousa et al., 2012). Tan et al. (2007) 
implemented the in-house hysteretic model of Wellstream as 
an external function of OrcaFlex to simulate the global 
response of the flexible riser. The results illustrated the 
necessity of considering the bending stiffness variation in 
the global analysis. Although researches on the flexible riser 
have been extensively conducted in the recent years, the 
stress characteristics of the helical wire under an irregular 
response, including the bending stiffness variation, is still 
not investigated and presented. 

This study presents a feasible model of the flexible riser 
under an irregular response and investigates the stress of the 
helical wire considering local flexure. The interlayer 
interaction under axisymmetric loads in the model is 
simulated by setting up dummy springs. The interlayer 
pressures are then obtained for the bending analysis. The 
bending stiffness is updated at each time step during the 
response analysis by determining the slipping region of the 
helical wires. An eight-layer flexible pipe in Witz (1996) is 
employed to verify the model. The stress at the critical point 
of the helical wire considering local flexure is then 
investigated. 

2 Methodology  

The flexible riser has several different kinds of layers (Fig. 
1), which are often treated individually, but have the same 
axial displacement uz, axial rotation z, rotation x about x 
axis, and y about y-axis (Fig. 2). The radial displacement ur 
of each layer is modeled individually because the separation 
of the adjacent layers is allowed.  

 
Fig. 1  Typical flexible riser components (De Sousa et al., 

2014) 
 

The following assumptions are applied in the present 
study to formulate the flexible riser: 

1) The helical wire only slides along its axial direction 
(i.e., the loxodromic curve) (Sævik, 2011). 

2) The curvature is constant along the flexible riser 
element. 

3) The interlayer contact pressure results from an 
axisymmetric response and remains constant during the 
bending behavior. 

4) The sliding friction of the helical wire is equal to the 

maximum static friction. 
5) The initial state of the helical wire is approximately a 

stress-free state (Skeie et al., 2012). 
 

 
Fig. 2  Displacement symbols of a layer and the critical 

point of helical wire 

2.1 Axisymmetric formulation 
The axisymmetric loads include the axial tension, torque, 

and internal and external pressures. The related tangent 
stiffness should be obtained to solve the displacements 
under these loads. The carcass armor and the pressure armor 
layer are often equivalent to the orthotropic cylinder. de 
Sousa et al. (2009, 2014) proposed an effective equivalent 
method based on the analogy between the helical tendon and 
the orthotropic shell. The method would not be detailed in 
the present study for brevity. After equivalence, the flexible 
riser layers can be divided into the cylindrical and helical 
layer categories. The helical layer mainly includes the 
tensile armor layer and the anti-wear layer. 

The stress–strain relationship of a cylinder can be 
expressed as follows based on the Hooke’s law: 
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where E, v, and G are the Young’s modulus, Poisson ratio, 
and shear modulus, respectively. Subscripts 1 and 2 
represent the axial and circumferential directions, 
respectively. For the isotropic polymeric layer, E1 is equal to 
E2 and 12 is equal to 21. The strains, as a function of the 
axisymmetric displacements, are described by the following 
equations (McNamara and Harte, 1989): 

1 2 12,  ,  z r zu u
R

L R L

                 (2) 

where L and R represent the length and the radius of the 
cylinder, respectively. 

The linearized axial strain for the helical layer is 
expressed as follows (Sævik, 2011): 

       2 2
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where α is the lay angle of the helical wire. 
The treatment of the interlayer interaction should be 

elaborated under the axisymmetric loads. Witz and Tan 
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(1992a) and Bahtui et al. (2009) investigated the modeling 
of the interlayer interaction based on the structural 
continuity and equilibrium along the radial direction. The 
former described the pressure difference of the helical wire 
as a function of the local curvature, bending moment, and 
torque, whereas the latter referred to the research work of 
Lanteigne (1985), where the pressure difference of the 
helical wire was related with the axial strain. The interlayer 
interaction in the present study is simulated by setting 
dummy springs between the medium lines of the adjacent 
layers (Fig. 3). 

 

 
Fig. 3  Sketch of the interlayer interaction model 

 
The strain energy U and the work W related with the 

external force are obtained as follows based on the principle 
of virtual work: 
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where N is the number of layers; subscript i is the ith layer; 
F and T are the axial force and torque, respectively; and Pin 
and Pout are the internal and external pressures, respectively. 
The internal pressure is directly exerted on the internal 
pressure sheath, considering that the innermost carcass 
armor is not waterproof. k is the stiffness of the dummy 
springs, which would be iteratively adjusted based on the 
interlayer penetration and the separation condition. The 
interlayer penetration corresponds to an increasing ki, 
whereas the interlayer separation corresponds to a 
decreasing ki. The interlayer contact pressure can be 
calculated based on the convergent ki and the interlayer 
radial displacement. 

The equilibrium equation of the flexible riser in the form 
of a matrix can be given as follows by letting U = W: 
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where the matrix dimension is (N+2)(N+2) and the 
elements are given in the Appendix. 

2.2 Axisymmetric formulation 
The bending nonlinearity of the flexible riser is mainly 

related with the stick–slip behavior of the helical wire. The 
helical wire starts to slip at the position near the neutral 
surface when the bending curvature reaches the minimum 
critical value, and then propagates with the increasing 
curvature until full slippage happens. The non-slipping and 
slipping axial strains induced by the bending response are 
presented as follows (Dong et al., 2013): 
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where  is the curvature;  is the angular position in the 
range of [0, /2] (Fig. 2); P1 and P2 are the internal and 
external pressures of the helical armor obtained based on the 
above axisymmetric model; f1 and f2 are the corresponding 
friction coefficients; and t is the layer thickness. This study 
takes the bending around the x axis as an example. Thus,  
is equal tox/L. 

The equilibrium between the strain energy and the work 
done by the bending moment under the virtual curvature 
increment can be expressed as follows because the slipping 
part of the helical wire keeps stress constant and would not 
contribute to the strain energy associated with the curvature 
variation: 
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Thus, the tangent bending stiffness of the helical armor is 
given as: 

 0

2 1
1 sin 2
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         (9) 

where Mx is the bending moment around the x axis 
associated with the virtual curvature increment of  = x/L; 
cr is the boundary of the sticking and slipping parts in the 

range of [0, /2]; and  2 3
0 cos / 2EI nEAR   is the 

non-slipping bending stiffness. 
Conventional studies often investigate the full loop of the 

hysteretic bending moment–curvature relationship, which 
only provides the bending stiffness under a regular response. 
The present study tracks the axial stresses along angular 
positions at each time step to determine the slipping region 
(i.e., cr). The bending stiffness is then calculated for the 
next time step. The slipping region can be determined as 
follows based on the axial stress gradient (Tan et al., 2007, 
Dong et al., 2015): 
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where  1 1 2 2fF P f P f b   is the maximum friction force 

per unit length of helical wire. Note that the helical wire 
with a small  always slips in advance because the smaller  
corresponds to the larger axial stress gradient during the 
sticking state (Kraincanic and Kebadze, 2001). 

The above mentioned bending stiffness of the helical wire 
only considers the effect of the axial stress of the helical 
wires. Dong et al. (2013) investigated the effect of the local 
flexure of the helical wires on the bending stiffness. They 
found that the effect was negligible for the non-slipping 
state, but obvious for the full-slipping state. The contribution 
of the helical wire’s local flexure to the bending stiffness can 
be described as follows: 
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where n is the number of the helical wires on the tensile 
armor layer; and IY, IZ, and J are the normal, transverse, and 
torsional moments of inertia, respectively. 

The bending formulation of the cylindrical layer can be 
easily obtained. The related bending stiffness for the 
anti-wear layer can be calculated based on Eqs. (9) and (11). 
However, it may play a negligible role because of the small 
Young’s modulus. 

2.3 Stress at the critical point 
The linearized Green–Lagrange strain at the critical point 

of the helical wire considering the local flexure can be 
expressed as follows (Skeie et al., 2012): 
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where X , Y , and Z  are the increments of the 

local twist, normal, and transverse curvatures around the Y 
and Z axes, respectively. 

The local flexure increments induced by axisymmetric 
response are given as follows (Sævik, 2011): 
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This study presumes that the helical wire slips only along 
the axial direction (i.e., the loxodromic curve (Sævik, 2011)) 

and neglects the transverse slipping. Therefore, the 
increments of the local twist, normal, and transverse 
curvatures induced by the bending response are given as 
follows (Sævik, 2011; Skeie et al., 2012): 
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The von Mises equivalent stress is not only used in the 
ultimate strength analysis, but also often used in the 
multiaxial fatigue assessment (Benasciutti, 2014). Hence, it 
would also be analyzed in this study. The expression is 
written as follows: 

      2 2 2
3s x XY XZE G G             (15) 

3 Validation 

Witz (1996) reported an experimental study, where the 
tension–elongation and bending moment–curvature 
relationships were investigated in detail using a 2.5-inch 
unbonded flexible pipe. Table 1 shows the main parameters 
of this flexible pipe. Note that the experimental model did 
not include the outer sheath, instead of a fabric tape. This 
study employs this case to verify the above mentioned 
proposed axisymmetric and bending models. The friction 
coefficient between the metallic and anti-wear layers is 0.1 
(Kraincanic and Kebadze, 2001). 

 
Table 1  Main parameters of the unbonded flexible pipe 

Layer 
No. 

Inner 
diameter

/mm 
t/mm α/(º) E/MPa  

1 63.2 3.5 −87.5 2.05×105 0.29
2 70.3 4.9 / 284 0.30
3 80.1 6.2 −85.5 2.05×105 0.29
4 92.5 1.5 −84.2 301 0.30
5 95.5 3.0 −35.0 2.05×105 0.29
4 101.5 1.5 −84.7 301 0.3
5 104.5 3.0 35 2.05×105 0.29

Fabric 
tape 

110.3 0.5 −84 600 0.3

 
Fig. 4 illustrates the axial force as a function of the 

elongation with the flexible pipe ends free to rotate. The 
present results are very similar with the mean value obtained 
using the models of different institutes (Witz, 1996). 
Compared with the experimental data, the present model 
overestimates the axial stiffness at a small elongation and 
fails to capture the unobvious hysteretic phenomenon, but 
predicts a relatively accurate axial stiffness with the 
increasing elongation. Fig. 5 shows the bending 
moment–curvature relationship under an internal pressure of 
30 MPa. Before the bending analysis, the axisymmetric 
model is first applied to calculate the interlayer pressure. 
The numerically predicted hysteretic loop shows a good 
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agreement with the experimental data. Overall, the proposed 
model can reasonably model the axial and bending stiffness 
of the unbonded flexible riser. 

 
 

 
Fig. 4  Relationship between axial force and elongation 

 
 

 
Fig. 5  Relationship between bending moment and curvature 

4 Stress analysis of the helical wire 

4.1 Stress at different angular positions 
As regards the helical wire stress analysis, the predicted 

stress would remain constant when the slippage starts if only 
the axial stress is to be considered, and the stress induced by 
the local flexure is neglected. Moreover, a larger  
corresponds to a larger stress range according to Eq. (7). 
This condition may underestimate the stress range at critical 
positions and lead to a wrong selection of the fatigue failure 
position around the circumferential position. The present 
study takes the outer helical armor as an example and 
calculates the critical point stress at different angular 
positions by exerting a constant axial force and a regular 
curvature response on the above mentioned flexible pipe 
model: F=1.2×105 N, [−0.025 m−1, 0.025 m−1]. Fig. 6 
demonstrates the stress variation with curvature. 
Considering the effect of the local flexure at a critical point, 
the stress still linearly increases with a low slope when the 
slippage starts, and the slope decreases with the increasing . 
Therefore, the fatigue failure position of the helical wire 
may be near a neutral surface when subjected to a large 

curvature variation (Hobbs and Ghavami, 1982; Sævik and 
Berge, 1995). 

 

 
Fig. 6  Relationship between bending moment and curvature 

 
4.2 Stress under an irregular curvature response 

Published literatures mainly focused on the regular 
response analysis of flexible pipes and studied the full loop 
of the bending moment–curvature relationship based on the 
derived formula. The bending moment model in the present 
study calculates the axial stress of the helical wire around 
the circumferential position at each time step to judge 
whether slippage occurs, then obtains the bending stiffness 
for the next time step. Therefore, this model can be used in 
the irregular response analysis. An irregular curvature time 
history is exerted on the flexible pipe to demonstrate this 
feature (Fig. 7). For simplification, the irregular curvature 
response is directly obtained through the superposition of 
several sinusoidal responses, which ensures the slippage of 
the helical wire based on the critical curvature (Kraincanic 
and Kebadze, 2001). The axial force is F=1.2×105 N. The 
time increment of the calculation is set to 0.02 s. Fig. 8 
illustrates the bending moment–curvature relationship, 
where point a is the bending initiation position. Regardless 
of the slippage occurrence or absence, the inverse route 
would follows the curve with a non-slipping bending 
stiffness until slippage occurs again, such as the inverse at 
points b and c. Fig. 9 shows the time history of the critical 
point stress. At the initial response marked by circle i, the 
stress  = /3 exceeds that at  = /2 because of the relative 
large stress increment with an increasing curvature when the 
helical wire slips. However, for the subsequent response, the 
larger  corresponds to a larger stress because of the small 
curvature. 

 

 
Fig. 7  Curvature time history 
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Fig. 8  Bending moment–curvature relationship under an 

irregular curvature load 
 

 
Fig. 9  Time histories of the critical point stresses at 

different angular points 
 

4.3 Stress under an irregular bending moment 
This section presents the response analysis of the flexible 

riser done by applying an irregular bending moment load 
and a constant axial force F=1.2×105 N. Fig. 10 shows the 
bending moment history. The bending moment during the 
initial time is not large enough to make the helical wire slip, 
thus the bending moment–curvature relationship follows the 
curve in region k (Fig. 11). Note that the quasi-static method 
is applied in this analysis. 

 

 
Fig. 10  Bending moment time history 

 
Fig. 11  Bending moment–curvature relationship under an 

irregular bending moment load 

The conventional approach often assumes that the flexible 
riser is full-sticking or full-slipping in the global analysis. 
This study qualitatively discusses the effect of this approach 
on the predicted results. Fig. 12 shows a comparison of the 
curvatures predicted by three different models: 1) 
full-sticking, 2) full-slipping, and 3) present models. The 
curvature of the full-slipping model is very large because of 
the very small bending stiffness, and is divided by 100 in the 
plot. The full-sticking model has the same curvature with the 
present model during the initial time because the helical 
wire does not slip. However, the curvature of the present 
model significantly changes when the full-slipping occurs. 
The flexible riser maintains full-sticking from points a1 to b1, 
then partial-slipping from points b1 to c1 and full-slipping 
from points c1 to d1. Correspondingly, the critical point 
stress at  = /3 varies along a2b2c2d2 in Fig. 13. 
Note that although the curvature changes relatively little 
from points a1 to b1, the corresponding critical point stress 
variation from points a2 to b2 is obvious because of the 
full-sticking. However, the large curvature variation from c1 
to d1 results in a relatively small critical point stress 
variation from c2 to d2 because of the full-slipping. The 
increasing rate of the stress is small when slippage occurs, 
as discussed in Section 4.1. 

 

 
Fig. 12  Comparison of the curvature obtained from three 

different models 
 

 
Fig. 13  Critical point stress at  = /3 under an irregular 

bending moment load 

5 Conclusions 

The present study proposed an analytical model for the 
flexible riser. The axisymmetric and bending analyzes for 
this model were performed separately by assuming that the 
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interlayer contact pressure remained constant during the 
bending response. Dummy springs, whose stiffness changed 
with the interlayer gap amplitude during the iterative 
calculation, were set between the layers to calculate the 
interlayer pressure under axisymmetric loads. The tangent 
stiffness matrix associated with the axisymmetric and the 
tangent bending stiffness were derived based on the virtual 
energy theory. The axial stress gradients of the helical wire 
around the circumferential direction were calculated at each 
time step in the bending analysis to judge whether slippage 
occurs. The slipping region was then obtained to determine 
the bending stiffness for the next time step. 

This model was feasible for an irregular bending response. 
The proposed model was verified against an experimental 
model in the literature. The predicted axial force–elongation 
and bending moment–curvature relationships showed good 
agreement with the experimental data. 

The bending moment–curvature relationship under an 
irregular response was demonstrated based on the proposed 
model. The critical point stress of the helical wire was also 
investigated by considering the local flexure. The results 
indicated that the critical point stress still linearly increased 
with the increasing curvature after slipping, but the slope was 
smaller than that before slipping. This result was different 
from that of the traditional approach, which only considered 
the axial stress that would remain constant after slipping. In 
addition, the larger angular position  corresponded to a 
larger slope after slipping, which was in contrast with the law 
before slipping. Therefore, a small angular position  may 
have a relatively large critical point stress under a large 
curvature. The flexible riser responses obtained from the 
conventional models with a constant bending stiffness and 
those from the present model were also compared. The 
curvature predicted by the present model sharply increased 
when slippage occurred and was obviously larger than that 
predicted by the full-sticking model. 

In conclusion, the proposed model can well capture the 
hysteretic relationship between the bending moment and the 
curvature. It can also predict the helical wire stress at a critical 
point under an irregular response. Therefore, this model can 
be implemented in an unbonded flexible riser global analysis 
for a more accurate fatigue damage prediction. 
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where A is the layer cross-section area for the cylindrical 
layer or wire cross-section area for the helical armor. 
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