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Abstract: The present study deals with the scattering of oblique 
surface water waves by small undulation on the bottom in the 
presence of a thin vertical barrier. Here, three different 
configurations of vertical barriers are investigated. Perturbation 
analysis is employed to determine the physical quantities, namely, 
the reflection and transmission coefficients. In this analysis, many 
different Boundary Value Problems (BVPs) are obtained out of 
which the first two bvps are considered. The zeroth order bvp is 
solved with the aid of eigenfunction expansion method. The first 
order reflection and transmission coefficients are derived in terms 
of the integrals by the method of the Green’s integral theorem. The 
variation of these coefficients is plotted and analyzed for different 
physical parameters. Furthermore, the energy balance relation, an 
important relation in the study of water wave scattering, is derived 
and checked for assuring the correctness of the numerical results 
for the present problem. 
Keywords: oblique wave scattering, bottom undulation, vertical 
barrier, eigenfunction expansion, Green’s integral theorem, 
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1 Introduction1 

The problems of scattering of water waves by vertical 
barriers have been drawing a great attention of many 
researchers for a long time. These problems are important 
because of their engineering applications such as 
wavemakers and breakwaters which protect a harbor from 
the rough sea. Dean (1945) used the complex variable 
technique to obtain the reflection coefficients from the 
linearized solution of water wave scattering in the presence 
of a thin vertical barrier. Ursell (1947) obtained the solution 
of the problem of water wave diffraction by thin vertical 
barrier partially immersed in deep water by making use of 
the singular integral equation along with Havelock’s 
expansion. Porter (1972) derived the solution of the problem 
involving wave transmission through a gap in a vertical 
barrier in deep water by using the complex variable 
technique as well as Green’s integral theorem. Banerjea et al. 
(1996) utilized the one-term and multi-term Galerkin 
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approximation to evaluate the reflection coefficient for the 
problem considered by Porter (1972). Losada et al. (1992) 
obtained the reflection and transmission coefficients of the 
problem involving scattering of water waves by four 
different types of thin vertical barriers using eigenfunction 
expansion method. Mandal and Dolai (1994), and Porter and 
Evans (1995) derived the solution of the problem of Losada 
et al. (1992) by using the Galerkin approximation. Mandal 
and Chakrabarti (1999) employed the Galerkin 
approximation to determine the approximate solutions of a 
number of water wave scattering problems involving thin 
vertical barriers in deep water as well as finite depth of 
water. Sahoo et al. (2000), and Lee and Chawang (2000) 
analyzed the problem involving the scattering of water 
waves by permeable vertical barrier using eigenfunction 
expansion method. 

The above works were focused on the scattering of 
surface water waves by barrier only. On the other hand, the 
problems involving the scattering of surface water waves by 
a geometrical disturbance or an obstacle at the bottom are 
interesting for their possible application in the areas of 
coastal and marine engineering. The problem consisting of 
the reflection of surface waves by bottom undulation has 
been drawing a great attention as its mechanism is important 
in the development of shore-parallel bars. Such problem was 
solved by Miles (1981) utilizing the perturbation theory and 
finite cosine transformation while Davies (1982) employed 
perturbation theory and Fourier transform technique to 
obtain the reflection coefficient. Davies and Heathershaw 
(1984) compared the theoretical results of Davies (1982) by 
conducting the experiment in a wave tank. Mandal and Basu 
(1990) generalized the problem of Miles (1981) with 
inclusion of surface tension at the free surface while Kirby 
(1993) examined the problem where the incident wave is not 
necessarily close to the resonant frequency. Martha and Bora 
(2007) studied the problem for a number of practical 
examples of bottom undulations. Mandal and Gayen (2006) 
studied the problem of diffraction of surface water waves by 
vertical barrier and bottom undulation. 

It may be underlined that the combination of vertical 
barrier and the bottom undulation will serve as an effective 
breakwater. So it is an endeavor to consider scattering 
problems involving both barrier and bottom undulation, 
which help in the real and practical situations. Also, oblique 
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incidence of surface water waves is more natural than the 
normal incidence. In addition to these, this paper highlights 
about the applicability of mathematical techniques to solve 
the mixed Boundary Value Problem (BVP) arising from the 
scattering problem studied here. 

In the present paper, a mixed BVP occurs in a natural way 
while examining the scattering of oblique water waves by a 
thin vertical barrier over an undulating bottom topography. 
With the help of perturbation expansion, many bvps are 
obtained out of which the first two bvps are considered. The 
BVP-I (zeroth order) corresponds to the problem of 
scattering of surface waves by barrier over flat bed. This bvp 
is solved utilizing the eigenfunction expansion method 
followed by least-squares and QR-factorization giving rise 
to zeroth order reflection and transmission coefficients. The 
BVP-II represents the radiation problem involving the first 
order reflection and transmission coefficients. Using the 
Green’s integral theorem, these coefficients are obtained in 
terms of the integrals involving bottom undulation and the 
solution of zeroth order BVP. The effect of different 
parameters involved in the present study, is examined 
through different graphs. The energy balance relation for the 
given problem is investigated and checked for assuring the 
integrity of the theoretical and numerical results of the 
reflection and transmission coefficients.  

2 Formulation of the problem 

A right handed Cartesian co-ordinate system is taken in 
which the xz-plane is the undisturbed free surface of the 
fluid and the y-axis is directed positive vertically downward. 
The bottom with a small deformation is described by 

 y h c x   where ( )c x is continuous bounded function 

interpreting the form of the bottom undulation and 
( ) 0c x  as | | .x   Here, h denotes the uniform finite 

depth of the fluid far to either side of the undulation of the 
bottom and the non-dimensional number ( 1)e   gives the 

quantum of smallness of the undulation. Let a thin vertical 
barrier B (say) is fixed in the fluid whose position may be 
described as follows: 

 Case-I: 0,x  0 y a  (a partially immersed barrier) 

 Case-II: 0,x   0b y h c   (a bottom standing barrier) 

 Case-III: 0,x  0 ,y d   0d e y h c     (a barrier 

with a gap) 

Partial differential equation and boundary conditions: 
It is assumed that the fluid is incompressible, inviscid and 

the motion to be irrotational and simple harmonic in time. 
Consider a progressive wave train represented by the 

velocity potential i( )ˆRe{ ( , )e }z tx y    is incident obliquely 

upon the bottom undulation and the vertical barrier, where 
i

0
ˆ( , ) ( )e xx y y                   (1) 

with 1
0 0 0̂( ) cosh ( )y N k h y   and 2 1/2

0 0̂[(1 (sinh ) / ) / 2] ,N k h Kh   

0
ˆ ,k k the wave number of the incident wave, is the 

positive real root of the transcendental equation 

tanh 0,K k kh  0
ˆ cos ,k  0

ˆ sin ,k   being the 

angle of incidence of wave train with mean free surface of 

the fluid, 2 / ,K g  is the angular frequency of the  

incoming water wave train with time dependence ie t and 
g is the acceleration due to gravity. 

Due to uniformity in the z-direction and the periodicity in 
time, the velocity potential which describes the fluid motion 

can be expressed as i( )Re{ ( , )e }.z tx y    Then, assuming 

the linear theory, the complex valued potential ( , )x y
satisfies the Helmholtz’s Eq. (2) and the boundary 
conditions (3)–(8): 

2 2
2

2 2
0,   in the fluid region

x y

    
  

 
     (2) 

Free surface condition: 

0, on 0K y
y

 
  


            (3) 

Bottom condition: 

0, on ( )y h c x
n

 
  


         (4) 

Condition on barrier: 

0 0

0, on 0,
x x

x y B
x x

 
  

 
   

 
     (5) 

Conditions across gap: 

0 0

, on 0,  
x x

x y G
x x

 
  

 
  

 
      (6) 

0 0
, on 0,

x x
x y G   

          (7) 

Far field condition: 

ˆ ˆ( , ) ( , ) as
( , )

ˆ( , ) as

x y R x y x
x y

T x y x

 




     


   (8) 

where / n   is the outward normal derivative on the 

bottom undulation, G denotes the gap, so that B G is

[0, (0)]h c  and this gap depends on the configurations of 

the barrier; andR T represent the reflection and transmission 

coefficients respectively which are to be determined here 
along with ( , ).x y  

3 Method of solution 

The bottom condition / 0n   on ( )y h c x  can 

be approximated up to the first order of the small parameter
 as 

2d
[ ( ) ] ( ) ( )

d
0,  onx zzc x c x O y h

y x

           
  

  (9) 

The approximate boundary condition (9) suggests that
( , ),x y R and T can be expressed in terms of  as given by 
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   
 
 

2
0 1

2
1

2
0 1

0

,

R R

T T

x y O

R O

T O

   

 

 

  




  

  



          (10) 

It must be noted that such a perturbation expansion ceases 
to be valid at Bragg resonance when the reflection 
coefficient becomes much larger than the dimensionless 
undulation parameter ε, as noticed by Mei (1985). Also, this 
theory is valid only for the infinitesimal reflection and away 
from resonance. It may be reminisced that the Bragg 
resonance occurs when the wave number of the bottom 
undulation is twice the wave number of free surface. 
However, Mei (1985) overcomes this Bragg resonance 
situation by formulating wave evolution and the reflection 
theory at and near the Bragg resonance condition for 
shore-parallel bars. Since, the bottom undulations are small, 
there is no concern of large reflection in our work. Hence, 
the perturbation expansion as given by the relation (10) is 
valid throughout the present work. 

On substituting the expressions of ( , ),x y  R and T from 

relation (10) into the relations (2), (3) and (5)(9), then 

equating the coefficients of 0 and  from both sides of all 
equations, we have the following BVPs: 

BVP-I: The function 0( , )x y satisfies 
2 2

20 0
02 2

0,     in the fluid region
x y

    
  

 
    (11) 

0
0 0,       on    0K y

y

 
  


       (12) 

0 0, on y h
y


 


          (13) 

0 0

0 0

0, on 0,
x x

x y B
x x

 
  

 
   

 
    (14) 

0 0

0 0

,         on 0,  
x x

x y G
x x

 
  

 
  

 
     (15) 

0 00 0
, on 0,     

x x
x y G   

         (16) 

i i
0 0

0 i
0 0

(e e ) ( ) as
( , )

e ( ) as

x x

x

R y x
x y

T y x

 








    


  (17) 

BVP-II: The function 1( , )x y satisfies 

2 2
21 1

12 2
0,     in the fluid region

x y

    
  

 
    (18) 

1
1 0, on    0K y

y

 
  


       (19) 

1 0( ) ( ) , o
d

n
d

zzx
c x c x y h

y y

  
  

     
     (20) 

1 1

0 0

0, on 0,
x x

x y B
x x

 
  

 
   

 
     (21) 

1 10 0
, on 0,

x x
x y G   

        (22) 

1 1

0 0

, on 0,  
x x

x y G
x x

 
  

 
  

 
    (23) 

i
1 0

1 i
1 0

e ( ) as
( , )

e ( ) as

x

x

R y x
x y

T y x










   
 

    (24) 

Here, the BVP-I corresponds to the problem of scattering of 
water waves by thin vertical barrier in water of finite depth h. 

The solution for 0( , )x y can be expressed as 

i i
0 0

1

0
i

0 0
1

(e e ) ( ) e ( )

as 0,
( , )

e ( ) e ( )

as 0,

n

n

s xx x
n n

n

s xx
n n

n

R y A y

x
x y

T y B y

x

 



 


 











  

 

 
 







 (25) 

where 2 2
n ns k   , 1( ) cos ( )n n ny N k h y    with 

2 1/ 2
0

ˆ[(1 (sin ) / ) / 2] ,nN k h Kh  and ,  ( 1,  2, )nk k n  

are the positive real roots of the transcendental equation 

tan 0.K k kh  Here 0,R 0 ,T nA and nB are unknown 

complex constants to be determined to obtain the zeroth 

order velocity potential 0( , )x y completely. It is noted that 

the set of eigenfunctions ( )  ( 0,  1,  2, )n y n   form a 

complete orthonormal set with 

0

1
( ) ( )d

h

n m nmy y y
h

    

where nm is the Kronecker delta. 

Now, the relation (15) holds good for 0 ,y h  because 

the horizontal velocity vanishes on the barrier. Using 
Havelock's inversion formula (Ursell, 1947) in the relation

0 00 0
/ / , 0 ,

x x
n n y h   

       we obtain 

0 0 1 and n nR T A B                (26) 

Further, using the boundary condition (16) that the pressure 
has to be continuous and making use of the relation (26), we 
have 

0
0

1 1
( ) ( ), on 0, n n

n

y A y x y G
h h
 





       (27) 

where
 

0 0 0 0̂1, iA R k k                 (28) 

Now, using the boundary condition (14), we get 

0

1
( ) ( ) 0, on 0,n n n

n

A s h y x y B
h






        (29) 

where 0 i .s    

The relations (27) and (29) are known as dual series 
relations and can be combined to make one mixed boundary 
condition as given by 

( ) 0, 0F y y h               (30) 
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where 

0
0

0

1 1
( ) ( ),       on 

( )
1

( ) ( ), on  

n n
n

n n n
n

y A y y G
h h

F y

A s h y y B
h

 












  

 




 

The relation (30) represents an over-determined system of 
equations involving countably infinite number of unknowns 

 ( 0,  1,  2, )nA n   and uncountably infinite number of 

equations for values of y, belonging to G or B. Such an 
over-determined system can be solved by using an 
appropriate method. In the present paper, we have used 
method of analytic least-squares as described below. It may 
be noted that on increasing the number of equations in the 
over-determined system (30), the coefficient matrix 
associated with the over-determined system of equations 
may be rank deficient. To avoid such situation, the 
QR-factorization is used to solve the system of normal 

equations to obtain the unknowns .nA  

Now, the least-squares error is established as 

1/21/2

2 2 2

0

Error= | ( ) | d | ( ) | d | ( ) | d
h

y G y B

F y y F y y F y y
 

  
        

   (31) 

Minimizing the error with respect to nA establishing the 

following normal equations: 

* *( ) ( )
( ) d ( ) d 0, 0, 1, 2, ,

m my G y B

F y F y
F y y F y y m

A A 

 
  

    (32) 

where *( )F y is the complex conjugate of ( ).F y  

On substituting the value of *F and the derivatives of F  
with respect to the unknowns, the relation (32) gives a 
system of complex matrix equations which is given by 

*
*

0

0

1 ( )( )
( ) ( )d ( ) ( )d

1
( ) ( )d , 0, 1, 2, ,

m n
n n m n m

n y G y B

m

y G

s h s h
A y y y y y y

h h

y y y m
h

   

 



  



 
  

  

 

  

 

(33) 

For each case (given in Section 2), truncating the series for n 
and m to a finite number of terms N, a system of N+1 

simultaneous equations with N+1 unknowns nA

( 0,  1,  2, , )n N   is obtained and is solved here with the 

help of the QR-factorization to produce the numerical values 

of ( 0,  1,  2, , ).nA n N   

Now, the BVP-II represents the radiation problem 

containing 0( , )x y the solution of BVP-I. Applying Green's 

integral theorem to the functions 0( , )x y and 1( , )x y on 

the region bounded by 

0, 0 ; 0 , ; 0 , ; 0, 0;

, 0 ; , ; , 0

y x X x y B x y B y X x

x X y h y h X x X x X y h

           
          

where X is positive, large and tends to infinity, we obtain 

2

0
1

1 ( , )
( ) d

2i

x h
R c x x

x








               (34) 

Similarly, applying Green's integral theorem to the functions 

0 ( , )x y  and 1( , )x y in the same region, we have 

0 0
1

1 ( , ) ( , )
( ) d

2i

x h x h
T c x x

x x

 






                (35) 

4 Validation of the results 

It should be realized that in the absence of vertical barrier, 
the present problem reduces to the problem of scattering of 
water waves by bottom undulation only. Further, it is noted 

that in the absence of the barrier, the solution 0( , )x y of 

BVP-I represents the progressive wave (incident wave here)
ˆ( , ).x y  So, to validate the present results, we derive the 

results by assuming 0
ˆ( , ) ( , ) and =0x y x y   (corresponds 

to normal incidence). With these assumptions, we found 
from relations (34) and (35) that  

0

2
ˆ2i0

1

0 0

ˆ2i
( )e d

ˆ ˆ2 sinh 2
k xk

R c x x
k h k h








            (36) 

2
0

1

0 0

ˆ2i
( )d

ˆ ˆ2 sinh 2

k
T c x x

k h k h






              (37) 

which exactly match with the results of available in 
literature (Davies and Heathershaw, 1984; Mandal and Basu, 
1990, for normal incidence and negligible surface tension). 

The 1 1andR T given in relations (34) and (35) further 

evaluated for a particular form of the shape function.  

5 Particular form of the bottom undulation 

In this Section, we consider a particular form of the shape 
function ( )c x  to determine the reflection and transmission 

coefficients respectively, given in the relations (34) and (35). 
The shape function ( )c x  is considered in the form of a 

patch of sinusoidal ripples because the functional form of 
the uneven bottom closely corresponds to some obstacles 
which occur in a natural way and formed at the bottom due 
to the alluviation and ripple growth of sands. 
The patch of sinusoidal ripples can be expressed as  

0 sin , ,
( )

0, otherwise,

c x l x l
c x

   
 


           (38) 

where 0π / ,l M c is amplitude and  is the wave number 

of the sinusoidal ripples and M is a positive integer. The 
patch consists of M ripples, each having the same wave 
number .  Substituting relation (38) and (25) (for 0)x 

into the relation (35), 1T vanishes identically. Further, 

substituting the relation (38) and (25) (for 0)x  into the 

relation (34), 1R becomes 
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0 0 0 0
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4 2 2

i
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From relation (39), it is observed that when 2 ,   the 

highest peak value of the first order reflection coefficient 1R

becomes a constant multiple of M the number of ripples in 
the patch and it varies linearly with M To visualize the 
effects of the various parameters on the reflection coefficient, 

numerical computation of the reflection coefficient 1R given 

by (39) is discussed in section 6.  

6 Results and discussion 

A MATLAB program is written and is used to investigate 
the effects of the various parameters such as barrier length, 
number of ripples, the amplitude of the ripple, the angle of 
incidence and the gap below/above the barrier on the 

reflection coefficient 1| |R given by relation (39) for a patch 

of sinusoidal ripples on the sea-bed. The main aim of the 
present investigation is to observe how the incident wave 
energy is transformed, after scattered by both obstacles, into 

the reflected and transmitted waves. The unknowns 0A

(hence 0R  from (28)), 1 2, , NA A A are computed from (33) 

and then 1| |R is computed from (39) and plotted in the Figs. 

(2)–(4) for different values of different dimensionless 

parameters. The relation of 1| |R is non-dimensionalized by 

using h as the length scale. 
In the numerical computation, the value of 1,Kh   

angle of incidence π / 4,   the wave number of the ripple 

1,h  amplitude of the ripple 0 / 0.1c h   and number of 

ripples M=1 are kept fixed unless otherwise mentioned in 
the text. 

A set of numerical values of 1| |R is presented in Table 1 

for 5, 8,10,15 and 20N  with different values of Kh and 

for fixed values of 0/ , /  and .a h c h M For numerical 

computation, the number of evanescent modes 5N   is 

kept fixed since the results for 1| |R are correct up to two 

decimal places for 5N  as shown in Table 1.  

6.1 Validation 
To validate the present model, the present results are 

compared with the results available in the literature. It 
should be noted that when the length of the vertical barrier

/ 0,a h the present problem reduces to the problem of 

scattering of water waves by the bottom undulation only 

(Davies and Heathershaw, 1984). Taking 0 / 0.1,c h   

2, 0M    and / 0,a h   the present result for reflection 

coefficient 1| |R  from (39) is depicted in Fig. 1 and 

compared with the known result (Davies and Heathershaw, 
1984). The figure shows that both results are exactly the 
same. 

 

Table 1  Values of 1R| |  against Kh for a/h=0.2, / .c h0 01  

and M  1  

Kh N=5 N=8 N=10 N=15 N=20

0.05 0.017 8 0.017 4 0.017 2 0.017 0 0.016 9

0.10 0.032 0 0.031 4 0.031 1 0.030 8 0.030 6

0.30 0.069 4 0.068 3 0.067 7 0.067 0 0.066 7

0.50 0.082 1 0.080 3 0.079 4 0.078 3 0.077 8

 

 
Fig. 1  |ࡾ૚| against Kh for fixed M=2, a/h=0, c0/h=0.1, =0 

and h=1 

6.2 Effect of system parameters on reflection coefficient 
for different configurations of the barrier 

Case I: A partially immersed barrier 
In Fig. 2, the absolute value of the first order reflection 

coefficient 1| |R is plotted against Kh for the different number 

of ripples, 2, 4, 7M  with 0  (normal incidence) and 

π / 4.  In this case, for all curves, the barrier length is fixed 

at / 0.2.a h   The curve which corresponds to 2,M the 

global maximum value (the largest value of 1| |R over all 

values of )Kh of 1| |R is 0.1334 attained at 0.5046 h

(when 0.44)Kh and for the curve corresponding to 

4,M the global maximum value of 1| |R is 0.277 8 

attained at 0.5046 h (when 0.44).Kh  Similarly for the 

curve corresponding to 7,M the global maximum value of 

1| |R is 0.4688 attained at 0.4996 h (when 0.43).Kh  lt 

is clear from this figure that the global maximum value of 

the reflection coefficient 1| |R is attained when h  

becomes approximately twice h and the global maximum 
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value of 1| |R  increases as M (number of ripples) 

increases. This result is plausible from the physical point of 
view that more number of ripples present at the bottom will 
produce more reflection. It is also observed that the 
reflection coefficient becomes more oscillatory and the 
number of zeros is increasing with increasing the number of 
ripples. These developments are due to the multiple 
interaction of the incident wave between the free surface, 
the barrier and the sinusoidal ripples. To visualize the 
difference between the results of oblique and normal 

incidences, the graph for 1| |R is also plotted in Fig. 2 for 

0   (normal incidence) with 2.M  It can be noticed 
that the global maximum value of the reflection coefficient 
for the normal incident waves is higher in comparison to 
that of oblique incident waves. This agrees with physical 
intuition that more energy will transfer from the incident 
wave to reflected wave if the wave is incident normally to 
the obstacles. 

Fig. 3 shows the variation of the absolute value of the first 

order reflection coefficient 1| |R against the barrier length

/a h  for the different values of ripple amplitude 0 / .c h  It 

can be seen that the value of 1| |R  is increasing as the 

barrier length is increasing. This agrees with the physical 
understanding, longer the barrier will certainly increase the 
reflection. Also, from this figure, it can be seen that the 
reflection coefficient is increasing with increasing ripple 

amplitude 0 / ,c h  which agrees with the physical intuition 

that high ripple amplitude will produce more reflection.  

Case II: A bottom standing barrier  

In Fig. 4, the reflection coefficientcis 1| |R depicted 

against Kh for different number of ripples 2, 4, 7M with 

gap / 0.2.b h  From this figure, it is clear that the global 
maximum value of the reflection coefficient is increasing 
with increasing the number of ripples .M This agrees with 
the physical intuition of the problem as discussed in the 
previous case. 

In Fig. 5, the reflection coefficient 1| |R is plotted against 

the gap /b h for different values of the ripple amplitude

0 / 0.10, 0.15, 0.25.c h  In this figure, it can be remarked 

that the reflection coefficient drops with respect to the gap
/b h but its value is increasing with increasing the value of 

ripple amplitude. It can also be noticed that the reflection 
coefficient drops slowly for the smaller value of the ripple 
amplitude. The case II with the bottom standing barrier is a 
complementary case of case I, i.e., in place of the barrier in 
case I, there is a gap in case II and in place of gap in case I, 
there is barrier in case II. Thus, the results from Fig. 5 of 
case II would be complementary of the results from the Fig. 
3 of case I. These complementary observations are found 
exactly from Fig. 5 and are plausible from the physical 
understanding that the more gap causes less reflection and 
high ripple amplitude effects more reflection. 

In Fig. 6, the absolute value of the first order reflection 

coefficient 1| |R  is plotted against the angle of incidence
for the gap / 0.2.b h  The continuous decrease in the 
value of the reflection coefficient with respect to the angle 
of incidence is observed from this figure, which is plausible 
from the physical point of view that less energy will transfer 
from the incident wave to reflected wave if the angle of 
incidence increases. 

Case III: A barrier with gap  

In Fig. 7, the first order reflection coefficient 1| |R is 

plotted against Kh for different number of ripples 

2, 4, 7M with / 0.2d h and / 0.3.e h The figure 

establishes the same characteristics with the number of 
ripples as observed in the previous cases. 

Fig. 8 shows the effect of the amplitude of the bottom 

undulation 0 /c h on the absolute value of first order 

reflection coefficient 1| |R for different values of the gap 

/ 0.20,e h  0.35, 0.50.  From Fig. 8, it is observed that the 

reflection coefficient is increasing while increasing the value 
of ripple amplitude. But the value of the reflection 
coefficient is decreasing while increasing the gap and this 
result agrees with the physical intuition. 

In Fig. 9, the first order reflection coefficient is depicted 
against the angle of incidence for / 0.2, / 0.2. d h e h  It 

shows the similar behavior of the reflection coefficient with 
the angle of incidence as discovered in the previous cases. 

 

 
Fig. 2  |ࡾ૚| versus Kh for different values of M=2, 4, 7 with 

fixed a/h=0.2, c0/h=0.1 and h =1 
 

 
Fig. 3  |ࡾ૚| versus a/h for different values of c0/h=0.1, 0.2, 

0.3 with Kh=1, M=1, h =1 and =/4 
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Fig. 4  |ࡾ૚| versus Kh for different number of ripples M=2, 

4, 7 with b/h=0.2, c0/h=0.1, h =1 and =/4 
 

 
Fig. 5  |ࡾ૚| versus gap b/h for different values of c0/h=0.10, 

0.15, 0.25 with Kh=1, M=1, h =1and =/4 
 

 
Fig. 6  |ࡾ૚| versus  for b/h=0.2, c0/h=0.1, Kh=1, h=1 and 

M=1 
 

 
Fig. 7  |ࡾ૚| versus Kh for different number of ripples M=2, 

4, 7 with d/h=0.2, c0/h=0.1, e/h=0.3, h =1 and =/4 

 
Fig. 8  |ࡾ૚| versus ࢉ૙/h for different values of e/h=0.20, 

0.35, 0.50 with Kh=1, M=1, d/h=0.1, h =1 and 
=/4 

 

 
Fig. 9  |ࡾ૚| versus  for d/h=0.2, e/h=0.2, c0/h=0.1, Kh=1, 

h=1 and M=1 

7 Energy balance relation 

It is found from the literature (Chakrabarti and Martha, 
2009; Chakrabarti and Mohapatra, 2013 etc.) that among 
many important results in the theoretical study of water 
waves, the special relation, namely, the “energy identity 
relation” plays an important role in the water wave 
scattering problems for checking the correctness of the 
results. The energy identity, in the cases when one has to 
rely on the numerical results for these coefficients, confirms 
the correctness of the numerical results. Using Green’s 
integral theorem involving complex velocity potential and 
its complex conjugate, the energy identity relation for the 
present problem can be derived as 

2 2| | | | 1R T                (40) 

Using relation (10), the numerical values of | |, | |R T and 

hence, 2 2| | | |R T are evaluated for different values of Kh

and presented in Tables 2–4 for the three different types of 
barrier respectively, to verify the energy balance relation 

(40). In all cases, the parameters 0 / 0.1,c h 1M and

=π/4 are kept fixed. 

The last column of the Tables 25 shows that each value 

of 2 2| | | |R T for each N is nearly equal to 1, that is, the 

reflection and transmission coefficients obtained by the 



Journal of Marine Science and Application (2017) 16: 190-198 197

method employed here satisfy the energy balance relation 
(40) almost accurately. 

It is observed from the table 2 (for 0.1)  and Table 5 

(for 0.001)  that the results obtained for | | and | |R T are 

correct up to two decimal places, satisfying the energy 
balance relation (40). 

 
Table 2  Case I: Partially immersed barrier with barrier length a/h=0.2 and ε=0.1 

Kh R0 R1 |R| T0 |T| |R|2+|T|2 

0.05 0.000+0.006 2i −0.014 0+0.000 1i 0.006 3 1.000 0−0.006 2i 1.000 0 1.000 0 

0.10 0.000 1+0.009 1i −0.016 1+0.000 1i 0.009 2 0.999 9−0.009 1i 0.999 9 1.000 0 

0.30 0.000 4+0.018 7i −0.079 4+0.001 5i 0.020 3 0.999 6−0.018 7i 0.999 8 0.999 9 

0.50 0.001 2+0.030 5i −0.223 2+0.006 9i 0.037 6 0.998 8−0.030 5i 0.999 3 1.000 0 

0.80 0.002 1+0.044 9i 0.016 6−0.000 7i 0.045 0 0.997 9−0.044 9i 0.998 9 0.999 8 

1.00 0.003 8+0.060 4i −0.021 7+0.001 3i 0.060 6 0.996 2−0.060 4i 0.998 0 0.999 7 

 
Table 3  Case II: Bottom standing barrier with gap b/h=0.6 and ε=0.1 

Kh R0 R1 |R| T0 |T| |R|2+|T|2 

0.05 0.005+0.0224i −0.013 5+0.000 3i 0.022 5 0.999 5−0.022 4i 0.999 7 1.000 0 

0.10 0.001 0+0.031 3i −0.026 2+0.000 8i 0.031 4 0.999 0−0.031 3i 0.999 5 1.000 0 

0.30 0.002 7+0.051 3i −0.060 0+0.003 1i 0.051 7 0.997 3−0.051 3i 0.998 6 0.999 9 

0.50 0.003 9+0.061 9i −0.069 0+0.004 3i 0.062 4 0.996 1−0.061 9i 0.998 0 0.999 9 

0.80 0.004 7+0.068 2i −0.050 1+0.003 4i 0.068 5 0.995 3−0.068 2i 0.997 6 0.999 9 

1.00 0.004 8+0.068 6i −0.028 8+0.002 0i 0.068 9 0.995 2−0.068 6i 0.997 6 0.999 9 

 
Table 4  Case III: Barrier with a gap for e/h=0.1, d/h=0.3 / . ,0 1e h and ε=0.1 

Kh R0 R1 |R| T0 |T| |R|2+|T|2 

0.05 0.002 2+0.046 8i −0.016 0+0.000 8i 0.046 8 0.997 8−0.046 8i 0.998 9 1.000 0 

0.10 0.004 4+0.065 8i 0.007 6−0.000 5i 0.065 9 0.995 6−0.065 8i 0.997 8 1.000 0 

0.30 0.013 3+0.113 9i 0.093 4−0.010 8i 0.115 0 0.986 7−0.113 9i 0.993 3 0.999 8 

0.50 0.021 7+0.144 7i −0.259 2+0.038 5i 0.148 6 0.978 3−0.144 7i 0.988 9 1.000 0 

0.80 0.031 5+0.173 9i 0.005 6−0.001 0i 0.176 7 0.968 5−0.173 9i 0.984 0 0.999 6 

1.00 0.037 8+0.190 3i −0.038 4+0.007 6i 0.194 0 0.962 2−0.190 3i 0.980 8 0.999 6 

 
Table 5  Case I: Partially immersed barrier with barrier length a/h=0.2 and ε=0.001 

Kh R0 R1 |R| T0 |T| |R|2+|T|2 

0.05 0.000+0.005 9i −0.016 6+0.000 1i 0.005 9 1.000 0−0.005 9i 1.000 0 1.000 0 

0.10 0.000 1+0.008 7i −0.030 2+0.000 3i 0.008 7 0.999 9−0.008 7i 1.000 0 1.000 0 

0.30 0.000 3+0.017 8i −0.065 8+0.001 2i 0.017 8 0.999 7−0.017 8i 0.999 8 0.999 9 

0.50 0.000 8+0.027 4i −0.076 4+0.002 1i 0.027 4 0.999 2−0.027 4i 0.999 6 0.999 9 

0.80 0.002 1+0.044 9i −0.061 8+0.002 8i 0.044 9 0.997 9−0.044 9i 0.998 9 0.999 8 

1.00 0.003 8+0.060 4i −0.044 7+0.002 7i 0.060 5 0.996 2−0.060 4i 0.998 0 0.999 7 

 

8 Conclusions 

Perturbation analysis is used to solve the mixed BVP 
arising in the study of scattering of oblique incident waves 
by irregular bottom and thin vertical barrier. The zeroth 
order reflection and transmission coefficients are obtained 
by employing the eigenfunction expansion method leading 

to an over-determined system of equations which is solved 
with the help of least-squares approximation and thereby 
employing the QR-factorization. Using the Green’s integral 
theorem, the first order reflection and transmission 
coefficients are obtained in terms of integrals containing the 
shape function c(x) and the solution of the problem 
involving scattering of surface waves by a vertical barrier 
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over uniform finite depth water. The effect of barrier length, 
amplitude of the ripples, the number of ripples and the angle 
of incidence on the first order reflection coefficient is 
demonstrated through different figures. It is found that the 
global maximum value of the first order reflection 
coefficient is increasing with increasing the number of 
ripples and it is also increasing with increasing the barrier 
length and the amplitude of the ripples. But the reflection 
coefficient is decreasing with increasing the angle of 
incidence and the gap. All these numerical results agree with 
the physical intuitions of the problem. The energy balance 
relation is derived and used to check the correctness of the 
numerical results involving the physical quantities obtained 
by the present method.  
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