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Abstract: The solution of water wave scattering problem involving 
small deformation on a porous bed in a channel, where the upper 
surface is bounded above by an infinitely extent rigid horizontal 
surface, is studied here within the framework of linearized water 
wave theory. In such a situation, there exists only one mode of 
waves propagating on the porous surface. A simplified perturbation 

analysis, involving a small parameter  1  , which measures the 

smallness of the deformation, is employed to reduce the governing 
Boundary Value Problem (BVP) to a simpler BVP for the 
first-order correction of the potential function. The first-order 
potential function and, hence, the first-order reflection and 
transmission coefficients are obtained by the method based on 
Fourier transform technique as well as Green's integral theorem 
with the introduction of appropriate Green's function. Two special 
examples of bottom deformation: the exponentially damped 
deformation and the sinusoidal ripple bed, are considered to 
validate the results. For the particular example of a patch of 
sinusoidal ripples, the resonant interaction between the bed and the 
upper surface of the fluid is attained in the neighborhood of a 
singularity, when the ripples wavenumbers of the bottom 
deformation become approximately twice the components of the 
incident field wavenumber along the positive x -direction. Also, 
the main advantage of the present study is that the results for the 
values of reflection and transmission coefficients are found to 
satisfy the energy-balance relation almost accurately.   
Keywords: Porous bed, bottom deformation, perturbation analysis, 
Fourier Transform, Green's function, reflection coefficient, 
transmission coefficient; energy identity, water wave scattering  
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1 Introduction1 

In recent decades, the problems of scattering of surface 
water waves by an obstacle or a geometrical disturbance at 
the bottom of an ocean, whereas the upper surface is 
bounded above by either a free-surface or any floating 
surface(s), are important for their possible applications in 
the area of marine engineering, and as such these are being 
studied by many researchers. Various methods have 
introduced to study the hydrodynamic coefficients in water 
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waves with an impermeable ocean-bed. A scattering of 
surface water waves by a small bottom deformation in an 
ocean with free surface create interesting mathematical 
problems drawing attention of various types for obtaining 
their useful solutions (Davies, 1982; Martha and Bora, 2007; 
Mei, 1985). The behavior of water waves over periodic beds 
was considered by Porter and Porter (2003) in a 
two-dimensional context using linear water wave theory. 
They developed a transfer matrix method incorporating 
evanescent modes for the scattering problem, which reduced 
the computation to that required for a single period, without 
compromising full linear theory. Later on, Porter and Porter 
(2004) investigated the three-dimensional wave scattering 
by an ice sheet of varying thickness floating on sea water 
which had undulating bed topography. They obtained a 
simplified form of the problem by deriving a variational 
principle equivalent to the governing equations of linear 
theory and invoking the mild-slope approximation in respect 
of the ice thickness and water depth variations. Wang and 
Meylan (2002) obtained a solution by reducing the problem 
to a finite domain enclosed by a boundary (including the 
varying part of the bed and the lower surface of the plate) 
on which the normal derivative of the potential is expressed 
as a function of the potential itself. The problem was then 
solved numerically using a boundary-element method. 
Moreover, various approaches were also developed by many 
researchers to deal with the interaction of water waves with 
floating ice plates only or the surface wave interaction by 
patches of small bottom undulations in an ocean with 
ice-cover (Chakrabarti, 2000; Linton and Chung, 2003; 
Mandal and Basu, 2004). 

The above works focused only on the wave motion of the 
fluid region, where the effect of porosity of the ocean-bed 
was not taken into account. Studies of different types of 
water waves scattering problems with a permeable 
ocean-bed of variable depth, have gained reasonable 
importance due to various reasons. Tsai et al. (2006) 
investigated the wave transmission over a submerged 
permeable breakwater on a porous sloping seabed. Hur and 
Mizutani (2003) developed a numerical model to estimate 
the wave forces acting on a three-dimensional body on a 
submerged breakwater. Using the method of eigenfunction 
expansion technique, Maiti and Mandal (2014) analyzed the 
problem of water wave scattering by a thin horizontal elastic 
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plate (both semi-infinite as well as finite) floating on an 
ocean of uniform finite depth in which the ocean bed is 
composed of porous material of a specific type. Employing 
the complex wavenumber in the poro-elastic model, Jeng 
(2001) developed the wave dispersion relation in a porous 
seabed. Later on, Silva et al. (2002) investigated the 
problem of water wave diffraction by a permeable 
ocean-bed of variable depth. Zhu (2001) considered the 
problem involving wave propagation within porous media 
on an undulating bed and solved the problem by employing 
Galerkin eigenfunction expansion technique. They 
investigated the value of the reflection coefficient 
numerically. Mohapatra (2014, 2015, 2016) studied the 
problems of water wave interaction by a small deformation 
on a porous bed in an ocean using Green's integral theorem 
with the introduction of appropriate Green's function. 

In the present work, we consider a fluid flow in a channel 
where the upper surface is bounded above by an infinitely 
extent rigid horizontal surface and the bottom is bounded by 
a porous type surface which has a small deformation. The 
motion of the fluid below the porous channel bed is not 
analyzed here and it is assumed that the fluid motions are 
such that the resulting boundary condition on the porous bed 
as considered here holds good and depends on a known 
parameter P, called porosity parameter, in this analysis. In 
this case, time-harmonic waves of a particular porosity 
parameter can propagate with one wave number on the 
porous surface. By employing perturbation analysis, the 
original problem is reduced to a simpler boundary value 
problem for the first order correction of the potential 
function. The solution of this problem is then obtained by 
the use of Fourier transform technique and of Green's 
integral theorem of the potential function describing the 
boundary value problem. The reflection and transmission 
coefficients are then evaluated approximately up to the first 
order of  in terms of integrals involving the shape 
function when a train of progressive waves propagating 
from negative infinity is normally incident on the porous 
channel bed having a small deformation. We present two 
special forms of bottom deformation, that is, the 
exponentially damped deformation and a patch of sinusoidal 
ripples, and the first-order refection and transmission 
coefficients are depicted graphically for various values of 
the different parameters. 

2 Formulation of the physical problem  

We consider the irrotational motion of an inviscid 
incompressible fluid of relatively small amplitude under the 
action of gravity, having a porous bottom surface, whereas 
the upper surface of the fluid is covered by an infinitely 
extent rigid horizontal surface. The fluid is of infinite 
horizontal extent in x -direction while the depth is along 
y -direction which is considered vertically downwards with 

0y  as the mean position of the rigid surface and y h  

as the bottom surface. We further assume that the motion is 

time harmonic with angular frequency ω. Here, the bed has 

a small deformation, which is described by  y h c x  , 

where c(x) is a differentiable function and the 

non-dimensional number  1 =  a measure of the 

smallness of the deformation. Under the assumptions of the 
linear water wave theory, the complex-valued potential 

function  , ,x y t  in the fluid of density   can be 

written as 

     i, , Re , e , , 0tx y t x y x y h c x           
 (1) 

where the function  ,x y  satisfies the Laplace's equation: 

  2
, 0, , 0 ,x y x y h c x           (2) 

where 2 2 2 2 2
, .x y x y       The linearized boundary 

conditions near the top surface and at the bottom surface being 
given by: 

 0 on , 0y x y        (3) 

 0, on ,n P x y h c x             (4) 

where n   the derivative normal to the bottom at a point 

 ,x y and P is the porous effect parameter on the porous bed. 

The time dependence of ie t  has been suppressed. 
The porous boundary condition used here is the same as 

that used earlier by Chwang (1983), Sahoo et al. (2000), 
Martha and Bora (2007). Bottom condition (4) was 
proposed by Darcy, in connection with porous bed, like a 
sand bed or any other loose bed (non-rigid) through which 
fluid may pour. The porous bed assumption induces a 
boundary condition of the impedance type involving a linear 
combination of the potential function (for the case of 
irrotational flow) and its normal derivative on the boundary, 
as used in the present paper and in the work of previous 
researchers. 

Within this framework in the fluid, a train of 
two-dimensional normally incident progressive wave along 
the positive x-axis takes the form (up to an arbitrary 
multiplicative constant): 

   i 0
0 0, e , , ,0

p x
x y f p y x y h           (5) 

where 

       
 

0 0 0
0

0 0 0

cosh sinh
,

cosh sinh

p h y P p p h y
f p y

p h P p p h

  



   (6) 

with  0 0 0cosh sinh 0p h P p p h  and the non-zero positive 

real number 0p  satisfies the dispersion relation 

   sinh cosh 0h P h     F  (7) 

In the above dispersion equation, there are two non-zero 

real roots 0p , that indicate the propagating modes; and a 

countable infinity of purely imaginary roots  i 1,2,...np n   

that relate to a set of evanescent modes, where np 's are real 

and positive satisfying the following equation 

 sin cos 0n n np p h P p h   (8) 
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It may be noted that the positive roots of the dispersion 
equation (7), being wavenumbers of the waves travelling in 
the positive direction, while the negative roots being 
wavenumbers of the waves travelling in the negative 
direction. 

Assuming, for small bottom deformation,   to be very 
small and neglecting the second order terms, the boundary 

condition (4) on the bottom surface  y h c x   can be 

expressed in an appropriate form as 

     2d
0 on

dy x yc x P c x O y h
x

                  (9) 

Since the wave train is partially reflected and partially 
transmitted over the bottom deformation, the far-field 

behavior of  ,x y is given by 

     0 0i i
0, e e , , asp x p xx y A B f p y x     (10) 

A convenient short notation for (10) is, 

  , ; ,A B A B      (11) 

where ,A B   denote the amplitudes as x  of the 

outgoing and incoming waves set up at either infinities. For 
this diffraction problem, the far-field form of potential 
function   is given by 

  ,1; ,0R T   (12) 

where the unknown complex constants R and T are related 
to the reflection and transmission coefficients, respectively, 
and are to be determined. Here, the perturbation method can 
be employed to obtain these coefficients up to first order. By 
using the perturbation technique, the entire fluid region 

 0 ,y h c x   ,x    is reduced to the uniform 

finite strip 0 ,y h  ,x    in the following 

mathematical analysis. 

3 Solution of the problem 

In this section, we will consider the scattering problem 
for a normally incident wave propagates over a porous bed 
which has a small deformation, whereas the top surface of 
the fluid is bounded by a rigid surface. Using perturbation 
analysis, the corresponding problem will reduce up to 
first-order to a Boundary Value Problem (BVP) which will 
be solved by Fourier transform technique and Green's 
function technique. 

Consider a train of progressive waves to be normally 
incident on the bottom deformation. If there is no bottom 
deformation, then the normally incident waves will 
propagate without any hindrance and there will be only 
transmission. This, along with the appropriate form of the 

boundary condition (9), suggest that  ,x y , R and T 

which were introduced in the last section, can be expressed 
in terms of the small parameter   as: 

 

       
 
 

2
0 1

2
1

2
1

, , , ,

,

1 ,

x y x y x y O

R R O

T T O

   

 

 

   
  


   

 (13) 

where  0 ,x y  is given by Eq. (5). It must be noted that 

such a perturbation expansion ceases to be valid at Bragg 
resonance when the reflection coefficient becomes much 
larger than the deformation parameter  , as pointed out by 
Mei (1985). Also, this theory is valid only for infinitesimal 
reflection and away from resonance. For large reflection, 
the perturbation series, as defined in Eq. (13), needs to be 
refined so that it can deal with the resonant case, which is 
reported in Mei (1985). 

Using Eq. (13) in Eq. (2) and the boundary conditions (3), 
(9), (12) and then comparing the first order terms of   on 
both sides of the equations, we find a BVP for the first order 

potential  1 ,x y  which satisfies 

 2
, 1 0, , 0x y x y h         (14) 

 1 0 on , 0y x y        (15) 

   

 

0 0i 2 i
0

1 1 0
0 0 0

d
i e e

d ( , )
cosh sinh

on ,

p x p x

y

p c x P c x
xP U x p

p h P p p h

x y h

 
  

  


    

 (16) 

and  1 ,x y has the far-field behaviour as 

  1 1 1,0; ,0R T   (17) 

3.1 Introduction of Fourier transforms  
To solve the above BVP, we now assume that the 

potential function  1 ,x y of the fluid is such that the 

Fourier transform with respect to x , denoted by  1 , y   

exists and is defined by 

     i
1 1, , e dxy x y x  






   (18) 

Applying the Fourier transform to equations (14)-(16), 

we get the following BVP for  1 , y   as 

 2
1 1 0 in 0yy y h       (19) 

 1 0 on 0y y    (20) 

  1 1 0, ony P U p y h      (21) 

where 1 1 1, ,yy y   and  0,U p  are the Fourier transforms 

of 1 1 1, ,yy y    and  0,U x p , respectively. The solution 

 1 , y   of the above BVP is obtained as 

    
 

0
1

,
, cosh

U p
y y

  


 
  
 F

 (22) 

where 

 
 

 
   0

2
0 i

0
0 0 0

, e d
cosh sinh

p xP p
U p c x x

p h P p p h












   (23) 
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   sinh coshh P h    F  (24) 

Now we can write the inverse Fourier transform as 

     i
1 1

1
, , e d

2π
xx y y    





   (25) 

Using the inverse Fourier transform to the Eq. (22), the 

solution for the potential function  1 ,x y  of the fluid is 

obtained as follows: 

 

   
 

1

i i
0 0

0

,

1 , e , e
cosh d

2π

x x

x y

U p U p
y

 



   


 



  
 
 
 F

  (26) 

Since  F  has one non-zero positive root at 0p =  

on the positive real axis of , so the above integral contains 

a pole at 0p = . Therefore, we make the path for the 

integral indented below the pole at 0p = . 

Now the first-order reflection and transmission 

coefficients 1R  and 1T , respectively, can be obtained by 

comparing the behaviors of  1 ,x y  as x   obtained 

from (26) using (17). To find the behavior as x  , we 

rotate the contour in the integral involving ie x  in the first 

quadrant by an angle  0 π 2    and the contour in 

the integral involving ie x  in the fourth quadrant by the 

same angle  . As x  , the integral involving ie x  will 

only contribute a term arising from the residue at 0p = , 

while there will be no contribution from the integral 

involving ie x . Thus, as x  , the resultant integral of 
(26) is 

   
 

        
    

0

0

i
0 0 0 0 0

0 0 0 0

i
0 0 0

1
0

=

i , e cosh sinh

cosh sinh

i , e cosh
,

p x

p x

U p p p h y P p p h y

p p h P p p h

U p p p y
x y

p


  
 




F

F
 (27) 

where F denotes the derivative of F  with respect to  . 

Then comparing the above resultant integral value with Eq. 
(17), we obtain the value of T1 as 

 
    

 
2 2

0
1

0 0 0 0

d
cosh sinh

i P p
T c x x

p p h P p p h








  F
  (28) 

Similarly, to find the first-order refection coefficient R1, 
we let x  , in Eq. (26). To find the behavior as x  , 

we rotate the contour in the integral involving ie x  in the 

first quadrant and the contour in the integral involving ie x  
in the fourth quadrant. As x  , the integral involving 

ie x  will only contribute a term arising from the residue at 

0p = , while there will be no contribution from the integral 

involving ie x . Then comparing the resultant integral value 
with Eq. (17), we obtain the value of R1 as follows: 

 
    

  0

2 2
0

1
0 0 0 0

2ii
d

cosh sinh
e p xP p

R x
p p h P p p h

c x







  F
 (29) 

Therefore, the first-order reflection and transmission 
coefficients can be evaluated, once the shape function c(x) 
of the bottom deformation on the porous bed is known. 

3.2 Green's function technique 
To solve the boundary value problem for 1 given by Eqs. 

(14) − (17), we need a two-dimensional source potential (in 
terms of Green's function) for Laplace's equation due to a 
source submerged in the fluid. Then Green's integral 
theorem will be employed and the first-order coefficients  
R1 and T1 will be obtained in terms of integrals involving the 
shape function c(x).  

Suppose the source is submerged in the fluid. Then, 
for 0 h  , the source potential in terms of Green's 

function  , ; ,G x y    satisfies the following boundary 

value problem 

 2
, 0 in 0 , except at ,x yG y h          (30) 

 0 on 0yG y              (31) 

 0 onyG PG y h             (32) 

    2 2
ln as 0G r r x y          (33) 

and G  represents outgoing waves as x   . Now, 

we try to solve the boundary value problem defined by Eqs. 

(30)-(33) in the form  , ; ,G x y   , where 

 

        
0

, ; ,

ln cosh sinh cos d

G x y

r
A k k h y B k ky k x k

r

 






   
 

(34) 

and    2 2
r x y      . With the help of the 

boundary conditions at the top surface and at the bottom 

surface, we find  A k  and  B k  as 

     
 

2 cosh sinh

cosh

k k h P k h
A k

k kh k

     
F

    (35) 

    2e 1 sinh

cosh sinh

kh P k k PA
B k

k kh P kh

  



  (36) 

where F  is same as in Eq. (7). It may be noted that F  

has one simple non-zero root at 0k p= . Since 0k =  and 

 cosh sinh 0kh P k kh   will indicate that there is no 

wave in the region, hence the terms k and 

 cosh sinhkh P k kh  can never be zero. So the integrand 

in Eq. (34) have one simple pole at 0k p=  which will be 

from  kF  only. Since the source potential G behaves like 

outgoing waves as x   , so the path of integration is 

indented to pass beneath the simple pole at 0k p= . Solving 

(34) by using (35) and (36), we obtain the solution 

 , ; ,G x y    as: 
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   

 

 

i 0
0 0

0

0 0 0 0
0

0 0 0 0
0 0

2πi cosh sinh e

cosh cosh sinh

cosh sinh cosh sinh +

p xP
p h p h

p
G

P
p h p h p h p

p

P P
p h p h p h y p y

p p

   
   

  
 

 
 

  
    

   

F  

 

   

 

 

1

cos sin e

2π

cos cos sin

cos sin cos sin

p xn
n n
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
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  (37) 

where    1 sin cos
nn n np Ph p h p h p h 1F . Since the 

source potential in terms of Green's function  , ; ,G x y    

behaves like outgoing waves at infinity, so 

taking x   , we obtain the solution  , ; ,G x y    as: 

   

 

 

i 0
0 0

0

0 0 0 0
0

0 0 0 0
0 0

2πi cosh sinh e
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cosh sinh cosh sinh

p xP
p h p h

p
G

P
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p

P P
p h p h p h y p y

p p

   
   

  
 

 
 

  
    

   

F  

 (38) 

To calculate the value of  1 ,   , we apply the Green's 

integral theorem to  1 ,x y  and  , ; ,G x y    in the form 

  1 1 d 0n n

C

G G s    (39) 

where C is a closed contour in the xy-plane consisting of the 
lines 0, ;y X x X     , ;y h X x X     

, 0x X y h    and a small circle    2 2 2x y      , 

and ultimately let X  and 0  . Finally the resultant 

integral equation (39) will give the determination of the 

solution 1  of the boundary value problem as given by 

      1 0
1

, , ; , , d
2π

yG x h U x p x
P

    




   (40) 

where yG G y   . 

The first order transmission and reflection coefficients T1 
and R1, respectively, are now obtained by letting   , 

in Eq. (40) and comparing with the far-field condition given 

in Eq. (17) by replacing  ,x y  with  ,  . 

As  , we note from Eqs. (17) and (38), respectively, 

that 

    1 1 0, ,T       (41) 

 

     

 
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0 0 0
0
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P
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 
 
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 

F

  

 (42) 
Substituting Eqs. (41) and (42) in Eq. (40), we obtain the 

value of T1 as  

 

 
 

 
 

 
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1 0

0

2 2
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0 0 0
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i
d

cosh sinh

p xT U x p x
p

P p
c x x

P
p p h p h

p















 
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



F

F

 (43) 

Similarly, as    , we also note from Eqs. (17) and 

(38), respectively, that 

    1 1 0, ,R                  (44) 

 
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 
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  (45) 

Substituting Eqs. (44) and (45) in Eq. (40), we obtain the 
value of R1 as 

 
 

 
 

 

1 0

0

2 2

0

0 0 0

0

0
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i
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i
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i
d
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e

e
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p x
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


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  





F

F

 (46) 

Therefore, the first-order transmission and reflection 
coefficients can be evaluated from Eqs. (43) and (46), once 
the shape function c(x) of the bottom deformation is known. 

It may be noted here that the representations of first-order 
transmission and reflection coefficients, given by (43) and 
(46), are coinciding with the representations obtained in 
Fourier transform technique given by (28) and (29), 
respectively. 

4 Energy balance relation 

In the theoretical study of scattering of water waves, a 
special relation known as energy balance relation or energy 
identity which plays a very important role in checking the 
method of solution of such mixed boundary value problem. 
The energy identity relates the refection as well as 
transmission coefficients associated with the scattering 
problem and, in cases when one has to rely only on the 
numerical results for these important physical quantities, 
such identity supports the validity of the analytical as well 
as numerical techniques employed to solve the boundary 
value problem under consideration. In this section, the 
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energy identity or energy balance relation is derived from 
the appropriate use of Green's integral theorem involving 
the complex velocity potential and its complex conjugate. 

To obtain the energy identity, we use the Green's integral 
theorem, as given by 

 d 0n n

C

s  


              (47) 

where C   denotes the closed boundary of the fluid region, 

  is the complex conjugate of  which satisfies Eqs. 

(2)-(4) and the far-field condition 

 1, ; 0,R T                (48) 

and n   represents the outward normal derivative to the 

boundary C  . 

We now choose C  to be the closed boundary of the 
fluid region bounded by 

 0, ;y x X  0 , ;y h x X   ,y h x X    

and 0 ,y h x X     

and ultimately letting X  . 

Now using the line integrals, Eq. (47) can be written as 

 
, 0 , 0, 0 ,

d 0n n

y h x X y h x X y x X y h x X

s  
         

 
      

 
     

(49) 
Using the top surface condition near the rigid surface and 

the bottom condition at the porous bed, the first and third 
integrals in (43) become identically zero for any value of 
x . 

Using the far-field behaviours for   and   as 

x   given in equations (12) and (48), respectively, the 
second integral in Eq. (49) becomes 

   2 2
0 0

0 , 0

d 2 , d
h

x x

y h x X

y ip T f p y y  
  

      (50) 

Similarly, using the asymptotic behaviours for   and 

  as x   given in equations (12) and (48), 

respectively, the fourth integral in Eq. (49) becomes 

     2 2
0 0

0 , 0

d 2i 1 , d
h

x x

y h x X

y p R f p y y  
  

     (51) 

Now substituting all the corresponding integral values in 
equation (49), we obtain a relation in terms of reflection and 
transmission coefficients as 

 2 2 1R T                (52) 

Eq. (52) is called as energy balance relation or energy 
identity.  

5 Particular forms of bottom profile   

In this section, we present two different forms of shape 
function for the bottom deformation: the exponentially 
damped deformation and the sinusoidal ripple bed, to 
validate the analytical results.  

5.1 Example-I 
Consider the shape function of the bottom deformation is 

given by 

   0 e , 0b xc x a b x          (53) 

This shape function corresponds to an exponentially 
damped deformation on a porous channel bed. In this 

example, the top of the elevation lies at  00,a  and it 

decreases exponentially on either side. In order to calculate 

the transmission coefficient 1T , substituting the value of 

 c x  from (53) into (43), we obtain 

 
 

2 2

0 0

1

0 0 0

0

2

cosh sinh

i P p a
T

P
p b p h p h

p




 
 
  
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     (54) 

In a similar way, we can calculate 1R  by substituting 

 c x  from (53) into (46),  

 
  

2 2

0 0
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F

 (55) 

5.2 Example-II 
Here, we proceed to examine the effects of reflection and 

transmission for a special sinusoidal form of the shape 

function  c x  in the form: 

       sin ,

0 otherwise

a lx n l x m l
c x

          


 (56) 

where m and n are positive integers and   is the phase 
angle of the bottom deformation on the porous channel bed. 
This patch of sinusoidal ripples on the surface of a porous 
bed having the wavenumber l with amplitude a consists of 

  2m n ripples. The corresponding first-order 

transmission and reflection coefficients T1 and R1, 
respectively, are obtained as follows: 
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(58) 
It is clear from (57) that when the total number of ripples 

in the patch of sinusoidal ripples of the porous channel-bed 
is a positive integer (i.e., both m  and n  are even or 
odd), T1 vanishes identically. 

In Eq. (58), when the sinusoidal ripples wave number is 

approximately twice the surface wave number (i.e., 02 p l , 

the theory points towards the possibility of a resonant 
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interaction taking place between the bed and the surface 

waves. Hence, near resonance, i.e., 02 p l , the limiting 

value of the reflection coefficient assumes the value 

  
 

2 2

0

1

0 0 0

0

iπ

cosh sinh

e

2

a P p
R

P
p p h p h
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m n

l


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 



 
  

F

    (59) 

Note that when 02 p  approaches l and the number of 

ripples in the patch of deformation on the porous bed 

  2m n  becomes large, the reflection coefficient 

becomes unbounded contrary to our assumption that R1 is a 
small quantity, being the first-order correction of the 
infinitesimal reflection. Consequently, we consider only the 
cases excluding these two conditions in order to avoid the 
contradiction arising out of resonant cases. Thus, near 
resonance, the reflection coefficient R1 becomes a constant 
multiple of the total number of ripples in the patch. Hence, 
the reflection coefficient R1 increases linearly with m and n. 

Although the theory breaks down when 02l p , a large 

amount of reflection of the incident wave energy by this 
special form of bed surface will be generated in the 

neighborhood of the singularity at 02l p . 

6 Numerical results 

Here, we study the behaviors of the non-dimensionalized 
first-order reflection and transmission coefficients related to 
two particular forms of bottom profile on the channel bed: 
the exponentially damped deformation and the sinusoidal 
ripple bed, where an incident surface wave of wavenumber 

0p h  propagating on the porous surface. In Figs. 1 and 2, 

which correspond to the exponentially damped deformation 

on the porous channel-bed, the numerical results for 1R  

and 1T , calculated from (55) and (54), respectively, are 

plotted against Ph for different heights of the hump on the 
bottom deformation. Here, we fixed the 
non-dimensionalized parameter bh as 0.3. From these 

figures, it is evident that the values of both 1R  and 1T  

increase against the porosity parameters when the height of 
the hump of the bottom deformation increases. This means 
that when an incident wave propagates over a small bottom 
deformation on a porous bed, a substantial amount of 
reflected and transmitted energy can be produced. Moreover, 
the first-order correction to the reflected and transmitted 
energies are sensitive to the changes in the heights of the 
hump on the bottom deformation on the porous channel-bed. 
Here, the reflected energy is comparatively much smaller 
than the transmitted energy. It is also observed that the 
non-oscillating nature of first-order correction to the 
reflected and transmitted energy as functions of the porosity 
parameters Ph of the channel-bed. 

 
 

 

Fig. 1 Variation of 1R  plotted for various heights of 

exponentially damped bed 

 

Fig. 2 Variation of 1T  plotted for various heights of 

exponentially damped bed 

 

Fig. 3 Variation of 1R  plotted for various ripple wave 

numbers of sinusoidal bed.  

 

Fig. 4 Variation of 1R  plotted for various number of 

ripples in the patch of sinusoidal bed. 
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In Figs. 3 and 4, the numerical computation and graphical 

presentation are shown for 1R , related to a sinusoidal 

form of the bottom surface on the porous channel bed 
mentioned in Example-II. We consider the numerical 

computation for 1R , which is calculated from (58), due to 

a train of incident surface waves of wavenumber p0h 
propagating on the porous surface and a ripple bed with 

wave number l having   2m n  number of ripple 

wavelengths in the patch of the bottom deformation on a 
porous channel bed. In such situation, we consider the ratio 
of the amplitude of the ripples and the depth of the fluid 

 a h  as 0.1 and the phase angle of bottom deformation 

0  . In Fig. 3, the different curves are plotted against Ph 

correspond to the first-order reflection coefficient 1R  for 

different ripple wave numbers in the patch of the 
deformation on the porous channel bed, while we fixed 

2m   and 3n  . This is most evident in the curves that 
the peak value of the reflection coefficient increases as the 
ripple wave number increases. This shows that the 
first-order correction to the reflected energy is somewhat 
sensitive to the changes in the ripple wave numbers in the 
patch of bottom deformation on the porous bed. 
Computations show that the peak values of the first-order 

reflection coefficient 1R  corresponding to the ripple wave 

numbers 0.8,1,1.2lh  and 1.4 are attained at 0 0.410985,p h  

0.521813,0.638464  and 0.744114 , respectively. It has 

been observed from these results that the peak values of the 
reflection coefficient are attained at different values of Ph. 
The reason is, the peak value of the reflection coefficient is 
attained only when the ripple wave number lh of the bottom 
deformation becomes approximately twice as large as the 
surface wave number p0h. It is observed from this figure 
that as the ripple wave numbers increase the reflection 

coefficient 1R becomes smaller than those for the bigger 

ripple wave numbers. That means when an incident wave 
propagates over a small bottom deformation on the porous 
channel-bed, a substantial amount of reflected energy can be 
produced. Moreover, in this figure one feature that is 
common to all the curves is the oscillating nature of the 
absolute values of the first-order coefficients as a function 
of Ph. It is also observed that reflected energy generated in 
this case is comparatively smaller than those of the upper 
surface is bounded by a free surface. 

In Fig. 4, the first-order reflection coefficient 1R  is 

plotted against porosity parameters Ph for different number 
of ripples in the patch of the bottom deformation on the 
porous bed. For all curves, we consider the ripple wave 
number lh as l. It is clear from this figure that as the total 
number of ripples in the patch of the deformation on the 

porous bed   2m n  increases, the value of p0h 

converges to a number in the neighborhood of lh/2 and also 

the peak value of the reflection coefficient 1R  increases. 

But when the number of ripples, becomes very large, the 
reflection coefficient become unbounded. That means the 
perturbation expansion, which is discussed in section (3), 
ceases to be valid when the reflection coefficient becomes 
much larger than the deformation parameter, as pointed out 
by Mei (1985). Its oscillatory nature against Ph is more 

noticeable with the number of zeros of 1R  increased, but 

the general feature of 1R  remains the same. 

 

 

Fig.5 Variation of T1 plotted for various ripple wave 
numbers of sinusoidal bed 

 
Fig. 5, shows the non-dimensionalized first-order 

transmission coefficient 
1

T  against porosity parameters Ph  

of the channel-bed for different ripple wavenumbers 
0.8,1,1.2lh   and 1.4  in the patch of the deformation on the 

porous bed. In this figure, for all curves, we consider 2m   
and 3n  . Here also, it has been observed from this figure 
that as the ripple wavenumbers increase, the transmission 

coefficient 
1

T  becomes smaller than those for the smaller 

ripple wavenumbers. That means when an incident wave 
propagates over a porous channel-bed having a small ripple 
wavenumber in the patch of the deformation, a substantial 
amount of transmitted energy can be produced. From this 
figure, it is also clear that the non-oscillating nature of 

first-order correction to the transmitted energy 
1

T  as 

functions of the porosity parameters Ph of the channel-bed. 
Furthermore, in this section, we have also checked the 

validation of the numerical values of reflection and 
transmission coefficients by showing the energy balance 
relation (52) is satisfied. 

Consider an incident surface wave propagates over 
bottom deformation on a porous channel-bed. We have 

presented the variation of reflected energy R , transmitted 

energy T  and the energy balance relation 
2 2

R T  for 

various values of porosity parameter in the following tables. 
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Table 1 Numerical values of 0p h R T, ,  and 
2 2R T for various values of Ph (exponentially damped deformation) 

Ph  0p h  R  T  2 2R T  

0.01 0.100 166 97 0.002 347 80 1.000 005 54 1.000 016 59 

0.21 0.474 927 91 0.001 978 32 1.000 107 70 1.000 219 32 

0.41 0.687 493 44 0.001 867 59 1.000 190 78 1.000 385 08 

0.61 0.869 829 02 0.001 900 66 1.000 251 30 1.000 506 27 

0.81 1.040 838 28 0.001 984 89 1.000 287 03 1.000 578 09 

1.01 1.208 014 26 0.002 092 15 1.000 297 80 1.000 600 08 

 

Table 2 Numerical values of 0p h R T, ,  and 
2 2R T for various values of Ph (sinusoidal bed) 

Ph  0p h  R  T  2 2R T  

0.01 0.100 166 97 0.000 001 39 1.000 499 16 1.000 998 57 

0.21 0.474 927 91 0.012 839 77 1.002 201 49 1.004 572 69 

0.41 0.687 493 44 0.001 351 16 1.002 930 17 1.005 870 74 

0.61 0.869 829 02 0.002 223 35 1.003 363 00 1.006 742 26 

0.81 1.040 838 28 0.003 517 21 1.003 594 22 1.007 213 72 

1.01 1.208 014 26 0.004 238 84 1.003 661 04 1.007 353 46 

 

In Table 1, the numerical values for 0 , ,p h R T  and 
2 2R T  are given for an exponentially damped 

deformation profile on the porous bed. In this case, we fixed 

the height of the hump taken as 0 0.2a h  and the 

non-dimensionalized parameter bh  as 0.3 . Here we are 
able to successfully achieve the satisfaction of the energy 
balance relation almost accurately. Similarly, in Table 2, the 

numerical values for 0 , ,p h R T  and 2 2R T  are given 

for another type of an undulating bottom profile namely a 
patch of sinusoidal ripples. In this case, we fixed the phase 
angle of the deformation 0  , the ripple wavenumber lh 
as 1, the values of m  and n  are taken as 2 and 3, 

respectively, the amplitude of the sinusoidal ripples a h  as 

0.1, and the non-dimensional number   as 0.05. From the 
numerical values of the reflection and transmission 
coefficients, we are able to successfully achieve the 
satisfaction of the energy balance relation or energy identity 
almost accurately. 

7 Conclusions 

In this paper, within the framework of two-dimensional 
linear water wave theory, we have developed the solution of 
the water wave scattering problem involving a small 
deformation on the porous bed in a channel, where the 
upper surface is bounded above by an infinitely extent rigid 
horizontal surface and the channel is unbounded in the 
horizontal direction. In such a situation, there exists only 
one mode of time-harmonic waves which propagate on the 
porous surface. A simplified perturbation analysis is 

employed to reduce the governing BVP to a simpler BVP 
for the first-order correction of the potential function. The 
first-order potential and, hence, the reflection and 
transmission coefficients are obtained by the method based 
on Fourier transform as well as Green's integral theorem 
with the introduction of appropriate Green's function. Two 
special examples of bottom deformation: the exponentially 
damped deformation and the sinusoidal ripple bed, are 
considered to validate the results. For the particular example 
of a patch of sinusoidal ripples, the main result that follows 
is that, the resonant interaction between the bed and the 
surface waves is attained in the neighborhood of a 
singularity, when the ripples wavenumber of the bottom 
deformation become approximately twice the components 
of the incident field wavenumber along the positive 
x -direction. This singularity point varies with porous effect 
parameters of the channel-bed and the ripple wave numbers 
on the bottom surface. It is also observed that a very few 
ripples may be needed to produce a substantial amount of 
reflected energy so that the amplitude of the generated 
waves increases. Also the theory discussed in this paper is 
valid only for infinitesimal reflection and away from 
resonance. The results obtained here are expected to be 
qualitatively helpful in tackling the water wave scattering 
problems with bottom deformations on a porous 
channel-bed. The theory can be applied in order to solve 
problems related to underground pipe bridge. 
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