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Abstract: Autonomous Underwater Vehicles (AUVs) are capable 
of conducting various underwater missions and marine tasks over 
long periods of time. In this study, a novel conflict-free 
motion-planning framework is introduced. This framework 
enhances AUV mission performance by completing the maximum 
number of highest priority tasks in a limited time through a 
large-scale waypoint cluttered operating field and ensuring safe 
deployment during the mission. The proposed combinatorial 
route-path-planner model takes advantage of the Biogeography- 
Based Optimization (BBO) algorithm to satisfy the objectives of 
both higher- and lower-level motion planners and guarantee the 
maximization of mission productivity for a single vehicle operation. 
The performance of the model is investigated under different 
scenarios, including cost constraints in time-varying operating 
fields. To demonstrate the reliability of the proposed model, the 
performance of each motion planner is separately assessed and 
statistical analysis is conducted to evaluate the total performance of 
the entire model. The simulation results indicate the stability of the 
proposed model and the feasibility of its application to real-time 
experiments. 
Keywords: autonomous underwater vehicles, underwater missions, 
route planning, biogeography-based optimization, computational 
intelligence 
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1 Introduction1 

Recent advances in sensor technology and embedded 
computer systems have led to developments in the field of 
underwater autonomy and made Autonomous Underwater 
Vehicles (AUVs) more viable for long-range underwater 
missions. However, the endurance of current AUVs is still 
restricted to short ranges owing to battery restrictions. The 
deployment of AUVs in a vast, unfamiliar, and dynamic 
underwater environment is a complicated process, 
particularly when the AUV has to promptly react to 
environmental changes, where real-time information is 
generally not known. In this context, an accurate 
motion-planning strategy can promote vehicle autonomy in 
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terms of conducting different tasks in a pre-specified time 
interval while ensuring vehicle safety at all times. This is 
closely linked to vehicle autonomy in high- and low-level 
motion planning and its ability to prioritize the tasks that 
need to be completed in the limited time allowed by the 
battery capacity while it is concurrently guided toward its 
final destination in a graph-like terrain. This is analogous to 
running the knapsack and the Travelling Salesman Problem 
(TSP) at the same time. The vehicle must effectively use the 
available time for a series of deployments during a long 
mission, which strongly depends on the optimality of the 
selected route between the start and destination in a 
waypoint-cluttered terrain. An accurate motion-planning 
strategy provides careful use of the AUV to achieve the 
mission goals and avoid the common pitfalls associated with 
unknown environments.  

Many attempts have been made to develop single or 
multiple vehicle motion planning and task allocation using 
different strategies. Some instances of route planning system 
applications are in the areas of traffic control (Volf et al., 
2011), real-time routing and trip planning (Ji et al., 2012), 
and modeling the transportation network to find the shortest 
paths (Geisberger, 2011). The application of a Genetic 
Algorithm (GA) in a dynamic route guidance system was 
investigated by Zou et al. (2007). A behavior-based 
controller combined with a waypoint tracking scheme for 
AUV guidance in a large-scale underwater environment was 
presented by Karimanzira et al. (2014). For energy-efficient 
routing of underwater vehicles, an artificial potential field 
approach was employed by Warren (1990). An 
energy-efficient fuzzy-based approach using a priori known 
wind information in a graph-like terrain was presented by 
Kladis et al. (2011) for unmanned aerial vehicle route 
planning. A large-scale routing and task assignment joint 
problem was investigated by M.Zadeh et al. (2015). They 
transformed the problem space into an NP-hard graph 
context where in the heuristic search nature of a GA and 
Particle Swarm Optimization (PSO) were employed to find 
the best series of waypoints. Subsequently, a task-assigned 
route planning model based on Biogeography-Based 
Optimization (BBO) and PSO was introduced by M.Zadeh 
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et al. (2016a). This involved time-efficient routing of AUVs 
in a semi-dynamic operation network, where the location of 
some waypoints changed overtime in a bounded area. 

Remarkable efforts have also been made in unmanned 
vehicle optimum-path planning in recent years. In general, 
the energy cost agrees with the path time. Real-time 
collision-free robot-path planning, based on a 
dynamic-programming shortest-path algorithm was 
proposed by Willms and Yang (2006). A higher geometry 
maze routing algorithm was investigated by Jan et al. (2008) 
for optimal path planning and navigation of a mobile 
rectangular robot through obstacles. An A* algorithm was 
applied by Carroll et al. (1992) to the AUV path planning 
problem, taking variable vehicle speeds into account. In 
another research, Koay and Chitre (2013) employed an 
A*-based path planer to find the path with minimum energy 
consumption by considering ocean variations. The A* 
algorithm is efficient because of its heuristic search 
capability; however, it suffers from high computational cost 
in larger search spaces. Mixed integer linear programming 
was implemented for handling the multiple AUV path 
planning problems by Yilmaz et al. (2008). A non-linear 
least squares optimization technique was employed by 
Kruger et al. (2007) for AUV path planning through the 
Hudson River. Path planning, based on deterministic 
methods, was performed by repeating a set of predefined 
steps that searched for the best-fit solution to the objectives 
Tam et al. (2009). Deterministic methods are inaccurate for 
large-size problems as their computational time increases 
exponentially with the problem size. The meta-heuristic 
approach, with its high computational speed, is a good 
alternative, particularly when dealing with NP-hard 
multi-objective optimization problems (M.Zadeh et al., 
2016b; 2016c). 

In most previous research (mentioned above), vehicle 
routing strategies have been investigated for mission 
planning, task allocation, and time scheduling purposes, 
whereas path planning strategies have been proposed to find 
the optimum safe path to the predefined target point. 
Combining these two strategies helps to overcome the 
shortcoming associated with each of them and achieve the 
objectives of both vehicle task assignment/routing and 
collision-free path planning by taking uncertainty and 
environmental dynamics into account.  

To achieve successful underwater missions in a 
large-scale environment in the presence of a considerable 
amount of uncertainty, this study contributes a combinatorial 
framework, which comprises efficient graph route planning 
combined with real-time path planning, for the successful 
operation of a single vehicle. In this context, the graph route 
planner can generate the best-fit route for the available time, 
achieve the maximum number of highest priority tasks, and 
ensure that the AUV reaches its destination on time. 
Therefore, as a higher-level motion planner, it is in charge of 
the optimal distribution of tasks that are sparsely assigned to 
the edges of the operation network and are needed to guide 

the vehicle from the given starting point to the target of 
interest. Besides being an efficient route planner, the path 
generator is employed to find a conflict-free trajectory, on a 
smaller scale, designed to be fast enough to handle sudden 
changes in the environment and safely guide the vehicle 
through the specified waypoints with minimum time and 
energy costs. Constant interaction is required between the 
path and route planners. This is achieved by providing 
feedback of the conditions in the surrounding operating 
fields from the local path planner to the graph route planner 
to help decision-making during re-planning. Re-planning is 
performed to generate a new optimum route toward the 
destination, based on the last update of the decision 
variables. This process continues until the AUV reaches the 
destination. To the best of our knowledge, this combinatorial 
strategy is a new approach to ordinary motion planning 
systems because it covers the broader requirements of 
autonomous operations by a trade-off within the problem 
constraints. These constraints are time-management, mission 
efficiency by proper task prioritization, and safe deployment 
during the mission. The proposed strategy is also efficient in 
computational time, which enhances the system’s real-time 
performance. 

At the core of the proposed strategy, both path and graph 
route planners use the BBO algorithm for satisfying their 
objectives. A similar hierarchical model of route-path 
planning, with a slight difference in the problem formulation, 
was also implemented by applying a PSO algorithm to both 
higher- and lower-level planners by M.Zadeh et al. (2016d). 
It is obvious that acquiring the optimal solutions for 
non-deterministic polynomial-time hard problems is 
computationally arduous and currently, there is no 
polynomial-time algorithm that can solve even 
moderate-sized NP-hard problems. Moreover, obtaining the 
accurate optimal solution is only applicable to completely 
known environments without any uncertainty, whereas the 
environment modeled in this study corresponds to a highly 
uncertain dynamic environment. Considering the synthetic 
characteristic of the AUV task allocation/routing problem, 
which generalizes both the TSP and knapsack problems, and 
taking into account the NP-hard complexity of the path 
planning problem, the BBO algorithm is applied in this 
research as it is one of the fastest meta-heuristic algorithms 
introduced for solving NP-hard problems (Zhu and Duan, 
2014). The argument for using BBO to solve NP-hard 
problems is strong enough owing to its adaption to 
multidimensional spaces and proper scaling of 
multi-objective problems. In previous research, BBO has 
been shown to produce near optimum solutions with high 
probabilities. A particular characteristic of the BBO 
algorithm is that the solutions from one generation are 
transferred to the next, and the primary population does not 
get discarded but is modified by migration; this promotes 
the exploitation ability of the algorithm. This algorithm also 
employs a mutation operator to promote diversity in the 
population, which propels the individuals toward the global 
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optima. 
To examine the capability and efficiency of the proposed 

framework, multiple simulations were performed and 
implemented using MATLAB®2014 by considering 
different dynamic uncertain environments. The organization 
of the study is as follows: An overview of the BBO 
algorithm is provided in Section 2. The formulation and 
implementation of the BBO-based graph route planner is 
demonstrated in Section 3. In Section 4, the BBO-based path 
planer is formulated. The evaluation criterion of the entire 
combinatorial model is discussed in Section 5. Discussion of 
the simulation results is provided in Section 6.Section 7 
concludes the study. 

2 Overview of the BBO 

BBO is an evolutionary optimization technique based on 
the equilibrium theory of the island bio-geographical 
concept (Simon, 2008). The algorithm is based on the 
concept of immigration, emigration, and rate of change of 
the number of species on an island. The geographically 
isolated islands are known as habitats and correspond to 
problem solutions. In previous research, each solution 
corresponds to a candidate path/route generated by the path 
and route planners. Each candidate solution in BBO has a 
quantitative performance index representing the fitness of 
the solution called the Habitat Suitability Index (HSI). High 
HSI solutions refer to islands with more suitable habitation. 
Habitability is related to qualitative factors known as 
Suitability Index Variables (SIVs), which are a vector of 
integers randomly initialized in advance. Each particular 
solution (habitat) hi has a design variable of SIV, emigration 
rate of μ, and immigration rate of λ. The emigration and 
immigration rates directly affect the population size and 
tend to improve the solutions. Each population solution 
should be evaluated before starting the optimization process. 
A poor solution has a higher immigration rate and a lower 
emigration rate. The immigration rate λ is used to 
probabilistically modify the SIV of a selected solution hi. 
Then, the emigration rates μ of the other solutions are 
considered, and one of them is probabilistically selected to 
migrate its SIV to solution hi. This process is known as 
migration in BBO. Subsequently, the mutation operation 
that tends to increase the diversity of the population and 
propels the individuals toward the global optima is 
performed. Each given solution hi is modified according to 
probability Ps(t), i.e., the probability of the existence of S 
species at time t in habitat hi. To have S species at time 
(t+Δt) in a specific habitat hi, one of the following 
conditions must hold: 

1) The S species exist in hi at t, and no emigration or 
immigration occurs from t to (t+Δt); 

2) One species immigrates onto an island already 
occupied by (S−1) species at t; 

3) One species emigrates from an island occupied by 
(S+1) species at t;  

In the mathematical representation of BBO, the 
probability Ps(t+Δt) is the change in the number of species 
after time Δt, which is calculated by 
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where λs and μs are the immigration and emigration rates 
when there are S species in habitat hi. I and E are the 
maximum immigration and emigration rates, respectively, 
set by the user. The maximum emigration rate occurs if all 
species Smax are collected in a habitat. As habitat suitability 
improves, its number of species and emigration rate 
increases and the immigration rate decreases. The 
probability of more than one emigration/immigration can be 
neglected by assuming a very small Δt. If time Δt is 
negligible, as Δt→0, Ps is calculated by 
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Mutation is required for a solution with low probability, 
whereas a solution with high probability is less likely to 
mutate. Hence, the mutation rate m(S) is inversely 
proportional to probability of the solution Ps.  
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where mmax is the maximum mutation rate defined by the 
user, and Pmax is the probability of a habitat with maximum 
number of species Smax. BBO is applied to both the path and 
route planning problems. BBO is well suited to solving the 
vehicle path planning problem owing to the continuous 
nature of this problem (M.Zadeh et al., 2016b; 2016c; 
2016d). Another parameter, i.e., the “keep rate,” is 
initialized in advance and called an elitism parameter. This 
elitism parameter specifiesthe percentage of the transfer of 
best habitats from one generation to the next. 

3 Formalization of BBO global route planning 

For single vehicle operation, it is not possible to cover all 
tasks in a single mission for a large-scale operation area. 
Therefore, available tasks are prioritized in a way that 
selected edges (tasks) of the graph can guide the AUV to its 
destination; this is analogous to the joint discrete and 
syndetic space problems, which should be considered 
simultaneously. In this context, the proposed route planning 
problem can be modeled as a multi-objective optimization 
problem. BBO is a particular type of stochastic search 
algorithm representing a problem-solving technique based 
on biogeographical evolution, and it scales well with 
complex and multi-objective problems. Exploiting a priori 
knowledge of the underwater environment, the initial step is 
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to transform the problem space into a graph problem. The 
vehicle starts its mission from the initial position WP1:(x1, y1, 
z1) and should pass sufficient number of waypoints to reach 
the destination WPD:(xD, yD, zD). The waypoint locations are 
randomized according to a uniform distribution of 
approximately U(0, 10 000) for WPi

x,y and U(0, 100) for 
WPi

z. Waypoints in the terrain are connected with an edge qi 
from the set of q={q1,…, qm}, where m is the number of 
edges in the graph. Each edge qi from the graphis assigned 
to a specific task from a set of Task={Task1,…, Taskk}, k∈m. 
Each task involves the priority parameters ρ and the absolute 
completion time δ, which are randomly initialized in 
advance. If the route is Ri=(x1, y1, z1,…, xi, yi, zi,…, xD, yD, 
zD), where WPi:(xi, yi, zi) is the coordinate of any arbitrary 
waypoint in the geographical frame, the route travel time is 
calculated as follows: 
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where tij is the time required to cover the distance dij 
between two waypoints of WPi and WPj that includes the 
corresponding task’s completion time δTij and ρTij is the task 
priority. 

The second step is to generate feasible primary routes as 
initial habitat populations for the BBO process. The 
development of a suitable coding scheme for habitat 
representation is the most critical step when implementing 
the BBO framework. Hence, efficient representation of the 
routes and their accurate encoding into habitats has a direct 
impact on the overall performance of the algorithm and 
optimality of the solutions. The habitat in the proposed BBO 
should correspond to a feasible route and include a sequence 
of nodes. Feasibility of a generated route is assessed using 
the following criteria: 

 A valid route should start and end with predefined start 
and target nodes.  
 The generated route should not include edges that are 

not presented in the graph. 
 The multiple appearance of the same node in a route 

makes it invalid; this implies time wasted by repeating a 
task. 
 The route should not traverse an edge more than once. 
 The route travel time should not exceed the maximum 

range of AUV’s total available time. 

This research conducts a priority-based strategy to 
generate feasible routes. To this end, a randomly initialized 
priority vector is assigned to a sequence of nodes. 
Adjacency information on the operation network and a 
generated priority vector are used for proper node selection 
along a feasible route. To prevent the generation of 
infeasible routes, some modifications are applied. To 

generate a feasible route in a graph based on topological 
information, each node takes positive or negative priority 
values in the specified range [−100, 100]. Adjacency 
relations are used to add nodes to a specific route in 
sequence, one-by-one, according to the priority vector and 
adjacency matrix. The first node is selected and added to the 
sequence as the start node. Then, from the adjacency matrix, 
the nodes connected to node-1 are considered. The node 
with the highest priority in this sequence is selected and 
added to the route sequence as the next visited node. A 
selected node in the route sequence obtains a large negative 
priority value that prevents repeated visits to it. Then, the 
visited edges get eliminated from the adjacency matrix so 
that the selected edge will not be a candidate for future 
selection. This reduces memory usage and time complexity 
for large and complex graphs. This procedure continues 
until a legitimate route is built (destination visited). To 
satisfy the termination criteria of a feasible route, if the route 
ends with a non-destination node and/or the length of the 
route exceeds the number of existing nodes in the graph, the 
last node of the sequence will be replaced by the index of 
the destination node. The process of BBO-based global 
route planning is summarized in the flowchart in Fig. 1. 

 

 
Fig. 1 Process of the BBO-based global route planning 
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When a number of feasible routes have been generated 
and the habitat population initialized, the optimization 
process starts to find the optimum global route through the 
given waypoints according to the flowchart in Fig.1. The 
goal is to find a route that achieves the maximum number of 
highest priority tasks in the time allowed by the battery 
capacity. The problem involves multiple objectives that 
should be satisfied during the optimization process. In this 
regard, the objective function of the route planner is defined 
as a form of hybrid cost function comprising weighted 
functions that need to be maximized or minimized. The total 
route cost function is formulated in Section 5. In this model, 
the route travel time should approach the mission available 
time, thereby maximizing the use of the available time. 

Route
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where TRoute is the time required to complete the route, 
TAvailable the total mission time, and l the selection variable. 

4 Formalization of BBO local path planning 

The local path planner operates in the context of the 
global route planner and concurrently generates a safe 
collision-free path between pairs of waypoints while 
encountering the dynamicity of the environment. In this 
section, the conceptual and mathematical representation of 
the local path planning framework is presented. Path 
planning is an optimization problem where in the main 
objective is to find a time-optimum collision-free local path ℘i (shortest path) between a specific pair of waypoints in the 
presence of different types of uncertain obstacles. The 
resultant path should be safe and flyable (feasible). The 
dynamicity of the operational environment Γ3D addresses 
encountering different types of static and floating obstacles 
Θ with uncertain positions and velocities, where the floating 
obstacles are affected by current flow. 

The proposed path planner in this study, generates 
potential trajectories ℘i:{℘1, ℘2,…} using B-Spline curves 
captured from a set of control points, ϑ={ϑ1, ϑ2,…, ϑi,…, ϑn}, 
in a problem space with coordinates of ϑ1:(x1, y1, z1),…, 
ϑn:(xn, yn, zn), where n is the number of corresponding control 
points. These control points play a significant role in 
determining the optimal path. The mathematical description 
of the B-Spline coordinates is given by (7): 
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where the X(t), Y(t), and Z(t) are the vehicle’s positions 
along the path at time t, the Bi,K(t) is the curve blending 
functions, and K is the order of the curve representing its 
smoothness, where larger values of K correspond to 
smoother curves. For further information, refer to Nikolos et 
al. (2003). All control points should be located in respective 
search regions constrained to the predefined bounds of 
βi

ϑ=[Ui
ϑ, L

i
ϑ]. If ϑi:[x(i), y(i), z(i)] represents one control point 

in Cartesian coordinates; the lower bound Li
ϑ; and the upper 

bound Ui
ϑ of all control points at (x-y-z) coordinates is 

calculated by (8), (9) , respectively. Then, each control point 
ϑi can be generated from (10): 
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In the proposed BBO-based path planning problem, each 
habitat hi corresponds to the coordinates of the B-Spline 
control points {ϑ1,…, ϑn} used in path generation. Each 
habitat hi has an HSI and is represented by a real vector of 
n-dimension, which is randomly initialized randomly in 
advance. A habitat is a vector of n, SIVs (hi:{ χ1, χ2,…, χn}), 
generated randomly and defined as a parameter to be 
optimized.  

The migration and mutation operations are then performed 
to lead the habitats toward the optimal solution. As the BBO 
algorithm iterates, each habitat gets attracted toward its 
respective best position based on its SIV. The pseudo-code 
of the BBO algorithm and its mechanism in the path 
planning process is provided in Fig. 2. 

The path planner is applied to a small-scale area, and the 
AUV is considered to have constant thrust power, therefore, 
the battery usage for a path is a constant function of the time 
and distance traveled. Performance of the generated path is 
evaluated based on the overall collision avoidance capability 
and time consumption, which is proportional to the energy 
consumption and distance traveled. Fig. 3 shows a 
schematic of the AUV path planning process. 

In terms of collision avoidance, an obstacle’s velocity 
vectors and coordinates can be measured by sonar sensors 
and uncertainty modeled by a Gaussian distribution. The 
state of obstacle(s) is continuously measured and sent to a 
state estimator, which provides an estimation of the future 
states of the obstacles for the local path planner. The state 
predictor estimates the obstacles’ behavior during vehicle 
deployment within a specified operation window. To 
evaluate the performance of the proposed path planner, four 
different types of obstacles are considered in this study; each 
obstacle is represented by three components: position, radius, 
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and uncertainty Θ(i):(Θp, Θr,, ΘUr). The first type is a static 
known obstacle; its location is known and can be obtained 
from an offline map. No uncertainty growth is considered 
for positions of this type. The second type, classified as 
quasi-static obstacles, is usually known as no-fly zone. The 
obstacles in this category have an uncertain radius, which 
varies within a specified boundary and has a distribution of 
approximately (Θp, σ0), where the value of Θr in each 
iteration is independent of its previous value. A 
self-motivated moving obstacle is the third type. This has a 
motivated velocity that shifts it from position A to B. 
Therefore, its position shifts in a random direction with an 
uncertainty rate that is proportional to time, see (11). The 
last type is a moving obstacle that is affected by current 
forces and also has self-motivated velocity in a random 
direction, see (11) and (12). Here the effect of the current is 
represented by uncertainty propagation proportional to the 
current magnitude UR

C=|VC|~(0, 0.3), which radiates from 
the center of the obstacle in a circular format, see Fig. 4. 

 

Fig. 2 BBO path planning pseudo code 

 

Fig. 3 Operational diagram of the AUV path planning process  

 

Fig. 4 Graphical representation of uncertain floating/moving 
obstacles 
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where ΘUr~σ is the rate of change of the object’s position, 
and X(t−1)~ࣨ(Θp, σ0) is the Gaussian normal distribution 
assigned to each obstacle, which gets updated at each 
iteration t. In all cases, obstacle position Θp is initialized 
using a normal distribution of approximately (0, σ2) bounded 
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by the position of the start and target waypoints 
WPa

x,y,z<Θp<WPb
x,y,z. Therefore the obstacle’s position Θp 

has a truncated normal distribution, and its probability 
density function is defined as: 
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The obstacle radius is initialized using a Gaussian normal 
distribution of approximately (0, 100). This operating zone 
shifts to the next pair of waypoints in a sequence provided 
by the graph route planner. To evaluate the path ℘i, the path 
cost function is defined on the basis of the time required to 
travel along the path between two waypoints (Tpath-flight). 
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where j is any arbitrary point on the generated path and 
Cost℘ is the path cost function. The corresponding generated 
path should not cross the forbidden area covered by the 
obstacle Θ(NΘ):(Θp, Θr,, ΘUr), where NΘ is the number of 
obstacles. The generated path gets penalty value for 
colliding any obstacle. The generated path gets penalty 
values for colliding with any obstacle. In general, this 
process promotes the algorithm’s evolution toward 
generating a feasible solution. 

5 Evaluation of the combined BBO motion 
planning model 

As mentioned earlier, the local path planner operates in 
the context of the global route planner and concurrently 
generates a safe collision-free path between pairs of 
waypoints while encountering the dynamicity of the 
environment. After passing each waypoint, the path absolute 
time Tpath-flight is calculated. This generated path time Tpath-flight 
is then compared to the expected time TExpected for 
completing the distance between a specified pair of 
waypoints. If Tpath-flight becomes smaller than TExpected, it 
means that no unexpected difficulties were encountered and 

the vehicle can continue along the provided route. However, 
if Tpath-flight exceeds TExpected, this means that the AUV has 
faced a challenge during its deployment. It is obvious that a 
certain amount of the mission available time TAvaliable is 
wasted in coping with these difficulties; therefore, the 
previously defined route is no longer the optimum route. In 
this situation, it is essential to re-plan a new optimum route 
according to the mission updates. Hence, the third problem 
is focused on route re-planning based on environmental 
changes and time updates during vehicle deployment. The 
re-planning process is clarified in Fig. 5. 

 

Fig. 5 Requisition for the re-planning process 
 

 

Fig. 6 Graphical representation of the operating area 
covered by waypoints, and local/global motion 
planning and re-planning processes 

Another issue is the computational burden of the 
re-planning process. After encountering an unexpected event, 
if the previously found optimum route is ignored, the global 
route planner is recalled to find a new optimum route from 
the predefined start point to the destination. The re-planning 
scheme does not guarantee at least a quasi-real-time solution 
as it includes considerable computational burden. For 
significantly reducing the computational burden involved in 
re-planning, when re-routing is required in any situation, 
based on TAvaliable updates, the passed edges are eliminated 
from the operation network (so the search space shrinks); 
the location of the present waypoint is then considered as 



S.M.Zadeh, et al. Biogeography-Based Combinatorial Strategy for Efficient Autonomous Underwater Vehicle Motion Planning and Task-Time Management 470 

the new starting position for both the local and global 
motion planners. The global route planner then tends to find 
the optimum route based on new information and updated 
network topology. For example, in Fig. 6 the initial optimum 
route is a sequence of waypoints {1-2-5-7-12-15-13- 
16-11-17-D}; and after re-planning, this is replaced by a 
new sequence of {15-18-16-D}. During deployment 
between two waypoints, the local path planner can 
incorporate dynamic changes in the environment. This 

process continues until the mission ends and the vehicle 
reaches the required destination point. The trade-off between 
the available mission time and mission objectives is a 
critical issue that can be adapted and performed by the route 
planner. This should be fast enough to track environmental 
changes and promptly re-plan a new route fitted to the 
updated available time. A schematic representation of the 
combinatorial strategy is given in Fig. 7. 

 

Fig. 7 Proposed combinatorial strategy for dynamic guidance of an AUV 

The route cost has a direct relation with the distance 
between each pair of selected waypoints with respect to Eqs. 
(4)–(6). Hence, the path cost Cost℘ for any optimum local 
path is used in the context of the graph route planner. The 
model seeks an optimal solution from the best combination 
of path, route, and task cost. After visiting each waypoint, 
the re-planning criteria are investigated. Computation cost is 
encountered each time that re-planning is required. Thus, the 
total cost for the model is defined as 
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where δTij and ρTij represent the completion time and priority 
value of the task assigned to qij, respectively. The 
computational time Tcompute is spent for checking the 
re-planning criteria. r is the number of repeats in the 
re-planning procedure. The path cost of Cost℘, task 
completion time and Tcompute are utilized in calculation of the 
CostRoute. 

6 Discussion of simulation results 

In this section, simulation results from the performance 
evaluation of the proposed framework are demonstrated. 

The main purpose of the simulation is to analyze the 
performance of each motion planner and the functionality of 
the entire framework in terms of increasing mission 
productivity (task assignment and time management) along 
with ensuring vehicle safety during the mission. To verify 
the efficiency of the proposed strategy, first, the efficiency 
of the local path planner is individually assessed. Second, 
the performance of the global route planner is investigated. 
Finally, the overall coherence of the framework in terms of 
mission timing and accurate co-operation of global and local 
planners is investigated and evaluated. In this study, the 
optimization problem was performed on a desktop PC with 
an Intel i7 3.40 GHz quad-core processor using MATLAB® 
R2014a. 

6.1 Evaluation of the path planner 
  It is assumed that the AUV travels at a constant velocity 
VAUV between two waypoints. The ocean environment is 
modeled as a three-dimensional environment Γ3D 
comprising known static, uncertain static, and floating/ 
moving obstacles. In the path planning simulation, obstacles 
are generated randomly from different categories and 
configured individually on the basis of the given relations in 
Section 2. These assumptions play an important role in 
efficient path planning and coping with dynamic 
environmental changes. The path planner generates the 
potential AUV trajectories using B-Spline curves captured 
from a set of control points. The fitness of the generated 
path is evaluated using Eq. (16). Three different scenarios 
are implemented in the simulation to assess the accuracy of 
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the proposed local path planner. In the first scenario, the 
AUV starts its deployment in a pure static operating field 
containing static known and static uncertain obstacles, 
where the vehicle is required to travel the shortest 
collision-free distance to reach the specified target 
waypoint. Making the AUV’s mission more challenging, in 
the second scenario, the robustness of the method is tested 
in a dynamic environment, which includes moving 
obstacles with self-motivated velocities in a random 
direction. In the third scenario, the mission is complicated 
more by adding the impact of current forces using floating 
obstacles with uncertain positions. The purpose of 
increasing the obstacle complexity is to evaluate the 
sustainability of the path planner’s performance when 
dealing with increasingly complex environments and 
evaluating the ability of the method to balance searching 
unexplored operating fields and safely moving toward the 
target waypoint. For this purpose, a distinct number of runs 
are performed to assess if the performance of the method 
satisfies the problem constraints for all three scenarios. The 
BBO configuration for all scenarios was set as follows: the 
habitat population (nPop) and maximum number of 
iterations (Itermax) were set at 50 and 100, respectively. The 
number of kept and new habitats was set at 10 and 40, 
respectively. The emigration rate is generated by 
μ=linspace(1, 0, nPop), and the immigration rate defined as 
λ=1−μ. The maximum mutation rate is set at 0.1. The 
number of control points for each B-Spline path is set at 8. 
The accuracy of the algorithm is tested for all scenarios and 
presented in Figs. 8–10 for different number of obstacles. 
The path should be re-generated simultaneously to avoid 
crossing the corresponding collision boundaries; this 
process is repeated until the vehicle reaches the target 
waypoint. 

Fig. 8 illustrates the performance of the path planner in the 
first scenario, where a random number of static obstacles, 
with growing radii, occur in the proposed operating field. 
The simulation results of the second scenario are 
demonstrated in Fig. 9. In Fig. 9(a), the generated path 
exposed to moving obstacles is shown. The obstacles’ 
movement is simulated in accordance with a pre-specified 
rate of uncertainty based on time. Considering the third 
scenario, the uncertainty around the obstacles in Fig. 10(a) 
propagates from the center of the object with a growth rate 
proportional to current velocity |VC|~N(0, 0.3) in all 
directions. In addition, the obstacles move with a 
self-motivated velocity in a random direction. Gradual 
increments of the collision boundary of each obstacle are 
presented in Fig. 10(a). This figure shows that the local path 
planner can generate a collision-free path, even in a dynamic 
operating field, with an acceptable rate of convergence for a 
defined optimality metric such as flight time, as shown in 
Fig. 10(b). The variations, in terms of cost and violation 
functions per iteration, are more significant when they are 
compared with the first and second scenarios; however, the 
algorithm still experiences a moderate convergence that 

guarantees feasible and optimal solutions. 

 
(a) 2D presentation of the generated optimum 3D path, including random 

combination of static known and static uncertain obstacles 
 

 
(b) Path flight time variation in each iteration as an optimization factor 

 
 

 
(c) Algorithm performance on cost variation of path population in each 

iteration 
 
 

 
(d) Violation variation of path population in each iteration as a collision 

penalty 

Fig. 8 Performance of the path planner in the first scenario 
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(a) 2D presentation of generated optimum 3D path including moving 

obstacles 

 
(b) Path flight time variation in each iteration as an optimization factor 

 
(c) Algorithm performance on cost variation of path population in each 

iteration 

 
(d) Violation variation of path population in each iteration as collision 

penalty 

Fig. 9 Simulation results associated with the second scenario 
 
As inferred from Figs. 8(c) and (d), 9(c) and (d), and 10(c) 

and (d), the algorithm accurately tends to minimize path 
travel time and cost over 100 iterations, while its 
performance is almost stable in the increasing complex 
environments. Also note worthy, from analysis of the results 
we find that the cost variation range in all scenarios 
decreases in each iteration, which means that the algorithm 

accurately converges to the optimum solution with 
minimum cost. Tracking the variation in the mean cost and 
mean violation, represented by red crosses in the middle of 
the error bar graphs, shows that the algorithm forces 
solutions to the optimum answer (path) with minimum cost, 
and efficiently manages the path, eliminating the collision 
penalties, within 100 iterations. 

 
(a) 2D presentation of generated optimum 3D path including moving 

obstacles affected by current flow 

 
(b) Path flight time variation in each iteration as an optimization factor 

 
(c) Algorithm performance on cost variation of path population in each 

iteration 

 
(d) Violation variation of path population in each iteration as collision 

penalty 

Fig. 10 Performance of the path planner in the third scenario 
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In summary, it is obvious that in all three scenarios the 
algorithm provides solutions that satisfy the collision 
constraints for all types of obstacle; it tends to minimize the 
path travel time as this is the main optimization factor for 
the path planner. 

Additional to the common performance criterion 
investigated above, two more performance factors are 
highlighted for the purpose of this research and are 
discussed along with the evaluation of the entire model. The 
first highlighted index is the path planner’s computational 
time, because it must synchronize to the global route planner 
and operate concurrently. Hence, large computational time 
causes a delay in the local path planner and graph route 
planner synchronization, which causes interruption in the 
routine process of the whole system. 

6.2 Evaluation of the global route planner 
A number of performance metrics have been investigated 

to evaluate the optimality of the proposed solutions by the 

route planner in different network topologies, such as the 
number of completed tasks, total obtained weight, total cost, 
and time optimality of the generated route. Reliability 
percentage of the route is another metric representing the 
chance of the mission success; it is defined based on route 
violation, which is a weighted function of travel time and 
feasibility of the route. The BBO, in this circumstance, is 
configured with a habitat population size of 150, 300 
iterations, habitat keep rate of 0.6, emigration rate of μ=0.2 
immigration rate of λ=1−μ, and maximum mutation rate set 
at 0.8. Habitat keep rate is the ratio of the best solutions 
selected to be transferred to the next generation (as 
mentioned in the pseudo-code in Fig. 2). The performance 
of the algorithm is tested on graphs with diverse topologies 
including graphs with 20, 50, 80, and 100 nodes. Table 1 
demonstrates the impact of graph complexity on the 
functionality of the route planner.  

 
Table 1 Statistical analysis of the route (solution) evaluation with performance metrics for different graph complexities 

Performance 
metrics 

Graph 
complexity- 

nodes 

Graph 
complexity- 

edges 

CPU 
run 
time 

Best cost
Total 

mission 
time/s 

Route 
travel 
time/s

Total 
distance

Total 
weight 

N-Tasks Violation

Solution 1 20 202 12.558 0.041 3 21 200 20 848 62 543 40 15 0.0 
Solution 2 50 1197 16.177 0.023 1 32 400 30 062 90 187 55 19 0.0 
Solution 3 80 3099 22.432 0.019 6 39 600 34 686 104 059 63 23 0.0 
Solution 4 100 4886 27.487 0.017 1 45 360 45 387 136 161 78 27 0.008 

 
The violation index has a positive value when the route 

time exceeds the available time. Violating the cost function 
causes the algorithm to generate feasible solutions. It is 
noted from the simulation results in Table 1 that the 
violation value for all four examined complexities is almost 
zero, which means that the generated routes accurately 
respect the defined time constraint. On the other hand, the 
optimum route corresponds to the route with the travel time 
closest to the total mission time, meaning that the AUV 
makes maximum use of the total available time. As depicted 
in Table1, in all four cases the route travel time approached 
the value of the total mission time but did not exceed it, 
which confirms the efficiency of the route planner in 
satisfying the objectives and constraints. 

 

 
Fig. 11 Computational time variation vs. graph complexity 

 
Fig. 12 Cost variation of the BBO-based route planning for 

different graph complexities in 300 iterations 

Considering the influence of the graph topology on the 
presented solutions in Fig. 11, the run time increases linearly 
as the number of nodes in the graph increases; however, in 
all cases, it remains within the bounds of a stable real-time 
solution. From the cost variations in Fig. 12, it is obvious 
that the performance of the proposed route planner is stable 
with an increasing search space size; again a major 
challenge for deterministic strategies, which makes them 
inappropriate for real-time applications. 

6.3 Evaluation of the combinatorial local and global 
motion planner framework 

The proposed combinatorial framework aims to make 
maximum use of the mission available time to increase the 
number of completed higher-priority tasks in a single 
mission, while guaranteeing on-time mission termination 
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and vehicle safe deployment. Accurate synchronization of 
the inputs and outputs of the engaged path/route planners 
and their concurrent cooperation are the most important 
requirements for the stability of the model regarding the 
main objectives above. To this end, the robustness of the 
model was evaluated by the simulation of 10 underwater 
missions in 10 individual experiments, with initial 
conditions that closely matched actual underwater mission 
scenarios. The initial configuration of the operation network 
was set to 40 waypoints and 1 320 edges, involving a fixed 
sequence of tasks with specified characteristics (priority and 
completion time) in a 10 km2 (x–y), 100 m (z) space. The 

waypoint locations were initialized using a uniform 
distribution of ~U(0, 10 000) for WPi

x,y and approximately 
U(0, 100) for WPi

z. The mission available time for all 
experiments was fixed at TAvailable=10 800 s, equal to 3 h. 
The vehicle starts its mission at initial location WP1 and 
ends at WP40. As mentioned earlier, it is assumed that the 
vehicle moves with a constant (3 m/s) velocity. To examine 
the performance and stability of the proposed architecture, 
the operating field was modeled as a realistic underwater 
environment. In Tables 2(a), (b) the process of the 
combinatorial strategy at different stages of a specific 
mission scenario is shown. 

 
Table 2 An overview of the process of the combinatorial model in one mission scenario 

(a) Global-route 

Call 
No. 

Start Target  Task No. Weight 
Route 
cost 

TCPU TAvailable TRoute Validity Route sequence 

1 1 40 8 38 0.430 23.1 10 800 10 460 Yes 1-24-7-25-32-11-26-34-40
2 25 40 6 27 0.320 20.9 5 862.8 5 831 Yes 25-36-26-27-33-5-40 
3 33 40 1 14 0.610 19.8 1 757.6 1 728 Yes 33-40 

 
(b) Local-path 

Route 
ID 

PP call 
No. 

Edges Violation Path cost TCPU Tpath-flight TExpected TAvailable Replan flag PP flag

Route-1 
1 1-24 0.000 000 0.450 41.6 1 532.7 1 666.7 9 267.3 0 1 
2 24-7 0.000 000 0.510 40.3 1 702.3 1 872.7 7 565 0 1 
3 7-25 0.000 000 0.460 36.4 1 702.1 1 673.1 5 862.8 1 0 

Route-2 

1 25-36 0.000 031 0.115 37.8 467.2 535.3 5 395.6 0 1 
2 36-26 0.000 000 0.311 43.7 1 153.2 1 210 4 242.4 0 1 
3 26-27 0.000 000 0.369 39.1 1 306.2 1 333.4 2 936.3 0 1 
4 27-33 0.000 007 0.232 39.7 1 178.7 1 068.3 1 757.6 1 0 

Route-3 1 33-40 0.000 000 0.511 40.6 1 705.4 1 727.7 52.1 0 0 

 
The mission starts by calling the global route planner for 

the first time; a valid optimum route is then generated to 
make maximum use of the available time (valid route 
TRoute≤TAvailable). Referring to Table 2, the initial optimum 
route consists of 8 tasks with total weight of 38, cost of 
0.430 and estimated completion time of TRoute=10 460 s. In 
the second phase, the local Path Planner (PP) is recalled to 
generate the optimum collision-free path through the listed 
sequence of waypoints included in the initial route. 
Referring to Table 2(b), the local path planner adopts the 
first pair of waypoints {1-24} and generates the optimum 
path between locations WP1 and WP24 with total cost of the 
0.450 and travel time of Tpath-flight=1 532.7 s, which is 
smaller than expected travel time TExpected=1 666.7 s. The 
TExpected for the local path planner is calculated based on the 
estimated travel time for the generated route (TRoute). If 
Tpath-flight is smaller than TExpected, the re-planning flag is zero 
and the initial optimum route is still valid and optimum- so 
the vehicle is therefore allowed to travel to the next pair of 
waypoints included in initial optimum route.  
  After each run of the path planner, the path time Tpath-flight 
is subtracted from the total available time TAvailable. The 
second pair of waypoints {24-7} is shifted to the path 

planner and process is repeated. However, if Tpath-flight 
exceeds TExpected, (occurred in {7-25}), the re-planning flag 
becomes 1, which means that some of the available time is 
wasted passing between WP7 and WP25 due to collision 
avoidance. In such a case, TAvailable also gets updated and the 
visited edges (1-24, and 24-7) get eliminated from the graph. 
After this, the global route planner is recalled to generate a 
new optimum route, based on the updated operation network 
and TAvailable from the current waypoint WP25 to the 
predefined destination WP40. In the simulation results 
presented in Table 2, the global route planner is recalled 3 
times and the local path planner is called 8 times within 3 
optimum routes. This interplay between the modules 
continues until vehicle reaches the destination (success) or 
TAvailable gets a minus value (failure: vehicle runs out of 
battery). In this case, the final route is the sequence of 
waypoints including {1-24-7-25-36-26-27-33-40} with a 
total cost of 1.128, total weight of 31, and total time of 
10748.8 s. 

The most appropriate outcome for a mission is 
completion of the mission with minimum remaining time, 
which means that the mission available time has been 
maximized. Referring to Table 2(b), the remaining time is 
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52.1 s, and compared to mission available time of 
TAvailable=10 800 s, is remarkably close to zero. Therefore, 
the architecture’s performance can be represented by 
mission time (or remaining time). It is noteworthy that 
ensuring the on-time termination of the mission is a priority 
for the proposed model, rather than maximizing the 
completed tasks in a single mission. This is a big concern for 
vehicle safety and a large penalty value is assigned to the 
global route planner to strictly prevent it generating routes 
with TRoute greater than TAvailable. The time-management 
performance of the model over 10 experiments is shown in 
Figs. 13 and 14. 

The main purpose is to show that the collision and time 
violation of the whole system is controlled, which means 
safe deployment is guaranteed, and, more importantly, 
ensures on-time termination of the mission. As apparent 
from Fig. 13(a), the proposed model is capable of making 
maximum use of mission available time, as apparently the 
mission time in all experiments approached TAvailable. It is 
important to mention that all generated solutions meet the 
constraints, denoted by an upper bound of 10 800 s; this 
confirms the stability of the proposed strategy for any 
arbitrary mission in terms of time management and 
satisfying the mission objectives. Moreover, all missions 

were completed with a low computation burden as indicated 
by the CPU time index in Fig. 13(b). Noteworthy from 
analysis of the simulation results in Table 2, is that both 
planners take a very short CPU time for all experiments, 
which makes the model highly accurate for real-time 
application. It is evident from Fig. 13(b) that the variation in 
CPU time for the model is within a similar range for all 
experiments, which proves the inherent stability of the 
model. In addition, the model’s cost variation is show in 
Fig.14 for each motion planner in all 10 experiments. It is 
clear that the cost variation in the local and route planners 
(in multiple recall) for all experiments lie within a similar 
range, and are centralized over the mean solution cost, 
which that confirms the stability of the model’s 
performance. 

The path planner gets a violation if any collision occurs. 
On the other hand, the global route planner gets a penalty 
(violation) when the route time exceeds the available time. It 
is clear from Fig. 15 that both global route and local path 
planners accurately manage the total system violation from 
multiple recalls over the 10 missions, as the variation in the 
violation value for both planners is almost equal to zero, 
which is negligible.

 

 
Fig. 13 Performance of the combinatorial model in maximizing mission performance by maximizing the mission time 

constrained to available time threshold, and total CPU time for 10 different experiments 
 

 
(a) Global route cost 

 

 
(b) Local path cost 

Fig. 14 Model stability for motion planners cost variation 
over 10 experiments 

 
(a) Total route violation 

 
(b) Local path violation 

Fig. 15 Model stability for controlling total violation in 
multiple experiments 
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Table 3 Productivity of the model in 10 mission scenarios 

Mission No. Task No. Total weight Total cost Total TCPU

1 8 31 1.128 428.1 
2 10 31 1.073 681.2 
3 6 25 1.402 427.2 
4 8 29 1.327 702.8 
5 7 33 1.283 385.0 
6 9 30 1.212 557.9 
7 7 36 0.923 306.2 
8 8 28 1.330 741.2 
9 9 27 1.414 527.7 

10 8 28 1.306 575.2 

Table 3 shows the performance and stability of the model 
in terms of mission productivity, by the quantitative 
measurement of two significant mission metrics, i.e., 
number of completed tasks, and total captured weight over 
10 missions. Analysis of the results in Figs. 13–15 and 
Table3 show the functionality and stability of the model 
when dealing with problem space deformation and confirms 
its real-time capability. 

7 Conclusions 

In this research, a new deliberative framework was 
developed to raise the potential for AUVs to have a certain 
degree of autonomy, i.e., to trade-off between completion, 
time management, and robust motion planning to 
successfully complete a mission. At the top level of the 
framework, a graph route planner promotes vehicle 
autonomy in terms of time management and task assignment 
in a graph-like terrain, where each edge of the graph is 
assigned to a task. Accordingly, at the lower level, the path 
planner tends to find the shortest collision-free trajectory 
between each pair of listed waypoints along a generated 
global route.  

This approach can efficiently respond to environmental 
changes and is executable for real-time implementation. 
Based on various simulations, the stability and performance 
of the framework is verified. It is clear from the results that 
the presented model is efficient and accurate in producing 
real-time near optimal solutions, in which the efficiency of 
the model is relatively independent of both size and 
complexity of the operating field. 

Future work will comprise a more extensive version of 
the proposed architecture, using actual sensory information 
and keeping one step ahead of environmental change, as this 
is useful in reality. In addition, experimental validation of 
the framework will be performed on a real vehicle. 
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