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Abstract: This paper focuses on the problem of control law 
optimization for marine vessels working in a dynamical positioning 
(DP) regime. The approach proposed here is based on the use of a 
special unified multipurpose control law structure constructed on 
the basis of nonlinear asymptotic observers, that allows the 
decoupling of a synthesis into simpler particular optimization 
problems. The primary reason for the observers is to restore 
deficient information concerning the unmeasured velocities of the 
vessel. Using a number of separate items in addition to the 
observers, it is possible to achieve desirable dynamical features of 
the closed loop connection. The most important feature is the 
so-called dynamical corrector, and this paper is therefore devoted to 
solving its optimal synthesis in marine vessels controlled by DP 
systems under the action of sea wave disturbances. The problem 
involves the need for minimal intensity of the control action 
determined by high frequency sea wave components. A specialized 
approach for designing the dynamical corrector is proposed and the 
applicability and effectiveness of the approach are illustrated using 
a practical example of underwater DP system synthesis. 
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1 Introduction1 

The problem of Dynamical Positioning (DP) in automatic 
vessel control is one of the most significant problems in 
marine control system analysis and design.  
  Sørensen (2011) conducted an exhaustive survey of 
modern DP control systems designed using central 
theoretical and practical ideas. These systems are also 
presented in Fossen (1994, 2011), and Sørensen (2012). Out 
of the existing publications devoted to DP control, the 
papers of Fossen and Strand (1999) and Loria et al. (2000) 
are highly significant. The approaches proposed in these 
works determine mathematical validation of the special 
structure of DP nonlinear control laws, using certain 
nonlinear asymptotic observers. In addition, they provide 
sufficient conditions for global asymptotic stability and 
validate the possibility of independent tuning for observers 
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and state control laws using an analogy with a separation 
principle for LTI systems. This special structure allows the 
support of desirable system features, including an integral 
action and notching filter effect for external disturbances 
generated by sea waves. In this respect, certain ideas for 
providing the notch filtering effect are presented in Tannuri 
et al. (2003) and in the references therein. 

However, despite the obvious advantages of the 
approaches mentioned, they all have one common drawback: 
the proposed DP control laws are not flexible enough, both 
in the sense of a separate design and in their lack of the 
separate use of the integral actors and dynamical filters. 
Instead, these items are incorporated into a comprehensive 
whole, which hampers their operational retun in a real time 
regime and overloads the system with additional useless 
dynamics. 

In our opinion, the development of flexibility within the 
existing approaches is possible with respect to actual sea 
environmental conditions, and to achieve such flexibility the 
theory of multi-purpose control law synthesis could be used, 
as firstly presented in Veremey and Korchanov (1989) and 
transformed to its modern level in Veremey (2010, 2016). 
This approach is based on the special structure of control 
laws, and includes certain basic parts with several additional 
separate items that need to be adjusted for an actual sailing 
environment. Although the basic parts are invariant with the 
regime of motion, the additional elements can be switched 
on or off to provide the most superior dynamical behavior 
for the system. This paper therefore focuses on the crucial 
role of the so-called dynamical corrector, and aims to 
detemine desirable features for the closed loop connection 
with respect to counteracting external disturbances. 

One of the most effective analytical and numerical tools 
used in designing all elements in a multi-purpose structure is 
that of the optimization approach. Its effectiveness is shown 
in the flexibility and convenience of modern optimization 
methods with respect to relevant, practical demands of 
control theory implementation. Veremey (2016) presents 
several aspects of the application of optimization ideology 
for marine autopilots design, and analysis of the features of 
this structure shows that an analogous ideology could also 
be implemented in DP control systems. However, practical 
optimization problems for the control design need to be 
solved in relation to the vast number of requirements, 
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restrictions, and conditions involved in the closed-loop 
connection, which essentially hamper direct use of the 
necessary optimized conditions that could be traditionally 
applied to provide optimal synthesis of the control laws. 
This problem therefore requires special consideration. 

This work is devoted to designing an optimal corrector for 
providing desirable dynamical behavior within the closed 
loop connection. The main goal of the corrector working in 
the economical regime of motion is to suppress the 
high-frequency part of the wave spectrum for the control 
signal driving actuators. If this goal is achieved, the 
dynamical corrector could then be considered to be a notch 
filter with respect to the wave disturbance of the control 
signal. In other words, the result of this type of filtering 
should be the slight reaction of the actuators to relatively 
high frequencies occurring in the sea wave process. 

A certain solution for the analogous notch filtering 
problem for DP-control systems is presented in numerous 
works (Fossen, 2011; Loria et al., 2000; Sørensen, 2011; 
Hassani et al., 2012). The specific inconvenient feature of 
this approach is incorporation of integral actors and 
dynamical filters into a comprehensive whole on the basis of 
a nonlinear observer. However, as this is not fully relevant in 
the sense of flexibility, an alternative approach is proposed 
that is free from this inconvenience. 

The central issues of this work are closely connected with 
the issues within previous papers written by the author, 
Veremey (2010) and Veremey (2013). The first of these 
papers was devoted solely to a linear case for marine 
autopilot design, and the original expansion of nonlinear 
DP-control was realized. In the second publication, 
questions relating to the stability and integral features of the 
DP separate correction were discussed. The current paper 
contains new original results connected with optimal 
filtering tuning of a control law to provide an economical 
regime of motion. 

This work is organized as follows. In Section 2, equations 
of the motion of DP vessels are presented, the special 
control law structureis introduced, and the problem of 
optimal filtering correction is posed. Attention is also 
devoted to issues of stability and astaticism, with the aim of 
determining an admissible set for optimization. In Section 3, 
main theoretical aspects of the filtering problem solution are 
discussed for the action of sea waves with a regular nature. 
Section 4 presents the computational procedure employed to 
realize filter tuning onboard, taking into account the realistic 
multiharmonic representation of sea waves. In Section 5, the 
proposed approach is illustrated using a practical example of 
filtering corrector synthesis, and finally, Section 6 concludes 
the paper by discussing overall results of the investigation. 

2 Special structure of DP control law 

To consider the problems of DP automatic control, we 
accept the following widely used 3DOF nonlinear robot-like 
model of a DP vessel (Fossen, 1994; Hassani et al., 2012): 

( )

( )

t   


Μv Dv τ d
η R η v


            (1) 

In the equations,  T
u v rν  is the generalized velocity 

vector defined in a vessel-fixed frame, vvvv zyxO ; 

 T
x yη  is the joint vector relative to an Earth-fixed 

frame, Oxyz , that includes position  yx,  parameters and 

the heading angle,   (Fig. 1). 

A displacement of x  and a velocity of u  determine the 
surge motion of the vessel; y  and v  determine the sway 

motion, and a pair of  , r is referred to as the yaw motion. 

The vector 3τ E  implies a control action generated by 

the propulsion system, and vector 3d R  reflects an 
external disturbance of any nature. In addition, the matrices 

TM M  and D  with constant elements, are positive 
definite.  

 

Fig. 1 Earth-fixed and DP vessel-fixed coordinate frames 
 
The orthogonal rotation matrix, 

cos sin 0

( ) ( ) sin cos 0

0 0 1

 
  

 
    
 
 

R R

         

 (2) 

determines the only nonlinearity of the system (1). 
Notice that the system (1) only represents the DP-vessel 

and not the external disturbances, which is in contrast to the 
method used in existing approaches. Our representation 
appears to be suitable for providing notch-filtering features, as 
proposed below.  

It is of note that measurements of vessel velocities are 
usually not available for the DP automatic system; thus, any 
control laws must be designed only on the basis of position 
and heading measurements. In this case, the central problem 
for DP system analytical design is to obtain a nonlinear 
dynamic control law of the form 

( , , )

( , )



z f z τ η
τ g z η


               
(3) 

where kz E  is a state space vector of feedback coupling. If 
we accept the following design requirements for the closed 
loop system, (1)–(3), then the following needs to be 
addressed: 

 This system must only have the equilibrium point 

0ν , dηη  , where   3
d d d dx y  η E  is the 

desired constant position vector. 
 This equilibrium must be Globally Asymptotically 
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Stable (GAS). 
 The controller (3) needs to provide an integral action 

with respect to Low Frequency (LF) components of the 
disturbance )(td , and this is determined by the drift, current, 

and wind loads (external bias). 
 The controller must also enable the system, (1)–(3), to 

produce a desirable reaction to wave generated components 
with a High Frequency (HF) of disturbance )(td . 

In common with Fossen and Strand (1999), Fossen (2011), 
and Loria et al. (2000), let us introduce a structure for the 
control law (3) as follows, 

T
1

2

( ) ( )

( ) ( )

v v

v



 

    

  

Mz Dz τ R η K η z
z R η z K η z




        (4) 

T ( ) ( ) ( )( )d v p d s      τ K z R η K z η F η z     (5) 

where s  is a Laplace variable. 
It is clear that the nonlinear asymptotic observer, (4), is 

constructed in accordance with the model, (1), but unlike in 
the above-mentioned research, the additional term 

( )( )s F η z  is added to Eq. (5) of the control former. This 

is tf-model of the LTI dynamical system, and it is known as a 
dynamical corrector within the transfer matrix )(sF . It is a 

part of the control law that plays a crucial role in the 
following discussion. 

The structure of the proposed control law in (4) and (5) is 
illustrated in Fig. 2, where a full scheme of the closed loop 
connection is presented. An additional specification of the 
control former is presented in Fig. 3. 

Eq. (4) can be treated as a simplified version of the 
nonlinear asymptotic observer firstly proposed by Fossen and 

Strand (1999). Here, 3
 z E  and 3

 z E  are estimations 

of the vectors ν and η , respectively. Simplification is 

determined by exclusion of the estimations of external bias 
and dynamical parameters of the vessel’s HF-motion. 

 
Fig. 2 Block-scheme of closed loop system 

 

 

Fig. 3 Block-scheme of control former 

Fossen and Strand (1999) proved that the matrices 21,KK
must provide GAS and GES (globally exponentially stable) to 
the zero equilibrium position of the system as 

T
1

2

( ) ( )

( )

v v

v

t

 

   

 

Mε Dε R η K ε d
ε R η ε K ε




        (6) 

if 0)( td . This system directly follows from that presented 

in (1) and (4), but it presents estimation dynamics with respect 

to the errors ( )= ( ) ( )vt t t ε ν z  and ( ) ( ) ( )t t t  ε η z  of 

the observation. A sufficient condition of desirable stability is 
that of a diagonal structure and positive definiteness of 

matrices 1K  and 2K . It is thus supposed that matrices with 

these properties are selected in the same way. 
In accordance with the separation principal, a choice of the 

matrices dK  and pK  is connected with constructing the 

basic state-driving feedback control law of the PD-type form, 
* T ( ) ( )d p d   τ K ν R η K η η          (7) 

which stabilizes the desirable equilibrium  0ν , dηη   for 

the closed loop system (1) and (7), where ( )t  0d . Loria et 

al. (2000) showed that the positive definiteness of the 

symmetrical matrices dK  and pK  guarantees this 

equilibrium position to be GAS. Let us suppose that these 
matrices are selected. 

Thus, a solution for the synthesis problem of the control 
law, (4) and (5), can be determined by constructing the 

dynamical correction term ( )( )s F η z  in Eq. (5). 

Determining this solution is the main subject of discussion in 
this paper. The corrector’s design problem is as follows. 
Firstly, it is necessary to find the transfer matrix, )(sF , of 

the corrector so that the closed loop system, (1), (4), and (5), 

has the same GAS equilibrium position  0ν , dη η , and 

provides the desirable integral and notch filter dynamical 
features of the system. From a formal point of view, this 
statement can be presented on a mathematical level using the 
following optimization problem, 

( ) min
c RH

J
  


F

F
            

(8) 

where )(FJ  is a functional specifying the intensity of a 

control action. The admissible set, Ωc is determined here only 
by the condition, which provides GAS and the integral action 

of the controller. Here, RH  is a set of matrices that has 

proper fractionally rational components with Hurwitz 
denominators.  

To explain the essence of the mentioned admissible set, Ωc, 
let us firstly consider a stability issue associated with the 
closed loop connection. Firstly, we introduce the matrices 

μγβα ,,, of a corrector, such that μβαEγF  1)()( ss l . 

This allows use to present the model in the state space form, 





 

 

p αp βε
ξ γp με

                 (9) 
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where lp E  is the state space vector of the corrector, 

3ξ E  is its output vector, and lE  is the identity matrix. 

All the above-mentioned matrices with corresponding 
dimensions have constant components, and the matrix α  is 
Hurwitz. 

The following statement addresses the stability issue: 
Theorem 1: If the LTI system (9) is asymptotically stable, 

then the equilibrium position , d 0ν η η  of the closed loop 

system (1), (4), (5) is GAS. 

Proof: Firstly, we notice that the variables , v z z  can be 

excluded from Eq. (5) of the control former by using 
observation errors. If we take into account (6), we can 
transform the equations of the controller, (4) and (5), to the 
equivalent form and consider the full system of equations, 
thereby presenting the closed loop connection with ( )t  0d : 

 

1 1 T
1

2

1 1 * 1 T

( )

( )

( )

( )

v v

v

d v p



 



 

 

  

  

 

 

      













ε M Dε M R η K ε
ε R η ε K ε
p αp βε

ν M Dν M τ M K ε R η K ε γp με

η R η ν

(10) 

It is thus possible to introduce new notations as 

   TTT T
1 d x p ν η η ,   TT T

2  x ε ε  

and to rewrite Eq. (10) in the following form, 

1 1 1 1 1 2

2 2 1 2

: ( ) ( )

: ( )
c

o




 


x A x x g x x
x A x x



 

which has the same form as the cascaded equations obtained 
in Loria et al. (2000). Simple calculations are then used to 
provide the subsequent reasoning, which is presented in detail 
in Veremey (2013).  

Theorem 1 allows us to claim that the separation principle 
can be expanded to the corrector (9) in some manner. It also 
means that the observer (4), the base controller (7), and the 
corrector (9) can be tuned independently of one another. 
Taking into account this independence, it is very convenient 
to use the dynamical corrector as the main item of the 
controller, (4) and (5), to provide the desirable features 
required by the feedback DP control system. 

The main goal is to filter sea wave interference, but the 
flexibility of the corrector in the range of GAS also allows us 
to provide the desirable dynamics for the closed loop system 
relative to LF bias disturbances. Along with stability, one of 
the mandatory requirements of the controller is its integral 
behavior with respect to the above-mentioned actions. 

To provide the integral feature of the controller, let us 
accept that the vessel is influenced by external disturbances 
with constant components. Due to the integral behavior, the 
closed loop system becomes astatic with respect to the 

position error vector, d  e η η , i.e., this vector tends to zero 

as t  for any external disturbance, 0)( dd t , with 

constant components. Let us obtain a requirement for the 

transfer matrix )(sF  of the dynamical corrector (9) that 

guarantees the above-mentioned property of a controller.  
Theorem 2: If the following condition holds, 

T
1

2

( )
det 0

( )
d

d




  
 

 

D R K
R K

           (11) 

and if a transfer matrix )(sF satisfies the equality, 

(0) F K                    (12) 

where d  is the equilibrium value of a heading angle, 

 T T
Δ 2 1( ) ( ) ( )d d d p     K D K R K R K K  

then the system (1), (4), (5) is astatic with respect to the 

position error vector d  e η η  for any 3
0 d E . 

Proof: Firstly, let us suppose that equilibrium position of 
the closed loop system, (1), (4) and (5), exists for a certain 

external disturbance 0)( dd t , and let us consider the error 

Eq. (6) for the equilibrium position, 
T

1 0

2

( )

( )
v

d v









   

 
d0

0

Dε R K ε d
R ε K ε

          (13) 

Taking into account (11), it is possible to claim that the 

system (13) has a unique solution   TT T
0 0 ε ε . 

Now, let us consider the equations of the controller, (4) and 
(5), for the mentioned equilibrium, 

T
1 0

2 0

T
0

( )

( )

( ) ( ) (0)

v d

d v

d v d p d





 







   

 

    

Dz τ R K ε
R z K ε

τ K z R K z η F ε

0

0

    

(14) 

It is very easy to obtain the requirement (12) for the matrix
( )sF  that directly follows from (14), which also guarantees 

the zero position error d  e η η  of the system.  

It is of note that the simplest way to realize the requirement 
(12) is by using a corrector with no dynamics, i.e.,

 KF )(s . 

Let us point out that the proposed approach for providing 
integral behavior has another nature, and that this nature is 
other than that of the method considered in Loria et al. (2000) 
based on bias estimation. This simplifies the structure of the 
estimator and supports certain flexibility of the controller, as 
discussed below. Further details concerning the stability and 
integral features of the closed loop connection can be found in 
Veremey (2013). 

Summarizing the arguments presented above, it is possible 
to claim that the admissible set, Ωc, in (8) consists of matrices, 
F, with proper fractionally rational components that have 
Hurwitz denominators and satisfy (12).  

3 Problem of optimal filtering correction 

In accordance with the optimization problem (8), the main 
purpose of the dynamical corrector, (9), discussed in this 
study is to support an economical regime of motion that 
provides a notch filtering effect for a given spectrum of sea 
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waves. In addition, a dynamical corrector needs to maintain 
the integral property of the feedback connection, and must 
be asymptotically stable to guarantee GAS of the 

equilibrium point  0ν , dηη 
 for the closed loop system, 

(1), (4), and (5). 
In other words, the dynamical corrector working in an 

economical regime should suppress a certain high-frequency 
part of the wave spectrum for the control signal driving a 
rudder actuator. If this goal is achieved, the dynamical 
corrector could be considered to be a filter with respect to 
the wave disturbance of the control signal. Correspondingly, 
the dynamics of the closed loop system, (1), (4), and (5), 
reduce fuel consumption and prevent wear of actuator 
elements when moving under the influence of a sea wave. 

As it is, the result of this type of filtering should be the 
slight reaction of actuators to relatively high frequencies of 
the sea wave process. 

From a mathematical point of view, it is necessary to 
address the above-mentioned optimization problem (8). 
Given a controlled plant (1) and the control law (4) and (5), 
it is possible to find the transfer matrix, )(sF , of the 

dynamical filter, so that the intensity of the control action is 
minimal with respect to other controllers from the 
admissible set, Ωc. 

To concretely define the optimization problem, (8), let us 
introduce a concrete type of the functional J(F) to determine 
the intensity of action of the controller, (4) and (5). In this 
respect, let us firstly suppose (for simplicity) that the 
influence of sea waves is determined only by the dominate 

frequency, 0 , entering the wave’s spectrum.  

In this case, the HF part of the external disturbance can be 

treated as the harmonic vector process, 0( ) sindt td a , 

with a vector, 3
d a E , of magnitude. For this case it is 

possible to define the intensity functional as follows, 

0( ) ( , , )aJ  F a F η             (15) 

where  T 3
0 1 2 3a( , , ) a a a     a F η E  is the vector 

of the magnitude of the control action for a closed loop 
system, (1), (4) and (5), in relation to the mentioned 
disturbance. This vector corresponds to the time moment of 
the DP-process, when a heading angle has an initial given 
value of ψ=ψa, although it is possible to accept ψa=ψd. 

To consider the filtering problem, (8), let us make some 
preliminary transformations, introducing the notation  

,  d d      e η η e η η e η          (16) 

for the positioning error e . This allows us to rewrite the 
vessel Eq. (1) as follows, 

( )

( )d

t   
 



Mν Dν τ d
e R e η ν

            (17) 

using the new state space vector  TT Tν e . 

In accordance with (16), let us also introduce the auxiliary 

vector variable, ez , by the formulae 

 e d e e d,        z z η z z z z η         (18) 

It is evident that the following equalities hold, 

d e d e        ε η z e η z η e z        (19) 

which allows us to rewrite observer Eq. (4) in the form  
T

1

2

( ) ( )

( ) ( )
v v d e

e d v e

     

   



Mz Dz τ R e η K e z
z R e η z K e z

     (20) 

It is very evident that the system, (20), can be treated as 
an asymptotic observer with respect to the vessel equations 

(17). In fact, the errors   ε ν z  and ee zeε   in 

conformity with (17) and (20), satisfy the system  
T

1

2

( ) ( )

( )
v v d e

e d v e

t    

  



Mε Dε R e η K ε d
ε R e η ε K ε

      (21) 

which has an asymptotically stable zero equilibrium position, 

if ( )t  0d , equal to (6), i.e., νz  , ez e  as t . 

Therefore, the auxiliary variable, ez , introduced by (18), is 

an estimation of the positioning error d e η η . 

Let us note that the equations (21), (20), and (5) fully 
determine a control DP action for any instant of time. Taking 

into account (19), and the equalities ee εze  , d e  z η z , 

it is easy to present these equations in the form 
T

1

2

T T
1

2

T

( ) ( )

( )

( )

( ) ( ) ( )

(

( )

v v e

e v e

e

v d v p e e

e v e

d v p e

t

)

   
 


     

 

   








Mε Dε R η K ε d
ε R η ε K ε
ξ F p ε
Mz D K z R η K z R η K ε ξ
z R η z K ε
τ K z R η K z ξ

  (22) 

The equations in (22) represent the operation of the 
dynamic system using the block-scheme shown in Fig. 4, 

where the first block realizes an operator, H , with 

parameter η , which transforms the input, d  into the 

output, eε , in accordance with the first two equations in 

(22). The second block is a LTI corrector with transfer 
matrix, F , and the third block produces the control signal,
τ , in conformity with the last three equations of the system, 

(22). This block acts on the inputs, eε  and ξ , by the 

operator, P , depending on the parameter, η . 

 

Fig. 4 Block-scheme of control τ formation 
 
Because the closed loop system has unique, 

asymptotically stable equilibrium, the evident boundedness 
of the norm for the rotation matrix ( ) ( )R η R  holds. 

This allows us to treat R  as the limited matrix function of 
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the variable, t . Therefore, both the first and the third blocks 
are linear (but not time invariant) systems with limited, 
time-varying coefficients.  

The following state space model represents the third 
block, 

( ) ( )

( )

v v e

z z
e e

v e

z z
e

     
           

     
   

       
   



z z ε

A η B ηz z ξ

z ε
τ C η Dz ξ

         (23) 

where 

 1 1 T ( )
( )

( )
d p

z

    
   
 0

M D K M R η K
A η

R η
 

1 T 1
1

2

( )
( )z

  
   
 0

M R η K M
B η

K
 

   T( ) ( )z d p z,    0C η K R η K D E  

In addition, the following statement determines a solution 
of the problem, (8), for the mentioned harmonic disturbance: 

Theorem 3: If the 33  block, ),(2 as ηP , of the matrix  

  
 

1

6

1 2

( ) ( ) ( ) ( )
( ) ( )

a z a z a z a z

a a

s, s
s, s,

   P η C η E A η B η D
P η P η

 (24) 

satisfies the condition  

 2 0det (j ) 0a, P η  (25) 

then the transfer matrix c *FF  of the corrector, (9), 

exists such that  

 0(   )*
a, ,   0a F η  (26) 

Proof: Let consider the value ψ=ψa of the heading angle 

mentioned above, correspondingly denoting aηη  , and 

form the tf-model with this vector for the system (23) as 











ξ
ε

ηPτ e
as ),(                 (27) 

with the transfer matrix ),( as ηP  presented by (24).  

In accordance with es εFξ )( , taking into account (24) 

and (25), from (27) we obtain 

   eaa sss εFηPηPτ )(),(),( 21    (28) 

Finally, on the basis of (28), it is possible to conclude that 
for any asymptotically stable corrector with a transfer matrix, 
F, satisfying the condition, 

 1
0 2 0 1 0( , ) (j , ) (j , )*

a a a    F F η P η P η   (29) 

the equality, 0( , , )*
a  a F η 0 , holds for the vector of control 

magnitudes. 
Next, let us prove existence of the transfer matrix 

*
c F F  of the corrector, (9), satisfying the condition 

(28). Firstly, if we recall that with (29) it is necessary to 
provide the stability and integral action with respect to 
disturbances, it is thus necessary to find the transfer matrix  

 
1

2 1 2 3

3

( )

( ) ( ) , ( ) ( ) ( ) ( )

( )
i i i i

s

s s s f s f s f s

s

 
 

  
 
 

F
F F F

F
   

 (30) 

)3,1( i of the dynamical filter 

 ( ) ( )es s  ξ F ε F ε  (31) 

such that the equalities 


























3

2

1

)0(

K
K
K

KF ,
1

0 0 2

3

(j ) ( )

*

* *
a

*

, 

 
 

   
 
 

F
F F η F

F
   (32) 

hold, where iK  and 0( )*
i a,F η  are the ith rows of the 

matrices K  and 0( )*
a,F η  corresponds to )3,1( i . In 

addition, the common denominator of the fractions )(sfik

)3,1,( ki  must be Hurwitz.  

In accordance with the notations (30) and (32) for the 

fixed value a , it is possible to present the output, i , of 

the filter (31) as an output of the LTI system, which has the 
tf-model 

 ( )i i s   F ε , 1 3i ,  (33) 

with correspondent state space submissions 

 i i i i

i i i i




 
 

p α p β ε
γ p μ ε   (34) 

Let us show that the equalities (32) can be satisfied by the 
transfer matrix (30) with the rows 

 iiiii ss μβαEγF  1
2 )()( , 1 3i ,  (35) 

for the system (34), where 2
i p E  is the ith state vector of 

the filter. 

To begin with, let us select any Hurwitz matrices, iα , 

with dimensions of 22 )3,1( i . Then, introducing the 

notations 

 )(Re)( *
aiai ηFηR  , )(Im)( *

aiai ηFηI  , 3,1i  (36)  

it is easy to rewrite the conditions (32) in the form 

 ii  KF )0( , 0(j ) ( ) ( )ji i a i a  F R η I η , 3,1i   

and, taking into account (35), we obtain 

 
1

1
2 0

1 3
( j ) ( ) ( )j

i i i i i

i i i i i a i a

, i ,







   
   

γ α β μ K
γ E α β μ R η I η

 (37) 

Note that the matrix 2 0j i E α  is nonsingular, and 

denote 

 1
02 )Re()(  iaRi j αEηα  (38) 

 1
02 )Im()(  iaIi j αEηα   

After substitution to Eq. (37), we obtain 

 
1( ) ( )

( ), 1 3
i Ri i i i i a

i Ii i i a i ,


  

 
γ α α β K R η
γ α β I η

 (39) 

Let us select any 21  vector-row iγ , for example

 10iγ . The relationships, (39), for every number, i , 
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then form a system consisting of six equations with six 
unknown variables, which are the components of the 32  

matrix, iβ . The unique solution of this system, if its matrix 

is nonsingular, is 
11 ( )( )

( ) 1 3
( )

i a ii Ri i*
i i a

i ai Ii

, i ,


   

          

R η Kγ α α
β β η I ηγ α

  (40) 

Finally, it is easy to find the 31  vector-row, iμ , from 

the first equation in (37) as 

 1( ) ( ) 1 3* *
i a i i i i a , i ,

  μ η K γ α β η         (41) 

As a result, all the matrices are obtained for Eq. (33), 
which allows us to finally construct the optimal filtering 

corrector, adjusted to the frequency 0 , of the form 

1 1 1 1

2 2 2 2

3 3 3 2

1 1 1

2 2 2

3 3 2

( )

( )

( )

( )

( )

( )

*
a

*
a

*
a

*
a

*
a

*
a





      
             

      
      

    
         

    
    

0 0

0 0

0 0

0 0

0 0

0 0





p α p β η
p α p β η ε
p α p β η

γ p μ η
ξ γ p μ η ε

γ p μ η

      (42) 

Therefore, any corrector mentioned provides (32), and it 
is possible to accept it as a solution for problem (8) with the 
functional (15), i.e. as an optimal filter adjusted to the 
frequency ω0 and to the angle ψa.  

4 Filter tuning procedure 

It is evident that applying the simplest variant of the 
problem considered above is suitable only for a situation 
where the sea waves are regular, when the formal 
disturbance representation is a harmonic oscillation with the 
known frequency, ω0. Nevertheless, such a representation is 
too simplified for the real conditions of a DP vessel’s motion. 
The situation can be made more complicated by using H2 or 
H∞ norms as J(F) (Bokova and Veremey, 1996; Veremey, 
2011, 2012). Nevertheless, we propose here another way in 
which the physical reality is considered, and where it is 
necessary to force the controller to suppress not only the 
single frequency, but also the whole range of frequencies in 
accordance with the spectrum of an irregular sea wave.  

To make the situation more realistic, let us suppose that 
the influence of sea waves is determined by the finite 

number of dominant frequencies, , 1,k k N  , entering the 

wave’s spectrum. This assumption allows to treat an external 
disturbance as the multiharmonic vector process 
d(t)=Adsinωt, with the -3 N matrix Ad of magnitudes, and 

with the vector  T

1 2 ,..., N,  ω of frequencies. For this 

case, it is quite suitable to change the definition of the 
intensity functional with respect to (15) as 

( ) ( )aJ , ,F a F ω η                (43) 

where  T 3
1 2 3( )a, , A A A    a F ω η E  is the vector of 

control action magnitudes for the system, (1), (4) and (5), 
with the mentioned disturbance. This vector also 
corresponds to the time moment of the DP-process, when a 
heading angle has the initially given value ψ=ψa, and where, 
in particular, it is possible to accept ψa=ψd. 

With respect to Theorem 3, let us present a statement that 
determines a solution for the problem (8) in relation to 
multiharmonic disturbance:  

Theorem 4: If the condition (25) of Theorem 3 holds, and 
if the NN 22  matrices 
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


























 








 






)(

))((

)(

))((

1

1

1
1

a
I
iNi

ia
R
iNi

a
I
ii

ia
R
ii

i

ηαγ
αηαγ

ηαγ
αηαγ

A  , 3,1i  (44) 

are nonsingular, where 

 
1

2
1

2

( ) Re( j )

( ) Im( j ) 1

R
ik a k i
I
ik a k i , k ,N








 
  

α η E α
α η E α

 (45)  

then the transfer matrix *
c F F  of the corrector (9) 

exists, such that  

 ( )a, ,  0a F ω η  (46) 

where iα  are any Hurwitz NN 22   matrices, and iγ  

are any N1  vector-rows, for example 

  ,100 iγ 3,1i   

Proof: In contrast with Theorem 3, the filters (33) and (34) 
should be adjusted not for the only frequency ω0, but for all 

frequencies 1k , k ,N  . To provide such an adjustment, let 

us suppose that the state vectors of the filters (34) have 

dimensions 2N  , i.e. i
p E , and 

 1( ) ( )i i i i is s
  F γ E α β μ , 1 3i ,  (47) 

Correspondingly, the conditions of adjustment of the ith 
filter (33) to the kth frequency, ωk, are as follows, 

 

1

1
2

1 3
( j ) ( ) ( )j

1 3 1

i i i i i

i k i i i ik a ik a

, i ,

i , , k ,N








   
   

 

γ α β μ K
γ E α β μ R η I η  (48) 

where 

( ) Re ( , )*
ik a i k aR η F η , ( ) Im ( )*

ik a i k a,I η F η   (49) 

It is of note that the matrices 2 j k i E α  are nonsingular, 

and we introduce the notations (45) after substitution to Eq. 
(48), to obtain 

 
1( ( ) ) )

( ) ( ) 1 3 1

R
i ik a i i ik a i

I
i ik a i ik a

(

, i , , k ,N


  

  
γ α η α β R η K
γ α η β I η

 (50) 

Let us select any Hurwitz    matrices iα  and any 

N1  vector-rows 3,1, iiγ . The relationships, (50), for 

every number, i , form a system consisting of 32 N
equations with 32 N variables, which are components of 
the matrix βi, 
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 iii BβA   (51) 

where 

 






























 








 






)(

)(

)(

)(

1

1

aiN

iaiN

ai

iai

i

ηI
KηR

ηI
KηR

B  , 3,1i   

The system (51) has a unique solution, 

 iiaii BAηββ 1* )(   (52) 

which allows to determine matrices iμ  from the first 

equation in (48) as 

 1( ) ( ) 1 3* *
i a i i i i a , i ,

  μ η K γ α β η  (53) 

As a result, the optimal filtering corrector (42) can be 
constructed using the formulae (52) and (53). In addition, it 

can be adjusted to given frequencies, belongs to the set c , 

and satisfies (46).  
Let us summarize the computational operations that need 

to be performed in real time onboard for optimal filter 
tuning. The set of initial data consists of the matrices 

pd KKKKDM ,,,,, 21 , the values 1 2 , ..., N,    of the 

wave dominant frequencies, and the value ψa of the angle 
for tuning. 

It is important to stress that the filter tuning procedure can 
be easily implemented onboard in a real-time regime, and to 
do so the following steps need to be followed: 

1) In the DP control system design stage, select the initial 

matrices, pd KKKK ,,, 21 , based on certain desirable features 

of transient processes for the closed loop connection, (1), (4), 
and (5), accepting ( )s F 0 . Here, it is possible to use any 

optimization approach (Veremey, 2010). 

2) Using the initial data, calculate matrix K (12) to 

provide the integral action of the controller. Next, it is 

necessary to select Hurwitz matrices, iα , with dimensions 

of NN 22   and any N1  vector-rows iγ , 3,1i . The 

matrices R
ikα  and I

ikα  should then be computed using the 

formulae (45). 
3) All of the following steps should be performed onboard. 

Firstly, before beginning the positioning maneuver, start a 
corresponding procedure to estimate the dominant 
frequencies 1 2 , ..., N,    of sea waves (Aranovskii et al., 

2007; Belleter et al., 2013). 
4) Secondly, for a given angle, ψa, directly initiate the 

filter adjustment, calculating the matrices ( )*
i k a,F η  in 

accordance with (29), where 0  is changed to k ,

Nk ,1 . The matrices )( aik ηR  and )( aik ηI  (49) can 

then be obtained. Following this, via the expressions (52) 

and (53), it is possible to calculate the matrices )(*
ai ηβ  

and )(*
ai ημ  correspondingly with the optimal filter (42). It 

is of note that these calculations do not contain any iterative 
operations and do not induce any computational overheads.  

5) After filter tuning, the onboard DP control system will 
provide all necessary standard operations to form a control 
signal (4), (5) for the thruster’s actuators. 

Remark 1. If the results of tuning for an accepted value,

a , of the heading angle are satisfactory for the whole DP 

transfer process in the sense of filtering quality, it is quite 

suitable to accept ),(),( ass ηPηP  , and, consequently, 

obtain the matrix )()( **
aηFηF   with constant complex 

components. Obviously, it is possible to treat any LTI 

corrector (9) with a transfer matrix of )(*
aηFF  , as an 

approximate solution for the notch filtering problem. In 

particular, it may be possible to accept da ηη   when 

referring to the desired heading angle, ψd. 
Remark 2. If the results of the above-mentioned tuning 

are not satisfactory for the whole DP transfer process, it is 
possible to make a piecewise constant approximation 

 1 2a a aN, , ,    of the function ψ(t), and provide filtering 

tuning for every value ( 1 )ai i ,N  . 

Remark 3. The procedure presented above provides an 
adjustment to the dominant sea wave frequencies 

1 2 , ..., N,   . To additionally take into account side 

frequencies, it is possible to vary eigenvalues of the matrices

3,1, iiα . 

Remark 4. The general way to obtain main frequencies of 
wave spectra are presented, for example, in Aranovskii et al. 
(2007) for a linear model of a vessel, and in Belleter et al. 
(2013) for a nonlinear model. The method in this study is 
based on using special estimators, providing asymptotic 
convergence to the mentioned values required.  

Remark 5. As mentioned above, the proposed approach 
for providing integral behavior allows us to simplify a 
structure of the control law because of the absence of bias 
estimation. Nevertheless, if this reasoning is used onboard in 
relation to other purposes, it is also quite suitable to use the 
reasoning to provide the integral action. In this case, one can 
easily make corresponding changes and also use the 
proposed filter, excluding the equality (12). 

5 Example of filter design 

Let us illustrate practical implementation of the 
mentioned tuning procedure using a practical example based 
on the DP control system for the vessel “Northern Clipper”, 
using the model (1) taken from Fossen and Strand (1999). 
The length of this vessel is L=76.2 m and the mass is 
m=4.59×106

 kg; the correspondent matrices of the model (1) 
are accepted as follows, 

 

6

6

9

5 31 10 0 0

0 8 28 10 0

0 0 3 75 10

.

.

.

 
 

  
  

M  
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4

5 6

6 8

5 02 10 0 0

0 2 72 10 4 39 10

0 4 39 10 4 19 10

.

. .

. .

 
 

    
    

D  

Let us also accept the matrices 1K  and 2K  of the 

observer (4), in accordance with the above-mentioned paper, 

 

















01.000

01.00

001.0

1K , 

















1.100

01.10

001.1

2K   

In addition, let the basic control law (7) be determined by 
the matrices  

 8

0 0207 0 0

0 0 0155 0 0439 10

0 0 0439 4 05
d

.

. .

. .

 
   
 
 

K  

 7

0 0213 0 0

0 0 00990 0 10

0 0 4 49
p

.

.

.

 
   
 
 

K   

which provides the following eigenvalues for the closed 
loop system with small heading angles that accept 

3 3( ) R η E  as 

 1.021  ss , 12.043  ss , 2.065  ss  

Let then accept the desirable position vector as follows: 

 T

d d d dx y η , 30 mdx  , 30 mdy  , d =45°, and 

determine the dominate frequencies of the wave’s spectrum: 

1 0 420.  , 2 0 500.  , 3 0 700.  . 

In accordance with the tuning procedure, firstly, let 
calculate the matrix (12) 

 8

0 0180 0 0172 0

0 0157 0 0149 0 10

0 0 9 51

. .

. .

.


  
    
  

K  

to provide the astatic property with respect to a position 

error by the equality of  KF )0(  for the filter. 

Next, let us select the Hurwitz matrices, iα , with 

dimensions of 66  in Frobenius form, that have initial 
given eigenvalues correspondingly of 

1 2 3 4

5 6

1  0.0316, 0.0312, 0.0310, 0.0306,
0.0304, 0.0300;

i , s s s s
s s
        
   

0.0240;  0.0244,

0.0248,  0.0252, 0.0256, 0.0260,,2

65

4321




ss

ssssi

0.0352.  0.0356,

0.0360,  0.0368, 0.0376, 0.0384,,3

65

4321




ss

ssssi

 
Furthermore, we accept 

  3,1,1000000  ii γγ . We then use simple 

calculations to obtain 66  matrices, R
ikα  and I

ikα , using 

the formulae (45). 

We then calculate the matrices ( ) ( 1 3)*
k a, i,k , F η  in 

accordance with (29) for the finished value 45a d     

of the heading angle, to obtain for example 

 8
1

0 00394j 0 00184j 0

( ) 0 00393j 0 00184j 0 10

0 0 1 18j

*
a

. .

, . .

.


  
    
  

F η  

The matrices )( aik ηR  and )( aik ηI  (49) can then be 

calculated. Following this, via the expressions (52) and (53) 

we obtain the matrices, )(*
ai ηβ  and )(*

ai ημ , 

correspondingly for the optimal filter (42).  
As a result, we obtain the following equations of the 

optimal filter for the mentioned angle, a , as 





 

 

p αp βε
ξ γp με
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Results for other values of the heading angle are not 
essentially distinct. To validate this statement, we consider 

the family of frequency responses ( ) (j )i iA , ,       P  

(Fig. 5) for the range [0 360 ],   . Here iP )3,1( i  are 

the rows of the transfer matrix, ( , )s P  (24). Analysis of 

the mentioned graphs allows us to accept ( ) ( ),as, s,P η P
 

and we then use the filter (54) as an approximate solution to 
the filtering problem. 

Let us now consider the dynamical behaviour of the 
obtained closed loop connection, (1), (4), (5) and (54), to 
confirm that the desirable features have been acquired. 
Firstly, we introduce sea wave disturbance, 

 T6
1 2 3( ) 10 ( ) ( ) ( )t d t d t d td , which has stationary 

components )3,1()( itd i  with given power spectral 

densities of the form )()()( 11 sSsSsS iidi  , where 

2

1 2 2 2 2

2 20
( )

π 2 20 13 5 5
di

i

D s s
S s

s s . s


  

 
    

 

j , 0 455, 0 21s . / .      . Here, the dispersions 

101 dD , 2.02 dD , 3003 dD , which can be treated 

as an approximate representation of sea wave action with an 
intensity of 5 on the Beaufort scale, are accepted. 

Fig. 6 shows results of vessel motion simulation for the 
considered closed loop DP system, where it is possible to 
see the transient positioning processes, )(tx , )(ty , and ( )t , 

which consider the action of sea waves. 
Correspondingly, Fig. 7 represents the control actions,

1( )t , 2 ( )t , and 3( )t , for the mentioned process. 
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To illustrate the effect of filtering, let us consider the 
same dynamical regime, but use the astatic corrector of the 
form 

 ξ K ε  (55) 

instead of the filter (54). Naturally, the controller, (4), (5), 
and (55), holds an integral feature but loses a filtering 
feature. In this case, we obtain almost the same curves as in 
Fig. 6, which shows the positioning processes. Nevertheless, 
the control actions shown in Fig. 8 differ essentially from 
those of the previous case, thereby confirming the 
effectiveness of filtering.  
 
 

 

Fig. 5 Graphs of frequency responses Ai(ω, ψ),  [0, 360 ]   

 
 

 

Fig. 6 Transient processes for closed loop system 
 

 

Fig. 7 Control actions for closed loop system 
 

 

Fig. 8 Control actions for the corrector (55) 

 

Fig. 9 Control action τ3 for correctors (55) and (54) 
 
To further illustrate the notch filtering effect, let us 

consider a stabilization process presented by the graph of the 
control 3( )t  in Fig. 4 for the closed loop system. Prior to 

the 500th second, the controller (4), (5) works with the 
astatic corrector (55), but then the tuned corrector (54) is 
switched on to provide filtering features. 

A comparison of both parts of the process illustrates the 
significant effectiveness of the proposed control law 
correction. 

6 Conclusions 

The main goal of this paper is to expand the idea of a 
separate tuning for all units of the nonlinear DP control law. 
The presented approach can be treated as a certain 
modification of the notch-filtering solution (Fossen, 1994 
2011; Sørensen, 2011, 2012), in that it represents state of the 
art DP control but supplements existing strategies using 
certain theoretical and practical conveniences. 

From a theoretical point of view, the presented results 
provide a unified framework for the design of a flexible 
control action for DP systems. In particular, this approach 
develops a very important separation principle, which 
allows us to design a basic state control law, and the 
observer and corrector separately in a certain sense. This 
idea has not been fully implemented in previous approaches, 
where integral actors and dynamical filters were 
incorporated into the asymptotic observer. Although such a 
combination could be treated as a comprehensive whole, the 
separation principle could be applied only to the basic state 
control law and to the generalized observer turning, which 
hampered the operational retuning of the control law in a 
real time regime. 

The proposed implementation of the dynamical corrector 
as a separate item opens the door to new ways of applying 
various formal optimization approaches, in particular H2 and 
H∞ optimization approaches, in the design an optimal 
transfer matrix F(s) for filtering initially given and other 
fixed items of the control law. Practically, the proposed 
scheme simplifies the control law due to the lack of need to 
restore both bias and wave disturbances: this activity is 
realized indirectly with the help of the corrector. Secondly, 
by using a control law with the structure of (4) and (5), 
flexibility of the scheme is granted by the corresponding 

tuning of the corrective term, ( )( )s F y z , which can be 
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independently performed in real time corresponding to the 
current regime of the vessel’s motion. 

The results of the executed investigations presented above 
can be further developed to provide desirable performance 
indices for the DP control process on the basis of 
optimization approaches. In particular, this goal can be 
achieved using the full vessel+disturbance model, proposed 
in Fossen and Strand (1999), Loria et al. (2000). In addition, 
attention could also be given to questions of transport delay 
and robust features of DP control laws. 
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