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Abstract: In this paper we have investigated the reflection and the 
transmission of a system of two symmetric circular-arc-shaped thin 
porous plates submerged in deep water within the context of linear 
theory. The hypersingular integral equation technique has been used 
to analyze the problem mathematically. The integral equations are 
formulated by applying Green’s integral theorem to the 
fundamental potential function and the scattered potential function 
into a suitable fluid region, and then using the boundary condition 
on the porous plate surface. These are solved approximately using 
an expansion-cum-collocation method where the behaviour of the 
potential functions at the tips of the plates have been used. This 
method ultimately produces a very good numerical approximation 
for the reflection and the transmission coefficients and 
hydrodynamic force components. The numerical results are 
depicted graphically against the wave number for a variety of 
layouts of the arc. Some results are compared with known results 
for similar configurations of dual rigid plate systems available in 
the literature with good agreement. 
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1 Introduction1 

Interaction of water waves with the obstacles of various 
geometrical shapes and sizes has been widely studied in the 
modern literature, due to the huge number of applications in 
the modeling of breakwaters that are constructed mainly to 
protect sheltered areas such as harbours, marinas, etc. from 
the impact of rough seas. An account of the detailed 
literature in the field of wave scattering problems involving 
barriers can be found in Mandal and Chakrabarti (2000). 
Ursell (1947) obtained the first rigorous mathematical 
analysis for an obstacle in the form of a partially immersed 
thin vertical plate, or a submerged thin vertical barrier 
extending infinitely downwards, by using an integral 
equation formulation. Since then a large number of research 
papers have been published by various researchers in this 
fascinating area of applied mathematics. Evans (1970) used 
the complex variable technique to investigate the wave 
scattering problem of a vertical plate completely submerged 
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in deep water. Applying a reduction procedure and an 
integral equation formulation, Porter (1972) solved the 
problem of wave transmission through a small gap of 
arbitrary width. 

However if the plate is curved, it is not possible to obtain 
an explicit analytical solution for the related water wave 
scattering problems. For such problems, some 
approximation techniques are used to obtain numerical 
values for the things of physical interest, namely the 
reflection and the transmission coefficients. Parsons and 
Martin (1994) investigated water wave scattering by a 
submerged thin curved plate, convex upwards and 
symmetric about a vertical line passing through the centre of 
the arc, and a surface piercing inclined plate in deep water, 
using the hypersingular integral equation technique. 
Subsequently, McIver and Urka (1995) used multipole 
potentials and a matching procedure to obtain numerical 
results for the reflection coefficient for a circular arc shaped 
plate submerged in deep water. Their motivation was to 
compare the reflective properties between a circular arc 
shaped plate and a submerged full circle, for assessing the 
acceptability of using circular plates in the construction of a 
water wave lens that might be helpful in focusing waves 
prior to extracting energy from them. Kanoria and Mandal 
(2002) investigated the problem of wave scattering by a 
submerged thin circular-arc-shaped plate, not necessarily 
symmetric about the vertical through its centre, submerged 
in infinitely deep water using a hypersingular integral 
equation technique. 

Water wave scattering problems involving double or 
multiple barriers are fairly common in the modern literature. 
Seminal investigations involving the problems of scattering 
of water waves by two thin and impermeable vertical 
barriers of different configurations were performed by 
Levine and Rodemich (1958), Jarvis (1971), Newman 
(1974), Das et al. (1997), Neelamani and Vedagiri (2002), 
De et al. (2009; 2010) applying various mathematical 
techniques. In the field of porous structures, the scattering of 
water waves by double or multiple porous structures are 
somewhat rarely available in the literature. Research articles 
involving double permeable structures can be found in Twu 
and Lin (1991); Losada et al. (1992); Isaacson et al. (1999); 
Koraim et al. (2011). The response of double curved barriers 
towards water wave interaction can only be found in Mandal 
and Gayen (2002). They used the hypersingular integral 
equation technique as described in Parsons and Martin 
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(1994) for investigating the scattering of water waves by 
two symmetric circular-arc-shaped rigid plates submerged in 
deep water. This use of hypersingular integral equations is 
most acceptable in the sense that it can be adapted to study 
water-wave-interaction problems involving obstacles in the 
form of thin curved plates having any geometrical shape. 
The only limitation of this methodology is that it might not 
be directly extended to the case of a plate with finite width. 
However, in that case the problem can be formulated in 
terms of the discontinuity in the displacement across a 
two-dimensional cross section of the plate. The rectangular 
cross section may further be transformed into a circular disc 
by some conformal mapping. This will produce a 
two-dimensional hypersingular integral equation of order 
three which can be solved using the Fourier-Gegenbauer 
expansion method. 

Here we have extended the work of Mandal and Gayen 
(2002) in the case of porous structures, namely double 
circular-arc-shaped permeable plates, placed symmetrically 
about the y-axis in deep water. Earlier Lu and He (1989) 
analyzed the phenomenon of the reflection and transmission 
of water waves by a thin curved permeable barrier and 
showed that a well planned curved porous plate was very 
effective in trapping waves within a large frequency range. 

This paper deals with a water wave scattering problem 
involving two symmetric circular arc shaped thin porous 
plates submerged in deep water. Submerged plates are used 
to protect the shore-ward area of the breakwater from the 
hazards of rough seas by diminishing the effects of 
incoming waves. Such structures are effective as they allow 
the free exchange of water mass through them so that the 
water pollution in the sheltered area is minimized. The 
submerged structures are also capable of absorbing some 
wave energy, they break up waves and thus control shore 
erosion.  

Here the curved plates are mounted so that the centers of 
the circular arcs are placed along a horizontal line joining 
the centers of two circles. The circular arcs are symmetric 
about the y-axis. Utilizing the geometrical symmetry of the 
plates, the velocity potential for the fluid motion when a 
train of regular, small amplitude surface water waves are 
striking the plates, is divided into two parts, namely the 
symmetric and the anti-symmetric potential functions. Then 
appropriate use of Green’s integral theorem to the suitable 
functions in the fluid region, followed by utilization of the 
boundary condition on the porous plate surfaces produces 
two hypersingular integral equations of the second kind 
involving discontinuities of the symmetric, and the 
anti-symmetric potential functions across one of the two 
porous plates. These hypersingular integral equations are 
then solved numerically using an expansion-cum-collocation 
method, where the unknown discontinuities of the potential 
functions across the plates are approximated using two finite 
series involving Chebyshev polynomials of the second kind. 
The zeros of the Chebyshev polynomials are used as the 
collocation points. The numerical estimates for the reflection 

and transmission coefficients and the hydrodynamic forces 
are then computed using the solutions of the hypersingular 
integral equations. The numerical results for the reflection 
and transmission coefficients for a set of values of the depth 
parameters, arc lengths of the plates, and separation length 
between the centers of the circles whose arcs indicate the 
positions of the plates, are plotted graphically against the 
wave number in a number of figures. Some results are 
compared with the results of Mandal and Gayen (2002) for 
two circular arc shaped rigid plates submerged in deep water 
by taking the zero value of the porosity parameter. A very 
good agreement has been found in each case. Some new 
results are also provided here showing the effect of porosity 
in the reflection and transmission of the waves by a system 
of two curved porous plates. A significant result is achieved 
by taking two very closely spaced semi-circular arc shaped 
plates. Such a configuration serves as the cross section of a 
horizontal circular cylinder. It is observed that in this case 
there is almost no reflection. Ursell (1950) and Mandal and 
Gayen (2002) showed that a rigid horizontal circular 
cylinder offers no hindrance to incoming waves. 
Comparison of our results with those in Mandal and Gayen 
(2002) shows that a horizontal porous circular cylinder is 
more transparent to the incoming waves than the rigid one. 

2 Mathematical formulation 

We choose a two-dimensional Cartesian co-ordinate 
system with the y-axis directed vertically downwards 
passing through the midpoint of the line joining the centers 
of the circular arcs. The xz-plane denotes the position of the 
undisturbed free surface. The fluid occupies the region
0 ,y x       . Two circular arc shaped thin porous 

plates  1, 2i i   are situated inside the water as given in 

the Fig. 1. The vertical section of each of the plates are in the 
form of an arc of a circle of radius b with their centers at 

 ,a d b  . The plates are considered to be infinitely long in 

the z-direction and we take a vertical cross-section in the 
xy-plane. Thus the motion is taken to be two-dimensional in 
the xy-plane. 

 
Fig. 1 Geometry of the dual porous plates 

The upper and the lower end points of each circular arc 
make angles   and   respectively with the upward 
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vertical. The parameters a, b,   and   will always 

satisfy the identity 

  max sin sina b , b     (1) 

Considering linear theory, incompressible and inviscid 
fluid, and irrotational motion, a train of surface water waves 
coming from the direction of positive infinity can be 

described by the potential function   i
0Re , e tx y   , 

where t  is the time,   is the frequency and 

    i
0 , 2e Ky K x ax y     (2) 

with 
2

K
g


 , g being the acceleration due to gravity. Let 

the resulting motion in the fluid be expressed by the 

potential function (actual)  
2

i
3

Re , e tg
x y 


 

 
 

. Then 

 ,x y  satisfies 

 2 0   in the fluid region (3) 

where 2  denotes the two dimensional Laplace operator, 
along with the free surface condition 

 0K
y

 
 


  on  y=0 (4) 

and the condition on the porous plate surface as given by 

       ii i iKG s
n n

     
  

 
 (5) 

where       ,i i is        i   denote the right 

and the left hand sides of the plate i  and is  is any point 

on i , i=1, 2. Here 
n




 denotes the normal derivative at a 

point on i  and G is the porous-effect-parameter defined 

by Yu and Chwang (1994) as 

 
 2 2

1

i
i

*

r i *

f S
G G G

kd f S

 
  


 

where   is the porosity; f   is the resistance force 

coefficient; S is the inertial force coefficient and d1 is the 
thickness of the porous medium. The velocity potential   

also satisfies the tip condition given by 

 1 2   is bounded as  0/r r   (6) 

where r is the distance of any fluid particle from either of 

the submerged tips of i , i=1, 2, the bottom condition as 

given by 

 0  as   y    (7) 

 ,x y  has asymptotic behavior 

  
   
 

0 0

0

, ,  as 
,

,    as 

x y R x y x
x y

T x y x

 



  

   
 (8) 

where R and T denote the reflection and transmission 
coefficients respectively, and are to be obtained. 

3 Method of solution 

Due to the geometrical symmetry about x=0, the velocity 

potential  ,x y  can be divided into two parts namely the 

symmetric and the anti-symmetric parts  ,s x y  and 

 ,a x y  so that 

      , , ,s ax y x y x y     (9) 

where 

        , ,   , ,s s a ax y x y , x y x y         (10) 

Therefore we can confine our analysis to the region 

0x   only. Then  ,s ,a x y  will satisfy the Eqs. (3)–(4), 

(6)–(7) together with 

 
   0,

0  0, 0,  0
s

ay
, y y

x

 
  


 (11) 

and 

      1 1 1 1i  on  
s ,a s ,a

s ,aKG s
n n

      
      

 (12) 

Let the behaviour of  ,s ,a x y  for large x be expressed 

by 

       i i, , e e e  as  K x a K x as a Ky s ,ax y R x       (13) 

where the factors Rs,a are the unknown constants related to R 
and T by the relation 

   2i1
, e

2
s a KaR T R R    (14) 

Now, we reduce the boundary-value problem for the 

velocity potential to a boundary integral equation over 1 . 

To do this, we incorporate an appropriate fundamental 
solution with an application of Green’s integral theorem. We 
use the fundamental solution 

  
 

 
0

e
, ; , log 2 cos d

k yr
x y k x k

r k K



   
  

  
   (15) 

where     2 2,r r x y       and   satisfies the 

Eqs. (3) and (4) and has a logarithmic source singularity at 

the point    , , ;x y    the path of the integration in the 

equation (15) is indented below the pole of the integrand at 
k K.  Thus   satisfies the radiation condition at 
infinity. 

Now we employ the Green’s theorem to the functions 
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      i, ,, , e Ky K x as a s ax y x y       (16) 

and 

      , , ; , , ; , , ; ,s a x y x y x y            (17) 

in the fluid region bounded externally by the lines 
0, 0 ;   ,  0

0 , ;   0,   0

y x X x X y Y

x X y Y x y Y

     
     

 

and internally by a small circle of radius   and centered at 

 ,   and the contour enclosing the plate 1 . We finally 

make ,  and 0X Y     and shrink the contour 

enclosing the plate 1  into both sides of 1  and obtain 

the integral representation of  , ,s a    as 

 

   
1

,

,
,i

,

1
2e cos , isin d

2π

s a

s a
s aKy Ka

q
q

K K F q s
n

  

  




 


 (18) 

where q≡(x, y) is a point on 1 ,  ,s aF q  are the 

discontinuities of  , ,s a x y  across 1  at q and 
,s a

qn




 

denotes the normal derivative of ,s a  at the point q. 
Moreover it should be noted that the unknown functions 

 ,s aF q  vanish at the tips of 1  while their derivatives 

have square-root singularities there. 
Now we finally need to apply the boundary condition on 

the porous plate surface rewritten as 

 
   

 

, ,

1 1

i

s a s a

p p

s ,a

n n

KG p

  



  
 

 

   

 (19) 

where   1,p     . For that purpose we take the normal 

derivative on the both sides of the Eq. (18) at a point p on 

1  and using the boundary condition (19) we get 

 

   

1

,
,

i ,
1

1
d

2π

2e cos isin i ,   

s a
s a

q
p q

K Ka s a

p

F q s
n n

K , K KGF p p
n







   

 


 


    


 

(20) 
Eq. (20) is an integra-differential equation in 

 ,
1,  s aF q q   and is to be solved subject to the condition 

that 

 , 0s aF  at the two tips of 1  (21) 

We now can interchange the order of the integration and 
the normal differentiation which is legitimate (cf. Martin 
and Rizzo (1989)) provided that the integral is then to be 
treated as the Hadamard-finite part integral. By applying this 
procedure we get 

 

   

 

1

2 ,

i
1

1
d i

2π

2e cos , isin ,   

s a
s ,a s ,a

q
p q

K Ka

p

F q s KGF p
n n

K K p
n







   


 

 


   


 (22) 

The integral Eq. (22) is a hypersingular integral equation 
of the second kind, to be solved subject to the boundary 

conditions (21). The    implies that the integral is to be 

considered as a two-sided finite part integral of order two.  
Next, we first convert the kernel of the hypersingular 

integral equation (22) to a more generalized form. For this 
purpose we take the unit normals at the points p and q on 

1  denoted by pn  and qn , respectively. Then 

    sin , cos ,    sin , cosp q t tn n         (23) 

where 

  , ,    1 ,  1
2 2t , t t

      
      (24) 

and an appropriate parameterization of the curved plate is 

taken as  sin ,  1 cos , 1 1,t tx a b y d b t          

where  q x,y .   

The point  p ,   on 1  has the same 

parameterisation, but with t replaced by .  Using this 
parameterization we find that 

 
 

 
2

22 2

1s ,a
s ,a

p q

M ,t
n n b t

 
 


 

  
 (25) 

where 

 
   

 
 

 

 
 

 

 
 

 
 

 
 

22 2
2

2 2
2

02 2 22 2

2
02 2 22 2

2 2
1 1

2 22 2 2 2
1 1

2 2
1

2 2
1

1 1 4

4 sin
2

2
cos 2

2sin

2
cos sin

cos

s ,a

t

t

t t

t

M ,t
b tt

Y X KY
K X ,Y

X YX Y

XY KX
K X ,Y

X YX Y

Z X X Z

X Z X Z

Y X

X Y





 



   

  

  

   

 

 
 

     
 

        
    

     
  


   

 








 

 
 

 

2
0 12 2 2

1

21 1
0 12 2 22 2

11

2
2

2sin t

KY
K X ,Y

X Y

X Y KX
K X ,Y

X YX Y




  

    
  

      
   



(26) 
with 
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 
   

 
 

 

     

1

0 0

0

sin sin

2 cos cos

2 sin sin

cos cos

1

2

e
 cos sin d

t

t

t

t

KY

X x b

Y y d b b

X x a b

Z y b

X ,Y , X ,Y kX , kX k
k K









  
  

  
  

  

 
 

   

     

    

   

 




 (27) 

The right hand side of the Eq. (22) can be expressed as 

   i
12e cos isinK Ka s ,a

p

K , K h
n

    
   

 

where 

      i
1 2 e cos , isins ,a K Kah K K K

           (28) 

Now the Eq. (22) can finally be rewritten as 

 
 

 
 

   

1
2 2

2
1

1
d

i ,   1 1

s ,a s ,a

s ,a s ,a

f t b M ,t t
t

Kb Gf h

 


   


 
    
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where 

    12πs ,a s ,ah b h    (30) 

and  s ,af t  stands for  s ,aF q .  If 0G  , the Eq. (29) 

reduces to a first kind hypersingular integral equation ( cf. 
Mandal and Gayen (2002)) as follows 

 
 

   
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2 2
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
 

The hypersingular integral Eq. (29) are to be solved 

subject to the end condition that 0s ,af  . 

Now, using the method of contour integration the 
integrals in (26) can be expressed as 
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Now to solve the Eq. (29), we begin with approximating 

the unknown functions  s ,af t  in the following way (cf. 

Gayen and Mondal (2014)). Let 

    2

0

1
N

s ,a s ,a
n n

n

f t t a U t


    (31) 

where  nU t  is the Chebyshev polynomial of the second 

kind and the unknown factors, na ’s are to be determined. 

The square-root factor in (31) ensures that  s ,af t  have 

the right behavior at each tip of the plates, where the 
potential difference vanishes. Substituting the expansion (31) 

in the place of all  s ,af t  in (29) we finally get 
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where 
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Next, we collocate at ,  0,1, ,j j ... N   , where j ’s 

are chosen as 

 
 2 1 π

cos ,    0,1, ,
2 2j

j
j ... N

N
     

 (34) 

these being the zeros of  1nT  , the Chebyshev 

polynomial of the first kind. Golberg (1983; 1985) has 
shown that the Eq. (34) is a good choice since it provides a 
uniform convergent method. The rate of convergence of his 

method depends on the smoothness of the kernel s ,aM  in 
the Eq. (29). 

The two linear systems of equations which are formed by 

replacing   with j  in the equation (32) are now to be 

solved numerically by applying any standard method. 

1) Reflection and transmission coefficients. 
From the Eq. (14) it is evident that to determine |R| and 

|T| we first have to compute the unknown quantities Rs,a. We 

first make    in the representation of  s ,a ,    as 

given in Eq. (18) and then compare it with (13) (with (x, y) 

replaced by  ,  ). Also we need to make use of the 

asymptotic results 

     i, , ; , 4πe icos sin  as K y Ks a x y Kx, Kx          
(35) 

Finally we find that 
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(36) 

Thus, once we get the numerical estimates of Rs,a by 
solving the integrals in Eq. (36), R and T can be computed 
using the Eq. (14). We have depicted the results for R and T 
in a number of figures in section 4. 
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2) Hydrodynamic forces on the plates. 
The hydrodynamic forces acting on each curved porous 

plate can be determined as follows: 

The fluid pressure  , ,p x y t  at a point (x, y) is 

connected to the velocity potential  , ,x y t   by the 

expression 

    , , , ,p x y t x y t gy
t

   


 (37) 

where    
2

i
3

, , Re , e tg
x y t x y  


    

 
 and   is the 

water density. Therefore the force per unit width of each 

plate  1 2i , i ,   can be expressed as 

    iRe i e d
i

t
i q

g
H q s

K




        (38) 

where q is a point on the plate i . Using the parametric 

coordinates of q, the dimensionless forces acting on the 
curved porous plates can be expressed as 

 ℋ1      
1

i1 Re i e ds a tKH
| | | f t f t t |

gb



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and 

 ℋ2      
2

i2 Re i e ds a tKH
| | | f t f t t |

gb







    (40) 

The numerical estimates for these quantities can be 
evaluated using the solutions of the hypersingular integral 
Eq. (29). 

4 Numerical results 

In this section we will discuss the effect of different 
parameters i.e. arc-length, porosity, depth etc. on the 
reflection and the transmission coefficients and the 
hydrodynamic forces acting on the porous plates. We have 
made different physical quantities dimensionless with 
respect to the radius b. While taking the values of , | R | |T |  

it has always been verified that the computed values of these 
two quantities are always satisfied by the following energy 
identities 

 2 2 1   for   0| R | |T | G    (41) 

and 

 2 2 1| R | |T | J    for 0G   (42) 

where 
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1 1
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 
   

(43) 

This will give a partial check on the correctness of the 

numerical results obtained here. 
To validate our numerical results, we present Table 1. In 

this table, the numerical estimates for | R |  and |T |  are 

presented for 30 , =180 , 0 5, 1, 1 5d a. G .b b        

against the wave number Kb. We have computed these 
values using Eq. (36) together with Eq. (14) and have 

presented 2 2R T  in the fourth column of Table 1. The 

quantity 1 J  has been computed from Eq. (43) using the 

solutions  s ,af t  of the hypersingular integral Eq. (29). 

Comparing the values in the fourth and fifth columns it is 
clearly visible that | R |  and |T |  satisfy the energy 

balance relation (42). 

Table 1 Reflection and the transmission coefficients 

Kb | R |  |T |  2 2R T  1 J  

0.3 0.030 6 0.846 7 0.717 8 0.717 8

0.6 0.151 1 0.782 3 0.634 8 0.634 8

0.9 0.115 5 0.814 6 0.677 0 0.677 0

1.2 0.045 6 0.859 5 0.740 8 0.741 1

1.5 0.065 3 0.891 0 0.798 2 0.798 8

 
Fig. 2 illustrates R  against the dimensionless wave 

number Kb for two semi circular porous plates. Here we 
have taken the values of different parameters as 0,   

π, 0.5, 1d Gb    .  Graphs have been plotted for two 

different values of the length of separation  1 5, 1 0a . .b . Fig. 

2 shows that for larger frequencies of the wave, an increase in 
the distance between the plates causes more reflection. This 
happens because the scope of multiple reflections between 
the plates increases as the length of separation between them 
increases. As a result the overall reflection increases.  

Fig. 3 stands for a comparison in the reflective and 
transmissive properties between the systems of two closely 
placed semi-circular arc-shaped plates: one consists of two 
permeable plates and the other consists of two impermeable 
plates. Such a configuration serves almost as the cross 
section of a horizontal circular cylinder. It is observed that 
for both the cases (G=0 or 1) the amount of reflection is 
very low. This is consistent with the phenomenon of zero 
reflection by a horizontal circular cylinder. This result was 
established long ago by Ursell (1950) for a rigid horizontal 
cylinder and was verified by Mandal and Gayen (2002) by 
taking two semi-circular rigid plates whose vertical 
diameters are very close to each other. The solid line 
represents the data of Mandal and Gayen (2002), and the 
dashed line in the curve of reflection coefficient stands for 
the results obtained by the present method. It can be seen 
that a horizontal porous cylinder also offers no hindrance to 
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the propagation of water waves. The reflection as well as the 
transmission for the porous cylinder is even less than that 
for a rigid one.  

In Fig. 4, the effect of different arc-lengths of the porous 

plates on , R T  is depicted against Kb for fixed values of 

the depth parameter  0 5d .b , separation constant  1 5a .b  

and porous effect parameter G=1. Here the graphs have been 

drawn for three different values of the arc lengths of the 

porous plates ( 30 , 180 , 120 , 90       ). The occurrence 

of zeros of |R| as a function of wave number is one of the 

most important features. From Fig. 4 it is observed that the 

zeros of |R| are shifted towards the right with the decrease in 

the arc length of the plates. Also, |R| decreases with the 

decrease in arc-length due to the fact that the incident wave 

train faces less hindrance with the decrease in arc-length. 

For the case of transmission, |T| decreases with the increase 

in arc-length. Moreover, in this figure, the multiple peaks 

appear due to multiple reflections by the edges of the two 

plates. Whenever a system of breakwaters comprising of 

more than one barrier is present, such reflection is obvious. 

As a reference, we may mention the work of Karmakar and 

Soares (2014) who considered a system of bottom standing 

porous plates where the reflection curves also have multiple 

peaks (Figs. 3–9, Page. 55–58). 

Fig. 5 displays the variation of |R| for the systems of two 

circular arc shaped impermeable plates (G=0) and two 

circular arc shaped permeable (G=1) plates for fixed 

arc-lengths of the plates. These two figures have been 

plotted for 1 5, 5 , 150a .b       . From Fig. 5 it may 

be seen that as the depth of the upper end of the plates from 

the free surface decreases, the value of |R| increases i.e. more 

wave energy is reflected back by the plates. This happens 

because the disturbance created by the incident wave train 

cannot penetrate much below the free surface and as a result 

less wave energy is reflected back by the plate whose depth 

from the free surface is significant. The main difference 

between these graphs is that the heights of the reflection 

curves are less for permeable plates (G=1) than impermeable 

plates (G=0). Therefore less energy is reflected by the 

porous structures. Also the the graphs for G=0 have a very 

good agreement with the corresponding results obtained by 

Mandal and Gayen (2002) for two circular arc shaped rigid 

barriers. 

In Fig. 6, the effect of porosity on the dissipated energy 

has been shown graphically for 0 5, 1 5, d a. .b b 

30 , 90     . From this figure it is clear that for 

Kb<0.45, energy dissipation increases with the increase in 

the porous-effect parameter G. However, for larger wave 

numbers, the reverse phenomenon occurs. 

Fig. 7 describes the results for two submerged almost full 

circles i.e. two circular cylinders. Here |R| and |T| have been 

plotted against Kb for 0 5, 1 5, 0 , 359d a. .b b        . 

We have also checked for other sets of values of ,    for 

which we get two almost full circles (e.g. 60 ,       

299 ) and got almost the same curves. It may be observed 

from this figure that as the value of the 

porous-effect-parameter G increases the incoming waves 

experience less reflection and less transmission. For the case 

1G   there is almost no reflection. This happens since 

some part of the wave energy is dissipated on the surface of 

the porous plates due to the internal friction. This 

phenomenon is very important in coastal engineering, 

because porous structures cause smaller surface fluctuation 

due to the low reflection, which is important for ship loading 

and unloading. 

The effect of transition, from a circular-arc-shaped plate 

which is symmetric about the vertical, to an almost 

horizontal plate of same arc-length on the reflection and the 

transmission coefficients, can be seen in Fig. 8 by making 

the separation length  a
l  zero where 2l is the constant 

arc-length of the plate. Here |R| and |T| have been plotted 

against a new wave number Kl. The graphs have been plotted 

for 0 1, 0d .l    and 36    when l b  has been 

kept fixed. The characteristics of the curve for |R| due to 

switching from a circular-arc-shaped plate to a nearly 

horizontal plate are observed to be the same as given by 

Mandal and Gayen (2002). The fact that a porous nearly 

horizontal plate system is more transparent to the incident 

wave compared to a rigid nearly horizontal plate system is 

also visible here. Also from this figure it is clear that for 

permeable plates the transmission coefficient decreases 

rapidly with the wave number.  

In Figs. 9 and 10 the dimensionless amplitudes of the 

hydrodynamic forces acting on the plates have been plotted 

against non-dimensional wave number Kb by taking 

0 5, 1, 0 , 180 , 0d a. t .b b           Here the graphs 

have been drawn for three different values of the porous 

effect parameter G (G=1, 1.5, 2). If the graphs of these 

figures are compared, we can see that less force is 

experienced by the rear plate compared to the front plate. 

Also, the magnitude of the hydrodynamic forces acting on 

the plate decreases with the increase in porosity of the plate. 

It may also be noticed from Fig. 10 that the force curves are 

somewhat oscillatory in nature for the plate 2  due to the 

presence of the four plate tips. It first increases with Kb, 

attains zero value and then gradually increases again. 
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Fig. 2 Effect of separation on |R| for a system of two half-circular 

porous plates ( , , ,   d Gb  0 π 0.5 1 ) 

 
Fig. 3 Reflection and transmission coefficients for two 

half-circular impermeable and permeable plates 

( , , ,   d a
b b0 π 0.5 0.001  ) 

 
Fig. 4 Reflection and transmission coefficients for different 

arc-lengths of two curved porous plates 

( ,   ,    a d G αb b  1.5 0.5, 30 ) 

 
Fig. 5 Reflection coefficient for different depths of two 

permeable and impermeable curved plates 

( , , ,     a Gb  1.5 0 5 150 ) 

 
Fig. 6 Dissipated energy for two curved porous plates, for 

various G ( , , ,     d a
b b  0.5 1.5 30 90 ) 

 
Fig. 7 Reflection and transmission coefficients for two almost 

full circles ( , , ,     d a
b b  0.5 1.5 0 359 ) 

 
Fig. 8 Reflection and transmission coefficient for small    

( , , , , ,      d a Gl l  0.1 0 0 36 0 1 ) 

 
Fig. 9 Amplitude of the hydrodynamic forces acting on 1  

( , , ,     d a
b b  0.5 1 0 180 ) 
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Fig. 10 Amplitude of the hydrodynamic forces acting on 

2  ( , , ,     d a
b b  0.5 1 0 180 ) 

5 Conclusions 

The problem of water wave scattering by two symmetric 
circular-arc-shaped porous plates submerged in deep water 
has been discussed with linear theory. The plates are situated 
symmetrically about vertical lines passing through the 
midpoint of the line joining the centers of circles whose arcs 
are assumed to be the positions of the plates. Exploiting the 
geometrical symmetry of the plates, the velocity potential 
has been divided into its symmetric and anti-symmetric 
parts. Appropriate use of Green’s integral theorem to the 
suitable functions in the fluid region, followed by the 
utilization of the boundary condition on the porous plate 
surface, yielded two hypersingular integral equations of the 
second kind. These are solved using an 
expansion-collocation method. Using the numerical 
solutions of these hypersingular integral equations, the 
reflection and the transmission coefficients and the 
hydrodynamic forces on the plates have been determined 
and depicted graphically in a number of figures. The 
numerical results for the reflection coefficient for two 
circular-arc-shaped rigid barriers have been obtained as a 
special case and matched with the corresponding published 
paper of Mandal and Gayen (2002). A good agreement has 
been achieved. After analyzing the numerical results for the 
reflection coefficient obtained here, it may be concluded that 
the incoming waves experience less reflection due to the 
presence of the dual plates system consisting of two curved 
porous plates compared to that consisting of two similar 
rigid plates. Thus a dual circular plate system provides an 
effective model for porous barriers, as the system effectively 
reduces the height of the reflected wave, which is useful in 
reducing the occurrence of wave resonance inside harbours. 
It is also established that, like a rigid horizontal circular 
cylinder, a porous horizontal cylinder is also transparent to 
the incoming waves. 

References 

Das P, Dolai DP, Mandal BN (1997). Oblique wave diffraction by 
parallel thin vertical barriers with gaps. Journal of Waterway, 
Port, Coastal, and Ocean Engineering, 123(4), 163-171. 
DOI: 10.1061/(ASCE)0733-950X(1997)123:4(163) 

De SM, Mandal BN, Chakrabarti A (2009). Water-wave scattering 
by two submerged plane vertical barriers—Abel 
integral-equation approach. Journal of Engineering 
Mathematics, 65(1), 75-87. 
DOI: 10.1007/s10665-009-9265-3  

De SM, Mandal BN, Chakrabarti A (2010). Use of Abel integral 
equations in water wave scattering by two surface-piercing 
barriers. Wave Motion, 47(5), 279-288. 
DOI: 10.1016/j.wavemoti.2009.12.002  

Evans DV (1970). Diffraction of water waves by a submerged 
vertical plate. Journal of Fluid Mechanics, 40(3), 433-451.  
DOI: 10.1017/S0022112070000253  

Gayen R, Mondal A (2014). A hypersingular integral equation 
approach to the porous plate problem. Applied Ocean Research, 
46, 70-78.  
DOI: 10.1016/j.apor.2014.01.006 

Golberg MA (1983). The convergence of several algorithms for 
solving integral equations with finite-part integrals. Journal of 
Integral Equations, 5, 329-340. 

Golberg MA (1985). The convergence of several algorithms for 
solving integral equations with finite-part integrals II. Journal 
of Integral Equations, 9, 267-275. 

Isaacson M, Baldwin J, Premasiri S, Yang G (1999). Wave 
interactions with double slotted barriers. Applied Ocean 
Research, 21(2), 81-91. 
DOI: 10.1016/S0141-1187(98)00039-X  

Jarvis RJ (1971). The scattering of surface waves by two vertical 
plane barriers. Journal of the Institute of Mathematics and its 
Applications, 7, 207-215. 

Kanoria M, Mandal BN (2002). Water wave scattering by a 
submerged circular-arc-shaped plate. Fluid Dynamics Research, 
31(5-6), 317-331. 
DOI: 10.1016/S0169-5983(02)00136-3 

Karmakar D, Guedes Soares C (2014). Wave transformation due to 
multiple bottom-standing porous barriers. Ocean Engineering, 
80, 50-63 
DOI: 10.1016/j.oceaneng.2014.01.012 

Koraim AS, Heikal EM, Rageh OS (2011). Hydrodynamic 
characteristics of double permeable breakwater under regular 
waves. Marine Structures, 24(4), 503-527. 
DOI: 10.1016/j.marstruc.2011.06.004  

Levine H, Rodemich E (1958). Scattering of surface waves on an 
ideal fluid. Mathematics and Statistics Laboratory, Stanford 
University, Palo Alto, USA, Technical Report No.78. 

Losada IJ, Losada MA, Roldán AJ (1992). Propagation of oblique 
incident waves past rigid vertical thin barriers. Applied Ocean 
Research, 14(3), 191-199. 
DOI: 10.1016/0141-1187(92)90014-B  

Lu CJ, He YS (1989). Reflexion and transmission of water waves 
by a thin curved permeable barrier. Journal of Hydrodynamics, 
1(3), 77-85. 

Mandal BN, Chakrabarti A (2000). Water wave scattering by 
barriers. WIT Press, Southampton, UK. 

Mandal BN, Gayen R (2002). Water-wave scattering by two 
symmetric circular-arc-shaped thin plates. Journal of 
Engineering Mathematics, 44(3), 297-309. 
DOI: 10.1023/A:1020944518573 

Martin PA, Rizzo FJ (1989). On boundary integral equations for 
crack problems. Proceedings of the Royal Society of London, 
Series A: Mathematical and Physical Sciences, 421(1861), 
341-355.  
DOI: 10.1098/rspa.1989.0014  



Journal of Marine Science and Application (2015) 14: 366-375 

 

375

McIver M, Urka U (1995). Wave scattering by circular arc shaped 
plates. Journal of Engineering Mathematics, 29(6), 575-589. 
DOI: 10.1007/BF00044123 

Neelamani S, Vedagiri M (2002). Wave interaction with partially 
immersed twin vertical barriers. Ocean Engineering, 29(2), 
215-238. 
DOI: 10.1016/S0029-8018(00)00061-5 

Newman JN (1974). Interaction of water waves with two closely 
spaced vertical obstacles. Journal of Fluid Mechanics, 66(1), 
97-106.  
DOI: 10.1017/S0022112074000085  

Twu SW, Lin DT (1991). On a highly effective wave absorber. 
Coastal Engineering, 15(4), 389-405. 
DOI: 10.1016/0378-3839(91)90018-C 

Parsons NF, Martin PA (1994). Scattering of water waves by 
submerged curved plates and by surface-piercing flat plates. 
Applied Ocean Research, 16(3), 129-139. 
DOI: 10.1016/0141-1187(94)90024-8  

Porter D (1972). The transmission of surface waves through a gap 
in a vertical barrier. Mathematical Proceedings of the 
Cambridge Philosophical Society, 71(2), 411-421.  
DOI: 10.1017/S0305004100050647 

Ursell F (1947). The effect of a fixed vertical barrier on surface 
waves in deep water. Mathematical Proceedings of the 
Cambridge Philosophical Society, 43(3), 374-382. 
DOI: 10.1017/S0305004100023604 

Ursell F (1950). Surface waves on deep water in the presence of a 
submerged circular cylinder. I. Mathematical Proceedings of 
the Cambridge Philosophical Society, 46(1), 141-152. 
DOI: 10.1017/S0305004100025561  

Yu XP, Chwang AT (1994). Wave-induced oscillation in harbor 
with porous breakwaters. Journal of Waterway, Port, Coastal, 
and Ocean Engineering, 120(2), 125-144. 
DOI: 10.1061/(ASCE)0733-950X(1994)120:2(125) 
 

 
 

The 12th International Conference on Hydrodynamics (ICHD 2016) 

September 18–23, 2016 
Delft, The Netherlands 

Hydrodynamics has always been an important and fundamental subject for many disciplines involving the science of forces acting on or exerted by fluids, and 
engineering applications including ship and marine engineering, ocean and coastal engineering, mechanical and industrial engineering, environmental 
engineering, hydraulic engineering, petroleum engineering, biological & biomedical engineering, and so on.  
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 Bio fluid mechanics  
 
 
Contact 
ICHD2016 Conference Secretariat 
Monique Gazendam, tel +31 15 2789714 
Dineke Heersma, tel +31 15 2785621 
Email: secr-mtt-3me@tudelft.nl 
 
 
Website: http://www.ichd-home.com 

 


