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Abstract: This paper proposes a new method for ship recognition 
and classification using sound produced and radiated underwater. 
To do so, a three-step procedure is proposed. First, the 
preprocessing operations are utilized to reduce noise effects and 
provide signal for feature extraction. Second, a binary image, made 
from frequency spectrum of signal segmentation, is formed to 
extract effective features. Third, a neural classifier is designed to 
classify the signals. Two approaches, the proposed method and the 
fractal-based method are compared and tested on real data. The 
comparative results indicated better recognition ability and more 
robust performance of the proposed method than the fractal-based 
method. Therefore, the proposed method could improve the 
recognition accuracy of underwater acoustic targets. 
Keywords: binary image; passive sonar; neural classifier; ship 
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1 Introduction1 

For passive sonar, radiated noise has considerable 
significance. It is designed to utilize the features of this form 
of noise and to distinguish it from background of self-noise or 
ambient noise (Urick, 2008). Detecting the target in 
considerable background noise environments is the major 
difficulty in passive sonar systems. What makes this 
important task particularly hard to fulfill in practice is the 
complexity of underwater sound signals, which are highly 
noisy and typically include multiple components of a variety 
of sources such as underwater propeller cavitation, vessel 
shell vibration and machine rotation. Due to a wide range of 
applications, both in military and civilian purposes the 
research on underwater acoustic has particular importance. 
This includes identification and tracking of ships or 
submarines via the noise radiated by their machinery 
components (Urick, 2008; Chen et al., 2000; Soares-Filho et 
al., 2001; Yang et al., 2002; Lennartsson et al., 2006; 
Rajagopal et al., 1990) and underwater acoustic 
communication (Luo et al., 2012; Diamant and Lampe, 2013). 
This also includes identifying marine mammals (Zimmer et 
al., 2008) and oceanography (Howell and Wood, 2003). For 
decades, the trained people got used to classify and recognize 
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the class of marine vessels by listening to their radiated noise. 
Therefore, classical methods involve the operator’s ability in 
these purposes, i.e. the classification and identification of 
underwater targets, to classify and identify significant features 
(Rogoyski et al., 1994). Substituting these people with 
intelligent systems is one of the hot topics in signal processing 
and artificial intelligence. So, employed in sonar signal 
classification, automatic methods can accelerate the process 
of decision-making and assist the operators. Moreover, 
automatic classification of underwater signals is necessary to 
reduce the operator’s load.  

Some studies on this special topic of sonar systems used 
real data of passive sonar to evaluate the performance of their 
suggested systems while the sonar data acquisition is a time 
and money-consuming project, so most of the works used the 
simulated data. The selection of discriminating features and 
classifiers are two important issues, as well. Implementation 
issues for hidden Markov models (HMM) can be found in 
Becchetti and Ricotti (1999), where implementation issues of 
Markov chains were considered. To develop a sensor-adaptive 
autonomous underwater vehicle (AUV) technology 
specifically directed toward rapid environmental assessment 
and mine countermeasures in coastal environments, a 
low-frequency sonar system was introduced in Generic Ocean 
Array Technology Sonar (GOATS) joint research program at 
MIT (Eickstedt and Schmidt, 2003).  

The discriminating features introduced by Lourens (1988) 
are locations of poles of the second order autoregressive (AR) 
model. These were used for classifying the noises of three 
propulsion systems (High-speed diesel, Low speed diesel and 
Turbine). Sadjadi and Chun (2001) defined four classes of 
marine vessels. These classes can be recognized by the 
vessels speed, the blade rate of propeller, the location of tonal 
components of machinery, the gear noise, the injector noise 
and the low frequency radiation from hull of marine vessels. 
All of these features could be extracted from power spectral 
density (PSD) (Stoica and Moses, 2005) of radiated noise. Li 
et al. (1995) uses six parameters extracted from power 
spectrum. In this method, a standard feature vector is obtained 
for each category of ships. Then, the weighted distance 
between each standard vector and the extracted feature vector 
from test data is calculated. This distance determines the 
category to which the test data belongs. There are nine 
unknown parameters in the feature extraction process and 
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nothing is suggested about selection of these parameters in Li 
et al. (1995). Therefore, implementation of this method is 
difficult or even impossible. The discriminating features 
suggested in Soares-Filho et al. (2000) are based on power 
spectral density of radiated noise of four different classes of 
ships. The method in Ward and Stevenson (2000) is based on 
the short time Fourier transform (STFT) as features and finite 
impulse response neural network (FIRNN) as classifier. The 
recorded data by Defense Research Establishment Atlantic 
were utilized for performance evaluation, using underwater 
sonobuoys in the Bedford Basin off Nova Scotia, Canada. 
Farrokhrooz and Karimi (2005) represented the acoustic 
radiated noise of ships by an AR model with appropriate order 
and coefficients of this model are used for classification of 
ships. A probabilistic neural network (PNN) (Duda et al., 
2000) is used as the classifier and the AR model coefficients 
are used as the feature vector to this classifier. The 
performance of this method is examined by using a bank of 
real data files.  

He et al. (2010) analyzed the advantages and disadvantages 
between discriminating features extracted from power spectral 
density and higher order spectrum, and then they were 
combined to extract the distinguishable characteristics 
synthetically. The proposed classifier is a kind of back 
propagation (BP) neural network (Duda et al., 2000) with 
some modifications. Two sets of discriminating features were 
proposed in (Farrokhrooz and Karimi, 2011). The first set of 
features is extracted from AR model of radiated noise and the 
other is directly extracted from power spectral density of 
radiated noise. The proposed classifier is the modified 
probabilistic neural network, which is referred to multi-spread 
PNN (MS-PNN) and a method for estimating the parameters 
of classifier. Moreover, other considerable efforts were made 
to classify and identify ships or underwater targets based on 
spectral scrutinization approaches (Soares-Filho et al., 2000; 
Zak, 2008; Shi and Hu, 2007), recently on fractal-based 
approaches (Yang et al., 2000; 2002), chaotic features (Yang 
and Li, 2003) and nonlinear features (Bao et al., 2010). Major 
concern about studies based on fractal approaches is whether 
ship sounds are fractal signals or not.  

These approaches include analysis based on fractional 
Brownian motion, fractal dimension analysis, and wavelet 
analysis (Yang et al., 2002). Noise sensitivity, excessive 
extracted features, and complexities of analysis are some 
demerits of the cited methods. In this paper, an appropriate 
algorithm is proposed using narrowband and broadband 
processing, obtained from short-time Fourier transform 
(STFT). The idea of our method, is relatively simple, and can 
be divided into 4 steps, including 1) preprocessing, 2) forming 
the matrix of binary image, 3) extraction features, and 4) 
neural classification. In addition, a low-pass digital filter 
processes the digitized incoming signal.  

This low-pass filter is an eighth order Chebyshev, ensuring 
that there are no aliasing effect in the pass-band. Two 
approaches, the proposed method and the fractal-based 
method, are compared and tested on real data. The 

comparative results indicate better recognition ability and 
more robust performance of the proposed method than the 
fractal-based method.  

The remainder of this paper is organized as follows: 
Section 2 presents statement of the problem. Section 3 
discusses the proposed algorithm. Classification experiments 
are conducted with fractal based approach in Section 4, 
showing a remarkable success of our method to extract 
efficient features and to aim our purpose for ship 
classification. Finally, our conclusions are drawn in Section 5. 

2 Problem formulation  

The acoustic radiated noise produced by the vessel’s 
machinery and its motion in sea consists of broadband and 
narrowband components. The propeller and the hydrodynamic 
turbulence produce a broadband noise. The propeller, 
propulsion system and auxiliary machinery produce the 
narrowband components. Generally, the spectrum of acoustic 
radiated noise varies with the change of speed (Urick, 2008). 
Noise spectra are basically of two types. These two spectral 
types are illustrated diagrammatically in Fig. 1. One type is 
broadband noise having a continuous spectrum. The other 
basic type of noise is tonal noise having a discontinuous 
spectrum. This form of noise consists of tones or sinusoidal 
components having a spectrum containing line components 
that occurs at discrete frequencies. The radiated noise of 
vessels consists of a mixture of these two types of noise over 
much of the frequency range and may be characterized as 
having a continuous spectrum containing superposed line 
components (Urick, 2008). 

 

 

Fig. 1 Typical frequency spectrum of a sample vesel (Bao et 
al., 2010) 

 

 
Fig. 2 Possible scenario for sonar operation 

 
Consider the following practical problem. Fig. 2 shows a 

possible scenario for a sonar operation, in which there is one 
target: the ship that has a surface contact. In this case, the 
hydrophone is receiving the signals from the target and the 
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purpose is to identify the class of the target. The noise radiated 
by vessels is nearly always measured by running the vessel 
past a stationary distant measurement hydrophone. Various 
types of hydrophones and hydrophone arrays have been 
employed for this purpose. The simplest arrangement uses a 
single hydrophone hung from a small measurement vessel 
(Urick, 2008).  

The system is to be designed with the purpose of examining 
the underwater acoustic waves received by hydrophone and 
determining whether an important target is within the reach of 
the system in order to classify it. To do so, a three-step 
procedure has been devised. First, the preprocessing 
operations are utilized to reduce noise effects and provide 
signal for feature extraction. Second, a binary image, made 
from frequency spectrum of signal segmentation, is formed to 
extract effective features. Third, a neural classifier is designed 
to classify the signals. Considering this, these steps will be 
dealt with in details in the next section. Before proceeding 
further, it is necessary to define our model and assumptions as 
follows: 

Assumption 
i. The output of the hydrophone will be modeled as 

( ) ( ) ( ),x t s t n t   where ( )s t and ( )n t are signal and 

noise waveforms, respectively. 
ii. Background noise ( )n t is modeled by a spatially and 

temporally white, zero mean Gaussian random 
process. 

iii. Signal and noise are independent stationary Gaussian 
process. 

iv. There is just one source of underwater sound or 
sources are sufficiently spaced from each other so that 
the interference from another source is negligible. 

v. The vessel under the test is arranged to run at constant 
speed and course so as to pass the measurement 
hydrophone at a known distance.  

In addition to these assumptions, there are some conditions 
on the data used for our purpose. These conditions will be 
dealt with in Section 4. 

3 Algorithm description 

3.1 Preprocessing 
The first problem that must be handled for the process of 

marine vessel recognition is signal preprocessing. This 
section describes the process of existence data preprocessing 
to extract features and eventually classify data. After 
acquisition by an analog/digital converter, a well-suited 
preprocessing can emphasize relevant signal characteristics, 
optimize the classifier performance, and reduce information 
redundancy. Since the original sample rate is significantly 
higher than the signal bandwidth, the sampling rate should 
be reduced to 2 560 Hz and the signal size set down to 256 
points. According to Fig. 1, tonal range of machinery inside 
the ship is dominated below 1 300 Hz (Urick, 2008), so 
signal is decimated to reduce the sampling frequency to 

2560 Hz. Moreover, each sample is normalized to process 
unit energy by dividing the square root of its energy (Yang 
et al., 2002) for compensating the distance variation.  

The received signal is noisy and this noise is often 
considered white or Gaussian noise. Signal distribution, 
which distributes the signal into short time intervals, is one 
of the noise reduction approaches. Each part of the interval 
is named as one block with a definite length. During the 
choice of the time intervals between two consecutive values 
of digitalized signal, having known sampling period (the 
inverse of sampling frequency), and care must be taken to 
guarantee that information is not lost. Therefore, the Nyquist 
criterion, i.e. the minimum sampling frequency must be 
greater than twice of the highest frequency component in the 
original (analogue) signal, and must be satisfied 
(Oppenheim and Schafer, 1989). Next, a consecutive block 
of 256 points, without overlapping, is multiplied by a 
Hanning window. It has equal length and transformed to the 
frequency domain by short-time Fourier transforms.  

The sidelobe effect, caused by the use of a limited time 
window and the picket-fence effect, caused by the sampling, 
in the frequency domain are both compensated by the 
application of a Hanning window (Oppenheim and Schafer, 
1989). 

( ) 0.5(1 cos(2 π / ))h n n N               (1) 

where N is considered to be the number of samples (data 
point) and 0 n N  . The value 1 is returned when a 
one-point window is specified. Now, correlation function of 
digitized time function can be obtained as follows  
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where x  is the digitized time function, ( )c m ,

1,2, ,2 1m N   is the correlated signal with length 

N=511, and 
  denotes the complex conjugate. The 

operation called correlation is closely related to convolution. 
In correlation, the value of an output pixel is also computed 
as a weighted sum of neighboring pixel. The difference is 
that the matrix of weights, in this case called the correlation 
kernel, is not rotated during the computation. The 
advantages of (2) and (3) before Fourier transform of 
digitized incoming signal are shown in Fig. 3, which 
displays the noise spectrogram of one of the classes. As 
displayed in Fig. 3 the outcome spectra has higher resolution 
and lower noise. By definition, the Fourier transform of

( )c m is given by (Orfanidis, 1996) 

j

0

( ) ( )e
N

m

m

C c m  



                (4) 

where  is normalized angular frequency given in radians 

per sample and related to more traditional notion of 

frequency, f in Hz by ( ) / 2πsf f   where sf  is the 

sampling frequency (in sample per second). Fourier 
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transform is employed to analyze and detect the sound 
signals in many approaches. Although this transform is 
proven extremely useful and well established, it has 
principal difficulties to analyze short-time transient sound 
behaviors. Assorted short-time Fourier transforms, using a 
variety of windows with different relative advantages, have 
been developed to address this problem. 

 

(a) Without correlation function 

 

 
(b) With correlation function 

Fig. 3 One sample spectrogram 
 
3.2 Forming the matrix of binary image 

In this section, H  matrix is formed. Whole of our 
analysis get involved with this matrix to accomplish our 
objective. Feature vectors are achieved by this matrix. In 
other words, the binary matrix— H matrix is formed and 
altered to a binary image. The individual features are 
obtained from the pixel characteristics of this binary image. 
The innovative method of forming this matrix is as follows: 

T
1 1( )i i iS S   c h               (5) 

where 0 0, 0,1,2, , / 256S i k N   , h  is a vector with 

Gaussian distribution, 1ic  is Fourier transform of any part 

of distributed incoming signal (T denotes the trasnposition). 
An important comment to draw from (5) is that convolution 
operation is utilized to gain preferable image quality. Let 

, ( )i j iG S j                  (6) 
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where i is the row number and j is the column number of

,i jG . Then (7) is transformed into the H  matrix, a binary 

matrix which is given by 
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where rn  is the total row number, and cn is the total 

column number of this matrix. Fig. 4 displays H  binary 
image matrix of one of the ship classes. In Fig. 4, just half of 
the H  matrix is shown because of symmetry existent. 
 

 
Fig. 4 H matrix of one of the ship classes 

 
3.3 Extraction of features 

In this step, for features extraction, first of all the value of 
spectra in frequency interval of H  matrix is put into a zero 
matrix with the same dimensions as H  matrix. This zero 
matrix is named as Q  matrix. Then, consider bin intervals 

as shown in Table 1. After determination of the mentioned 
intervals, the number of pixels with the value of one in these 
intervals and the number of total pixels with the value of one 

in Q  matrix are determined. Next, the values calculated 

from determination intervals are divided into the number of 
total pixels with the value of one and then put into a vector. 
Finally, this vector, which has 11 elements, is normalized. 
One sample of bin intervals selection is shown in Fig. 5. 

 
Fig. 5 One sample of bin intervals selection 
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Table 1 Considered bin intervals 

Bin numbers Bin intervals 
Bin (1) [1, 5] 
Bin (2) [2, 30] 
Bin (3) [2, 45] 
Bin (4) [11, 22] 
Bin (5) [14, 34] 
Bin (6) [18, 60] 
Bin (7) [30, 56] 
Bin (8) [50, 70] 
Bin (9) [70, 100] 
Bin (10) [96, 178] 
Bin (11) [193, 208] 

 
3.4 Neural network classification 

Various neural network classifiers using feed forward 
networks have been proposed in the field of pattern 
recognition and signal processing. In this paper, a neural 
network is designed to perform the classification of related 
sound from ships. The discriminating features are employed 
to train a neural classifier based on a feed forward neural 
network. The architecture of neural network is shown in Fig. 
6. This network is a three-layer network with 11 input nodes, 
7 nodes in the hidden layer and 5 output nodes. The 7 nodes 
in the hidden layer are found, by a discriminating analysis, 
to be sufficient for the proposed classification task. Each 
output node was assigned to one specific class. The network 
was trained using the back propagation learning algorithm 
with the learning rate being varied adaptively as a function 
of the output error. All neurons had hyperbolic tangent 
function as their activation function. 
 

 
Fig. 6 Architecture of the neural network 

 
The classification efficiency was obtained as the 

percentage of the spectra of all classes that were correctly 
classified. As the algorithm’s name implies, the errors 
propagate backwards from the output nodes to the input 
nodes. Technically speaking, backpropagation calculates the 
gradient of the error of the network regarding the network’s 
modifiable weights. Backpropagation networks are 
necessarily multilayer perceptrons (usually with one input, 
one hidden, and one output layer). The explanation for the 
ANN would take the following form: 

 

Backpropagation learning algorithm for a 3-layer 
network (only one hidden layer) 
initialize network weights  
do 
for each training example ex 
prediction=neural-net-output(network, ex)  
actual=teacher-output (ex) 
compute error (prediction-actual) at the output units 
compute Δwh for all weights from hidden layer to output layer 
compute Δwi for all weights from input layer to hidden layer 
update network weights   
until all examples classified correctly or another stopping 
criterion satisfied 
return the network 

where, Δwh is the delta rule for all weights from hidden 
layer to output layer and Δwi is the delta rule for all weights 
from input layer to hidden layer. 

4 Experimental results  

The above algorithm is applied for spread estimation to a 
bank of real acoustic radiated noises of marine vessels. The 
data bank and discriminating features utilized for these data 
are explained prior to anything. 

4.1 Data bank explanation 
The suggested algorithm has been used for classification 

of five different classes of ships including boat, medium 
ships with weight of 1 248, 2 592, and 3 660 t in three classes, 
heavy ship with weight of 35 573 t. The number of data files, 
training files, and test files are 20, 14 and 6, respectively. 
Firstly, the runs are separated into two groups to be used in 
the training and testing phase of the classifier. Each signal 
template contains 256 data points, i.e., samples. The 
sampling rate is 2 560 Hz. For this sampling rate, 256 data 
points are enough to capture the essential characteristics of 
all the transient types. The training and testing sets include 
examples from 3 different SNR groups (without noise, 5, and 
10 dB). The first group is the reference, i.e., without noise, 
group. The other groups are created by adding more ambient 
ocean noise to this reference group. It is proven by repeated 
training and testing experiments that the recognition rate of 
all training samples is 100%; and the recognition rate of test 
samples is shown in Tables 2–4. The SNR is computed as the 
ratio of the peak signal power to the background-noise power 
expressed in decibels. Thus, some noisy exemplars are also 
included in our experiments to test the performance of the 
classifier with low SNR signals. Discriminating feature in 
this algorithm is percentage of pixels with value of one 
which is just 11 features. This discriminating feature is 
selected and suggested by the authors. 

4.2 The performance evaluation of the proposed method 
and the fractal-based method 

The performance of the proposed method and the fractal- 
based method in radiated noise classification is compared in 
this section. The data bank introduced in subsection 3.1 is 
used for this comparison. 
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Table 2 Percent of correct recognition accuracy of the proposed and fractal based method without any added noise  % 

Overall 
Target Class 

Method 
5th Class 4th Class 3nd Class 2nd Class1st Class 

93.33 83.33 100 100 100 83.33 Fractal based method 
100 100 100 100 100 100 Proposed method 

 
Table 3 Percent of correct recognition accuracy of the proposed and fractal based method with SNR=5 dB  % 

Overall 
Target Class 

Method 
5th Class 4th Class 3nd Class 2nd Class1st Class 

46.93 0 97.33 80.83 0 56.5 Fractal based method 
94.07 100 100 100 99.67 70.67 Proposed method 

 

Table 4 Percent of correct recognition accuracy of the proposed and fractal based method with SNR=10 dB  % 

Overall 
Target Class 

Method 
5th Class 4th Class 3nd Class 2nd Class1st Class 

51.23 0 100 97.83 0 58.33 Fractal based method 
95.13 100 100 100 99.67 76 Proposed method 

 
In each performance comparison, some data files from 

each class are used for training the neural networks and the 
rest of them are used for performance evaluation. 
Performance evaluation of the proposed algorithm and 
fractal based algorithm in noisy condition with SNR=5 dB, 
SNR=10 dB, and without noise condition are shown in 
Tables 2–4. The comparative results, presented in Tables 2–4, 
indicate better recognition ability and more robust 
performance of the proposed method than the fractal-based 
method. 

 

5 Conclusions 

In this paper, a method that is able to recognize and 
classify the radiated noise of marine vessels is proposed. In 
addition, a new approach based on short-time Fourier 
transform is given to form a binary image to extract effective 
features. This binary image is made from frequency spectrum 
of signal segmentations. Extracted features are given to the 
input of neural network. Next, the kind of vessel will be 
determined. Experimental results demonstrated the ability of 
the proposed method. The correct recognition accuracy in 
these five classes is 94.07% with 5 dB S/N ratio, 95.13% 
with 10 dB S/N ratio, and 100% without any added noise. At 
the end, performance evaluation of suggested method shows 
that the proposed method has better performance in 
comparison to fractal based method. This algorithm has two 
considerable advantages, most noise immunity and high 
performance recognition with just 11 features. 

References 

Bao F, Li C, Wang X, Wang Q, Du S (2010). Ship classification 
using nonlinear features of radiated sound: An approach based 
on empirical mode decomposition. The Journal of the 
Acoustical Society of America, 128(1), 206-214. 
DOI: http://dx.doi.org/10.1121/1.3436543 

Becchetti C, Ricotti LP (1999). Speech recognition. John Wiley, 
New York, 1-67. 

Chen C, Lee J, Lin M (2000). Classification of under-water signals 
using neural network. Tamkang Journal of Science and 
Engineering, 3(1), 31-48. 

Diamant R, Lampe L (2013). Underwater localization with time 
synchronization and propagation speed uncertainties. IEEE 
Transactions on Mobile Computing, 12(7), 1257-1269. 
DOI: 10.1109/TMC.2012.100 

Duda RO, Hart PE, Stork DG (2000). Pattern classification. John 
Wiley, New York, 282-320. 

Eickstedt D, Schmidt H (2003). A low-frequency sonar for sensor 
adaptive, multistatic, detection and classification of underwater 
targets with AUVs. Proceedings of the OCEANS, San Diego, 
CA, USA. 1440-1447. 
DOI: 10.1109/OCEANS.2003.178074  

Farrokhrooz M, Karimi M (2005). Ship noise classification using 
probabilistic neural network and AR model coefficients. 
Proceedings of the OCEANS, Washington, DC, USA, 
1107-1110. 
DOI: 10.1109/OCEANSE.2005.1513213 

Farrokhrooz M, Karimi M (2011). Marine vessels acoustic radiated 
noise classification in passive sonar using probabilistic neural 
network and spectral features. Intelligent Automation and Soft 
Computing, 17(3), 369-383. 
DOI: http://dx.doi.org/10.1080/10798587.2011.10643155 

He Xiying, Cheng Jinfang, He Guangjin (2010). Application of BP 
neural network and higher order spectrum for ship-radiated 
noise classification. Proceedings of the 2nd International 
Conference on Future Computer and Communication, Wuhan, 
China, 712-716. 
DOI: 10.1109/ICFCC.2010.5497336 

Howell B, Wood S (2003). Passive sonar recognition and analysis 
using hybrid neural networks. Proceedings of the OCEANS, San 
Diego, USA, 1917-1924. 
DOI: 10.1109/OCEANS.2003.178182 

Lennartsson R, Dalberg E, Levonen M, Lindgren D, Persson L 
(2006). Fused classification of surface ships based on 
hydroacoustic and electromagnetic signatures. Proceedings of 
the OCEANS, Singapore, 1-5. 
DOI: 10.1109/OCEANSAP.2006.4393910 



Journal of Marine Science and Application (2015) 14: 327-333 333

Li Q, Wang J, Wei W (1995). An application of expert system in 
recognition of radiated noise of underwater target. Proceedings 
of the OCEANS, San Diego, CA, USA, 404-408.  
DOI: 10.1109/OCEANS.1995.526801 

Lourens J (1988). Classification of ships using underwater radiated 
noise. Proceedings of the Conference on Communications and 
Signal Processing, Pretoria, South Africa, 130-134. 
DOI: 10.1109/COMSIG.1988.49315 

Luo H, Wu K, Guo Z, Gu L, Ni L (2012). Ship detection with 
wireless sensor networks. IEEE Transactions on Parallel and 
Distributed Systems, 23(7), 1336-1343. 
DOI: 10.1109/TPDS.2011.274 

Oppenheim A, Schafer R (1989). Discrete-time signal processing. 
Prentice-Hall, Upper Saddle River, USA, 541-628. 

Orfanidis S (1996). Optimum signal processing: An introduction. 
McGraw-Hill, New York, 234-290. 

Rajagopal R, Sankaranarayanan B, Ramakrishna RP (1990). Target 
classification in a passive sonar—an expert system approach. 
Proceedings of the Acoustics, Speech, and Signal Processing, 
Albuquerque, USA, 2911-2914. 
DOI: 10.1109/ICASSP.1990.116235 

Rogoyski A, Dawe F, Robinson M (1994). Passive sonar data 
processing. Proceedings of the 6th Undersea Defense 
Technology Conference, London, UK, 310-313. 

Sadjadi F, Chun C (2001). Passive polarimetric IR target 
classification. IEEE Transactions on Aerospace and Electronic 
Systems, 37(2), 740-751. 
DOI: 10.1109/7.937487 

Shi GZ, Hu JC (2007). Ship noise demodulation line spectrum 
fusion feature extraction based on the wavelet packet. 
Proceedings of the International Conference on Wavelet 
Analysis and Pattern Recognition, Beijing, China, 846-850. 
DOI: 10.1109/ICWAPR.2007.4420787 

Soares-Filho W, De Seixas J, Pereira Caloba L (2000). Averaging 
spectra to improve the classification of the noise radiated by 
ships using neural networks. Proceedings of the Sixth Brazilian 
Symposium Neural Networks, Rio de Janeiro, Brazil, 156-161. 
DOI: 10.1109/SBRN.2000.889731 

Soares-Filho W, De Seixas J, Pereira Caloba L (2001). Principal 
component analysis for classifying passive sonar signals. 
Proceedings of the IEEE International Symposium on Circuits 
and Systems, Sydney, Australia, 592-595. 
DOI: 10.1109/ISCAS.2001.921380 

Stoica P, Moses R (2005). Spectral analysis of signals. Pearson 
Education, Prentice Hall, Upper Saddle River, USA, 144-198. 

Urick R J (2008). Principles of underwater sound. McGraw-Hill, 
New York, 237-291. 

Ward M, Stevenson M (2000). Sonar signal detection and 
classification using artificial neural networks. Proceedings of 
the Canadian Conference on Electrical and Computer 
Engineering, Halifax, Canada, 717-721. 
DOI: 10.1109/CCECE.2000.849558 

Yang S, Li Z (2003). Classification of ship-radiated signals via 
chaotic features. Electronics Letters, 39(4), 395-397. 
DOI: 10.1049/el:20030258 

Yang S, Li Z, Wang X (2000). Vessel radiated noise recognition 
with fractal features. Electronics Letters, 36(10), 923-925. 
DOI: 10.1049/el:20000651 

Yang S, Li Z, Wang X (2002). Ship recognition via its radiated 
sound: The fractal based approaches. The Journal of the 
Acoustical Society of America, 112(1), 172-177. 
DOI: http://dx.doi.org/10.1121/1.1487840 

Zak A (2008). Ships classification basing on acoustic signatures. 
WSEAS Transactions on Signal Processing, 4(4), 137-149. 

Zimmer WMX, Harwood J, Tyack PL, Johnson MP, Madsen PT 
(2008). Passive acoustic detection of deep-diving beaked 
whales. The Journal of the Acoustical Society of America, 
124(5), 2823-2832. 
DOI: 10.1121/1.2988277 

 
 
 
 
 

 


