
J. Marine Sci. Appl. (2015) 14: 290-301  

DOI: 10.1007/s11804-015-1302-1 

Numerical Simulation of the Spreading Dynamic Responses of 
the Multibody System with a Floating Base 

Zhaobing Jiang1*, Luzhong Shao2 and Fei Shao1 

1. College of Field Engineering, PLA University of Science & Technology, Nanjing 210007, China 
2. State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact,  

PLA University of Science & Technology, Nanjing 210007, China 

 
Abstract: To simulate the dynamic responses of the multibody 
system with a floating base when the upper parts spread with a 
certain sequence and relative speed, the homogeneous matrix 
method is employed to model and simulate a four-body system with 
a floating base and the motions are analyzed when the upper parts 
are spread sequentially or synchronously. The rolling, swaying and 
heaving temporal variations are obtained when the multibody 
system is under the conditions of the static water along with the 
wave loads and the mean wind loads or the single pulse wind loads, 
respectively. The moment variations of each joint under the single 
pulse wind load are also gained. The numerical results showed that 
the swaying of the floating base is almost not influenced by the 
spreading time or form when the upper parts spread sequentially or 
synchronously, while the rolling and the heaving mainly depend on 
the spreading time and forms. The swaying and heaving motions 
are influenced significantly by the mean wind loads. The single 
pulse wind load also has influences on the dynamic responses. The 
torque of joint 3 and joint 4 in the single pulse wind environment 
may be twice that in the windless environment when the system 
spreads with 60 s duration. 
Keywords: multibody system; Floating base; spreading form; 
dynamic response; homogeneous matrix method; wave load; wind 
load 
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1 Introduction1 

Many offshore structures can be modeled as multibody 
systems. For floating or fully submerged bodies, fluid- 
structure interactions have to be taken into account. It means 
that the motion of the system is influenced by the fluid flow, 
while the flow field is influenced by the motion of the 
system. Methods to model fluid-structure interactions and 
applied them to sample problems in the offshore engineering 
applications have been discussed (Hu and Kashiwagi, 2008; 
Kim and Kim, 2014; Kral and Kreuzer, 1999; Lee and Choi, 
2015; Du et al., 2014; Xia et al., 2008; Zhang et al., 2014). 
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Some methods are presented to simulate the motion 
behaviors of the moored floating offshore structures in time 
domain (Kim et al., 2013; Kreuzer and Wilke, 2002; Li et al., 
2013; Wang et al., 2010; Zhang et al., 2012). Some 
advanced researches about multibody system are done by 
Kreuzer and his team in recent years (Dostal and Kreuzer, 
2013; Kreuzer et al., 2014; Rui et al., 2012). Offloading 
operations are simulated and analyzed in time domain (de 
Wilde et al., 2010; Zhao et al., 2014; Woodburn et al., 2003; 
Zhao et al., 2013) and the systematic evaluations of the 
hydrodynamics and responses of the multibody system are 
also performed in FPSO tandem offloading operation (Wang 
et al., 2010).  

Establishing dynamic equations of system, floating crane 
based on the multibody system dynamics have been studied 
to simulate the dynamic responses of a suspended heavy 
cargo and the floating base (Cha et al., 2010; Ellermann and 
Kreuzer, 2003; Ellermann et al., 2002; Kreuzer et al., 2014). 
Zhang had made use of the analysis of apparent gravitation 
and the apparent buoyancy, and the wave rolling moment 
was derived. The conclusion showed that the motion of the 
numerous free slipping heavy loads would tend to be 
synchronous under the restraining of the side-wall bulkhead 
with time because of the repeating collision (Zhang et al., 
2006). 

The ro-ro ship is a typical multibody system and the 
problems of ship safety with regard to the rolling motion of 
a ro-ro ship in beam waves are studied (Kim and Kim, 2014; 
Zhang et al., 2006). A parametric investigation was 
undertaken to identify and quantify the effect of a number 
of key parameters, such as wave slope and wave frequency, 
on the capsizing conditions of a ship. And nonlinear 
response of ship was determined in the frequency domain 
(Surendran et al., 2005). Jang had derived the nonlinear 
dynamics of ship-mounted crane in order to reduce payload 
pendulation of the ship-mounted crane and a control method 
using T-S fuzzy model was proposed (Jang et al., 2012).  

Legnani et al. (1996a; 1996b) have presented a new 
approach to the kinematic and dynamic analysis of rigid 
body systems in the form of a consistent method employing 
4×4 matrices (Legnani et al., 1996a; 1996b). It could be 
considered a powerful extension of the well-known method 
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of homogeneous transformations proposed by Denavit and 
Hartenberg (1955). New matrices were introduced to 
describe the velocity and the acceleration, the momentum, 
the inertia of bodies and the actions (forces and torques) 
applied to them. Each matrix contains both the angular and 
the linear terms. Thus the “usual” kinematic and dynamic 
relations could be rewritten, halving the number of 
equations. The resulting notation and expressions are simple, 
and are very suitable for computer applications. Based on 
this method, Jiang et al. (2010) have studied the dynamic 
responses of the floating bridge subjected to fast and heavy 
loads and of the floating multibody spreading in waves. 

In this paper, the homogeneous matrix is introduced and 
developed to derive the kinematic and dynamic equations of 
the multibody system with a floating base. The dynamic 
responses of this multibody system are numerically 
simulated when the multibody system spreads in the 
environment of the static water surface, the waves and the 
winds, respectively. Finally, the results of the simulations are 
concluded and some suggestions are given for the spreading 
of the multibody system with a floating base in various 
environments listed in this paper.  

2 Homogenous matrix method  

Referring to the homogenous matrix method, the 
kinematics of a multibody system could be described by 
three 4×4 matrices. The matrices are the position matrix M , 
the velocity matrix W  and the acceleration matrix H . 
The pose of a rigid body with respect to the absolution 
reference frame could be represented by the position matrix: 

0,1 0,1
0,1

0 0 0 1 0 0 0 1

x x x x

y y y y

z z z z

x y z t

x y z t

x y z t
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where the 3×1 vector 0,1t  is the position of the origin of the 

frame (1) in the absolute reference frame (0), while the 3×3 
submatrix 0,1R  is the orthogonal rotation matrix describing 

the orientation of frame (1) with respect to frame (0). As to 
the three frames (i), (j) and (k), the position matrix satisfies 
the relation 

Mi,k = Mi,j Mj,k                 (2) 
Apparently, the above formula is the relative transform 

relation of the position matrix.  
The angular and linear velocity of a rigid body with 

respect to a reference frame could be represented by the 
velocity matrix:  
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where ω  is the angular velocity of a rigid body and v0 is 

the velocity of the point. Due to the velocity of a rigid body 

is combined by the linear velocity 0 [ , , ]x y zv v vv  and 

angular velocity
T

x y z     Ω , the velocity of a point 

at the rigid body could be obtained as 
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It is easy to verify that the above equation is a matrix 
formulation of the usual vector formula vp=v0+ω×(P−O). 
Similarly, the relative acceleration of a rigid body with respect 
to a reference frame can be combined by the linear 
acceleration a0 and angular acceleration Ω . Therefore, the 

relative acceleration of a rigid body with respect to a reference 
frame can be indicated by the acceleration matrix H, as 

02
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 
 

G a
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where the 3×3 submatrix 2 G ω ω , a0 is the acceleration 

of the pole with respect to the reference frame. It obviously 

yields that  T / 2 ω G G  and  2 T / 2 ω G G . The 

acceleration P of a point P at the rigid body is 
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Similarly, the above equation can be obtained by the 
dynamic vector formulation: 

    p o       a a ω P O ω ω P O  

Obviously, the values of the matrices including velocity 
matrix and acceleration matrix are strictly dependent on the 
reference frame. As to two different reference frames (r) and 
(s), the same rigid body’s velocity and acceleration at the 
absolution reference frame must be identical. Therefore, 
some close relations are existed between them. The 
formulations of velocity and acceleration matrix at different 
reference frames could be written as 

1
( ) , ( ) ,r r s s r s

W M W M               (7) 

1
( ) , ( ) ,r r s s r s

H M H M               (8) 

where Mr,s is the position matrix of the reference frame (s) 

with respect to frame (r). The above equations are the 

transformation formulas of the velocity and acceleration 

matrix at different reference frames.  

Furthermore, three new matrices are introduced to 
develop the dynamic analysis of a rigid body system, and 
they are the action matrix Φ, the momentum matrix Γ and 
the inertial matrix J.  

The forces and torques applied to rigid body k are 
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represented by the skew-symmetric action matrix Φk, as 

T
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where f is the resultant of forces, while c is the torques with 

respect to the origin of the reference frame.  
Similarly, the angular and linear momentum of k rigid 

body with respect to a reference frame may be described by 
the skew-symmetric momentum matrix Γ, as 
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where γ  is the angular momentum of rigid body k with 

respect to the origin of a reference frame and 

 T
g g gx y zm v v vρ  is the linear momentum of the body, 

while  T
g g gx y zv v v  is the linear velocity of the centroid 

of the body and m is the mass of the body.  
The mass distribution of rigid body k can be represented 

by a symmetry inertial matrix J, as  
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where 
T

g g gx y zm x x x   q  is the product of the mass 

by the center of the position of the rigid body. The inertial 
matrix J is different from the usual inertial matrix, so this 
inertial matrix is also called pseudo inertial matrix.  

The elements of the submatrix J are defined as:  
2dxxI x m    2dyyI y m     2dzzI z m   

dxyI xy m    dxzI xz m     dyzI yz m   

The transformation relations of matrix Φ, Γ and J with 
respect to given two reference frames are listed below: 

T
( ) , ( ) ,k r r s k s r sΦ M Φ M              (12) 

T
( ) , ( ) ,k r r s k s r sΓ M Γ M              (13) 

T
( ) , ( ) ,k r r s k s r sJ M J M              (14) 

Based on the kinematic and dynamic matrices of 
homogenous matrix method, it is easily verified that the 
Newton Law at an inertial reference frame (0) can be 
represented by  

T
(0) 0, (0) (0) 0,k k k k k Φ H J J H         (15) 

The operator skew is defined for any square matrix X or 
tensor X to simplify the deduction of some formulas. The 
Eqn.(15) can be written as  

(0) 0, (0)skew[ ]k k kΦ H J           (16) 

Similaryly, the momentum equation can be written as 

(0) 0, (0)skew[ ].k k kΓ W J           (17) 

For the multibody system, the kinematic equation may be 
compactly written as follows:  

0, (0) (0)skew [ ]k k k
k

H J        0        (18) 

and the detailed theory about homogenous method of the 
multibody system can refer to the papers written by Legnani 
et al. (1996a).  

3 Governing dynamic equations and calculation 
parameters 

The multibody system with a floating base investigated in 
this paper is shown in Fig. 1. When the upper parts, as the 
rigid bodies 2–4 in Fig. 1(a), spread on the water surface, 
their motions may excite the kinematic and dynamic 
responses of the floating base. Fig. 1(a) and Fig. 1(b) are the 
no spreading and the complete spreading states, respectively. 
Rigid body 1 is the floating base, and rigid bodies 2 and 4 
are the upper parts whose mass could not be ignored, while 
the upper part rigid body 3 is the joint part whose mass 
could be ignored. The relative speeds of the upper parts can 
be given in advance and are provided by the joint actuators. 
The forces of the actuators of all joints are internal and they 
do not appear in the dynamical equations explicitly. The 
homogeneous matrix method is feasible for six degrees of 
freedom, but only the planar simulations are given in this 
paper and the responses of the multibody system may be 
simplified to 2D space. If the motions of upper parts are 
given and all of the external forces are known, the dynamic 
response of this system on the 2D space will be solved by 
employing the homogenous matrix method and Eq. (18). 

When the multibody system with a floating base spreads 
on the water surface, two spreading orders are employed: 
sequential or synchronous. The order of sequential spreading 
is that the joint part 3 and rigid body 4 are regarded as a 
whole part and turning 90° with respect to rigid body 1. 
Then the joint part 3 has no motion with respect to rigid 
body 1 and rigid body 4 turns 90° with respect to rigid body 
3. Finally rigid body 2 turns 180° with respect to rigid body 
1. The order of synchronous spreading is that the joint part 3 
and rigid body 4 are regarded as a whole part and turning 
90° with respect to rigid body 1, then the joint part 3 has no 
motion with respect to rigid body 1 and rigid body 4 with 
respect to joint part 3 and rigid body 2 with respect to rigid 
body 1 turn 90° synchronously.  

Based on the 2D space diagram of the multibody system 
with a floating base, four local coordinates are defined as 
Fig. 2.  

When the upper parts of the multibody system spread in 
the 2D space, the responses of this system include three 
degrees: swaying, heaving and rolling. The dynamic 
responses of this multibody system and then the forces and 
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torques applied on the joints could be numerically simulated 
by employing the homogenous method. 

 

 
(a) No spreading 

 

 
(b) Complete spreading 

Fig. 1 The multibody system with a floating base 
 

 

Fig. 2 The local coordinates for all parts of the multibody 
system 

 
Besides the internal driven torques and pulling forces, 

which are not included in the Eq. (18) explicitly, the forces 
acted on the multibody system include the gravity and fluid 
reactions due to the motions of the multibody system. The 
fluid forces include the hydrostatic restoring force, the 
buoyancy, the fluid dynamic force, the wave load and the 
wind load, etc. As shown in Fig. 1, the fluid forces acted on 
the rigid bodies 1–4 include static water restoring forces 

iFS  (i=1,2,3,4), static buoyancies iFB (i=1,2,3,4), 

dynamic fluid forces iFD (i=1,2,3,4) (Shen et al., 2003) 

and the gravity ig (i=1,2,3,4). If the wave loads 

iFWA (i=1,2,3,4) or wind loads iFWL (i=1,2,3,4) are 

considered, the corresponding forces may be included at the 
dynamic equations, see sections 5 and 6. Based on the Eq. 
(10), the dynamic equation of this multibody system with a 
floating base can be presented as follows:  
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From the above equation the follow can be obtain:  
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By deploying the right side of the above equation the 
following is obtained:  
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Placing the terms including 0,1
W  on the right side of the 

equation and the others on the left side the following can be 
obtained: 
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where 1(0) 2(0) 3(0) 4(0).tot    J J J J J  

Let:  
* 2
0,1 0,1H W                             

* *
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* *
0,3 0,1 1,3(0) 0,1 1,3(0)2    H H H W W                  

* *
0,4 0,3 3,4(0) 0,3 3,4(0)2    H H H W W                 

and the following can be obtained:  
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where *
0,1H , *

0,2H , *
0,3H and *

0,4H are the “local” acceleration 

matrices of rigid bodies 1–4, respectively.  

After solving Eq. (23), 0,1
W  is obtained. Therefore the 

absolute acceleration matrices of all rigid bodies can be 
obtained as follows: 

*
0,1 0,1 0,1  H H W  

*
0,2 0,2 0,1  H H W  

*
0,3 0,3 0,1  H H W  

*
0,4 0,4 0,1 H H W  

Thus the acceleration matrices of rigid body 1 and other 
bodies can be obtained. By means of the time integral, the 
whole spreading dynamic responses of the multibody system 
with a floating base could be simulated in time domain.  

The mass of rigid body 3 or joint part 3 is infinitesimal 
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with respect to other rigid bodies and it can be ignored. The 
parameters of the sizes and the centers of gravity of the rigid 
bodies are listed in Table1. B, H, L and h are the width, 
height, length and the height of center of gravity, 
respectively, in the local coordination defined in Fig. 2.  

Supposing the mass distribution of all parts is uniform in 
the 2D space, the mass and moment of inertia may be 
calculated as shown in Table 2. 
 
Table 1 The sizes and the heights of centroid of each part in 

local coordination 

Rigid body B/m H/m L/m h/m
1 3.3 1.64 13 0.491

2 & 4 3.3 0.88 13 0.350
 
Table 2 The mass and moment of inertia of the floating base 

multibody  

Rigid body M/kg 
Ixx/ 

(kg·m−1) 
Iyy/ 

(kg·m−1) 
Izz/ 

(kg·m−1) 

1 2.7×104 1.85×104 7.71×103 3.96×105

2 & 4 6.5×103 7.61×103 1.57×103 9.83×104

4 Numerical results of the spreading on the 
static water surface 

The dynamic responses of the multibody system with a 
floating base spreading on the static water surface can be 
solved using Eq. (23). The temporal swaying variation of the 
floating base is shown in Fig. 3(a) when the upper parts 
spread sequentially. The total time for the multibody system 
to completely spread is 15, 30, 60 and 90 s, respectively. 
The maximum swaying displacement of the floating base is 
about 0.54 m for all cases and the spreading time has no 
influence on it. The maximum value is presented near the 
location when the rigid body 4 spreads entirely. Note that 
the x coordination is normalized as T for the convience of 
comparison among various cases with different spreading 
time.  

The temporal heaving variation of the floating base is shown 
in Fig. 3(b). It shows the maximum heaving value with 
sequential spreading has close relation to the spreading time. 
The positive maximum heaving displacements are 0.228 m and 
0.164 m and the negative ones are −0.085 m and −0.022 m 
when the upper parts spread in 15 s and in 90 s, respectively. It 
indicates that the longer the spreading time is, the less the 
impacts of the inertial force is on the spreading process and the 
dynamic responses. 

The temporal rolling variation of the floating base is 
shown in Fig. 3(c). It demonstrates the maximum rolling 
angle is presented when the rigid body 4 and joint part 3 are 
spreading on the half time point with respect to rigid 1. The 
longer the upper parts spread sequentially, the smoother the 
rolling responses are. However, the maximum value of the 
rolling angles does not decrease when the spreading time is 
longer. 

 

 

(a) Swaying 
 

 

(b) Heaving 
 

 

(c) Rolling 

Fig. 3 Temporal variation of the floating base with sequential 
spreading 

 
The temporal swaying variation of the floating base is 

shown in Fig. 4(a) when the upper parts spread synchronously 
on the static water surface. Fig. 4(a) demonstrates that the 
maximum swaying displacement of the floating base is about 
0.53 m and the spreading time has less influence on it. The 
maximum value is presented near the location when the rigid 
body 4 spreads entirely, which is similar with the previous 
case with sequential spreading. 

The temporal heaving variation of the floating base is 
shown in Fig. 4(b). It shows that the positive maximum 
heaving displacements are 0.210 m and 0.137 m and the 
negative ones are −0.074 m and −0.017 m when the upper 
parts spread in 15 s and 90 s, respectively. The difference of 
the heaving results of spreading in 60 s and 90 s is not 
distinct. It indicates that the inertial force has less influence 
on the spreading process and on the dynamic responses 
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when the spreading time is longer. Otherwise, comparing the 
synchronous heaving with the sequential one can 
demonstrate that the synchronous heaving value is less than 
the sequential one when the spreading time is long. 

 

 

(a) Swaying 
 

 

(b) Heaving 
 

 

(c) Rolling 

Fig. 4 Temporal variation of the floating base with synchronous 
spreading 

 
The temporal rolling variation of the floating base is 

shown in Fig. 4(c) and it shows that the maximum rolling 
angle is presented when the rigid body 4 and joint part 3 
spread on the half of the total time with respect to rigid 1. 
The longer the spreading time is, the smoother the rolling 
responses are. However, the maximum values of the rolling 
angle just have little difference, and they are about negative 
30°. 

5 Numerical results in waves 

The numerical results in waves show the following:  ①

the rolling motion of the floating base is small, ② the 

heaving motion of the floating base is vertical to the wave 
direction, namely the spreading motion of the multibody 
system is under the condition of beam sea and ③ the wave 
form is sinusoidal wave. On these basic supposes, the 
equation of the wave surface angle can be written as: 

0 cos 2π
b

t 


                 (24) 

where α is instantaneous wave surface angle, α0 the maximum 
wave surface angle and τb the wave period. So the periodic 
wave disturbing torques acting on the multibody system is as 
follows: 

0 cos 2πb
b

t
M DgGM


              (25) 

The force matrix 
iFWAΦ ( 1,2,3,4)i   may be generated in 

Eq. (9) considering the wave disturbing torque as Eq. (25). 
Substitute it to Eq. (23) can obtain the dynamic response of 
the multibody system with a floating base spreading on waves, 
and the dynamic equation is as follows: 

 

   

* * * *
0,1 1(0) 0,2 2(0) 0,3 3(0) 0,4 4(0)

4

0,1
1

skew

skew
i i i iFS FB FD FWA gi tot

i

       

      

H J H J H J H J

W J    
(26) 

The dynamic numerical simulations of the spreading of 
multibody system with a floating base will be under the 
conditions of three different wave periods (τb=3, 4 and 5 s) 
and five different wave heights (ζw=0.2, 0.4, 0.6, 0.8 and 
1.0 m). Investigation on the spreading order of the 
multibody system acted by the waves, some suggestions 
would be obtained when the multibody system spreads in 
the wave conditions.   

The temporal rolling variation of the floating base with fast 
spreading (entire spreading in 15 s) are shown in Fig. 5 when 
the wave period are τb=3, 4 and 5 s, respectively. There are 
five wave heights including ζw=0.2 m, 0.4 m, 0.6 m, 0.8 m 
and 1.0 m in the Fig. 6.  

The temporal rolling variation of the floating base with 
slow spreading (entire spreading in 60 s) are shown in Fig. 6 
when the wave period are τb=3 s, 4 s and 5 s, respectively. 

6 Numerical results acted by the wind loads 

The dynamic response of the multibody system with a 
floating base acted by the wind load is considered below. 
The calculating equation of the force of the transverse mean 
wind is as follows: 

fP PA                    (27) 

where Pf is transverse wind force, A is the wind pressure area 
vertical to the wind direction and P is wind pressure. The 
wind pressure P may be calculated according to the equation 
as follows (Yuan et al., 2007): 

2 21
0.625

2 PP c v v             (28) 

where ν is the mean transverse wind velocity and the 
coefficient of the wind pressure cP=1.25. 
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(a) τb=3 s 
 

 

(b) τb=4 s 
 

 

(c) τb=5 s 

Fig. 5 Temporal rolling variation of the floating base with 
fast spreading 

 
The single pulse wind using the linear filter method (the 

autoregression AR method) was simulated and its formula is 
as follows: 

   
1

( )
p

k N
k

v t v t k t N t 


            (29) 

where v(t) is the time serial of the wind velocity, p is the rank 
number of autogressive, t  is the interval time and ψk (k=1, 
2,…, p) is the parameter of autoregression. Referencing to the 
generation program of the single pulse wind (Yuan et al., 
2007) the mean wind speed is 23.6 m/s at the standard height 
(10 m), the roughness parameter of the land is k=0.03 and the 
autoregression time interval is 0.001 s. The temporal variation 
of the single pulse wind velocity with time 15 s, 30 s and 60 s 
are shown in Fig. 7(a)–(c), respectively.  

 

 

(a) τb=3 s 
 

 

(b) τb=4 s 
 

 

(c) τb=5 s 

Fig. 6 Temporal rolling variation of the floating base with 
slow spreading (τb=3 s) 

 

The force matrix 
iFWI (i=1,2,3,4) may be generated by 

employing Eq. (9) considering the wave disturbing torque in 
Eq. (27). Substitute it to Eq. (23) can obtain the dynamic 
response of the multibody system subjected to wind loads 
and the dynamic equation is as follows: 

 

   

* * * *
0,1 1(0) 0,2 2(0) 0,3 3(0) 0,4 4(0)

4

0,1
1

skew +

skew
i i i iFS FB FD FWI gi tot

i

    


      

      

H J H J H J H J

W J
(30) 

6.1 The dynamic response subjected to the mean wind 
load 

The comparisons of the temporal swaying, heaving and 
rolling variant of the multibody system subjected to various 
wind scales are as Figs. 8–10 when the upper parts spread in 
15, 30 and 60 s, respectively. 



Journal of Marine Science and Application (2015) 14: 290-301 297

 

 

(a) 15 s 
 
 

 

(b) 30 s 
 
 

 

(c) 60 s 

Fig. 7 Temporal variation of the single pulse wind velocity 

Considering the temporal swaying variations subjected 
to no wind load as seen in Fig. 8(a), Fig. 9(a) and Fig. 10(a) 
can show that the floating base goes back to the round 
primary position when upper parts have spread completely. 
The results are coincident with the engineering practice. 
However, the swaying is larger when the wind scale 
subjected to the multibody system is higher. The ultimate 
swaying response of the floating base is listed in Table 3 
when the upper parts spread under the conditions of 
different wind scales. The swaying displacement exceeds 
to 30 m when the multibody system are subjected to wind 
scale 6. 
 

 
 

 

 

(a) Swaying 
 
 

 

(b) Heaving 
 
 
 

 

(c) Rolling 

Fig. 8 Temporal variation of the dynamical response with 
spreading in 15 s 

 
When considering the temporal heaving variations as 

shown in Fig. 8(b), Fig. 9(b) and Fig. 10(b) they can 
demonstrate that the impact of the wind scales on the 
heaving is distinct though it is less than that on the swaying. 
The longer the spreading time is, the larger the impacts are. 
For instance, the heaving displacement increases to about 
0.35m under wind scale 6 while about 0.15 m under no wind 
loads with spreading in 60 s. Also, considering the temporal 
rolling variations, the figures demonstrate that although the 
different wind scales have some influences on the rolling 
angle, which impact is smaller and can be ignored. The 
maximum rolling angle of the floating base is negative 30.2° 
under no wind load, while it is negative 30.9° under the 
wind scale 6. 
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(a) Swaying 
 

 

(b) Heaving 
 

 

(c) Rolling 

Fig. 9 Temporal variation of the dynamical response with 
spreading in 30 s 

 

Table 3 Swaying responses when the multibody system 
spreads in different wind scales 

Spreading 
time/s 

wind scale 
0 2 4 6 

15 0 0.1 0.6 1.9 
30 0 0.5 2.5 7.6 
60 0 1.8 10.1 30.7

6.2 Dynamic responses subjected to the single pulse wind 
load 

The comparisons of the temporal swaying, heaving and 
rolling variations of the floating base spreading under the 
conditions of no wind and single pulse wind are shown in Fig. 
11. The whole spreading time is 5 s under the conditions of no 
wind load, while under the single pulse wind load, the total 
spreading time is 15 s, 30 s and 60 s, respectively. 
 

 

 

(a) Swaying 
 

 

(b) Heaving 
 

 

(c)Rolling 

Fig. 10 Temporal variation of the dynamical response with 
spreading in 60 s 

 
Fig. 11 demonstrates that the swaying, heaving and 

rolling of the floating base are distinctly affected by the 
pulse wind load. The influence of the pulse wind load on the 
spreading dynamic response of the multibody system is 
random. But on the whole, there are some rules similar to 
the mean wind load in the floating base actions. It is also 
noted that the dynamic responses of the swaying and the 
heaving under the pulse wind load are quite different to the 
other wind load forms when the spreading time is longer 
(such as 60 s). 

The comparisons of the joint torques of the multibody 
system subjected to no wind load and single pulse wind load 
are shown in Fig. 12. Similarly, the whole spreading time is 
15 s under the conditions of no wind load and the whole 
spreading time is 15 s, 30 s and 60 s under the conditions of 
the single pulse wind load, respectively. 
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(a) Swaying 
 

 

(b) Heaving 
 

 

 (c) Rolling 

Fig. 11 Temporal variation of the dynamical response with 
various wind loads 

 
The torques M2, M3 and M4 of the pulse wind time course 

of 15 s and 30 s are not identical according to Fig. 12. The 
maximum and minimum values of the torques of joint M3 
and M4 are listed in Table 4 when the multibody spreads 
under the conditions of pulse wind load with time course of 
15 s, 30 s and 60 s and the unit of torque is kN·m, 
respectively. Table 4 show that the variations of the torques 
of M3 and M4 under the conditions of time course of 60 s 
have many differences. 
 

Table 4 Maximum values of torques M3 and M4 with spreading 
in different wind velocities 

Torque 
Temporal wind velocity 

15 s 30 s 60 s 

M3 
Max. 134.4 135.9 123.1 
Min. −74.8 −74.8 −284.3 

M4 
Max. 79.1 75.6 70.7 
Min. −75.4 −74.8 −181.2 

 

 

(a) M2 
 

 

  (b) M3 

 

 

  (c) M4 

Fig. 12 Tamporal variations of the torques with various 
wind loads 

7 Conclusions 

The self-exciting dynamic responses will be presented 
due to the large-angle spreading of the upper parts when the 
multibody system with a floating base spreads on the static 
water surface. The spreading form and time of upper parts 
may affect the dynamic responses of the system. The results 
of numerical simulation showed that the swaying of the 
floating base is almost not influenced by the spreading time 
and forms with sequential or synchronous order. However, 
the rolling and heaving obviously depends on the spreading 
time and form. 

The total time for spreading are 15 s and 60 s under 15 
wave cases based on the analysis of the rolling responses of 
the floating base with different spreading time, respectively. 
The results showed that the maximum rolling angle is 
positive relevant with the wave height and the same period 
wave, i.e., the larger the wave height is, the larger the 
maximum rolling angle is. The maximum rolling angle 
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under long period wave is less than that under short period 
wave. 

According to the rolling dynamic response of the 
multibody system spreading in long time, the rolling 
response in the waves is correspondingly tempestuous and 
the reason is that the wave period is shorter than the 
spreading time. Comparing the slow spreading and the fast 
one, the maximum rolling response of slow spreading 
response is larger than the latter one. The result also showed 
that the spreading in short time may make the wave less 
influence on the rolling response. 

There is less influence on the rolling response with 
longer wave period and the higher the wave amplitude is, 
the more the influence on the rolling response is. Generally, 
the spreading of the multibody system is unstable under the 
0.6 m wave amplitude and more. 

The response of the floating base is not violent with long 
spreading time under conditions of the same wind scale. The 
reason is that the longer the spreading time is, the less the 
inertial force is. The variation of the wind scale has large 
influence on the swaying of the floating base and there is 
some influence on the heaving and rolling, but the amplitude 
is relatively less. 

The variations of the swaying and heaving of the 
multibody system are large amplitude under the single pulse 
wind load. The random of the dynamic response is various 
because the amplitude and the direction of the wind load are 
random. The violent variations of the torques of M3 and M4 
reflect the dynamic characteristics of the pulse wind load. 
The results showed that the driving torque between rigid 
body 1 and 3 and the one between rigid body 3 and 4 are 
much larger under temporal wind variation when the 
multibody system spreads in 60 s than those under no wind. 
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