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Abstract: There is a large class of problems in the field of fluid 
structure interaction where higher-order boundary conditions arise 
for a second-order partial differential equation. Various methods 
are being used to tackle these kind of mixed boundary-value 
problems associated with the Laplace’s equation (or Helmholtz 
equation) arising in the study of waves propagating through solids 
or fluids. One of the widely used methods in wave structure 
interaction is the multipole expansion method. This expansion 
involves a general combination of a regular wave, a wave source, a 
wave dipole and a regular wave-free part. The wave-free part can 
be further expanded in terms of wave-free multipoles which are 
termed as wave-free potentials. These are singular solutions of 
Laplace’s equation or two-dimensional Helmholz equation. 
Construction of these wave-free potentials and multipoles are 
presented here in a systematic manner for a number of situations 
such as two-dimensional non-oblique and oblique waves, three 
dimensional waves in two-layer fluid with free surface condition 
with higher order partial derivative are considered. In particular, 
these are obtained taking into account of the effect of the presence 
of surface tension at the free surface and also in the presence of an 
ice-cover modelled as a thin elastic plate. Also for limiting case, it 
can be shown that the multipoles and wave-free potential functions 
go over to the single layer multipoles and wave-free potential. 
Keywords: two-layer fluid, wave-free potentials, Laplace’s 
equation, modified Helmholtz equations, higher order boundary 
conditions; multipoles 
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1 Introduction1 

The motion of a body of any geometrical configuration, 
floating on the surface of water, is investigated in the 
literature assuming linearized theory of water waves. The 
problem of heaving motion of a long, horizontal circular 
cylinder on the surface of water was investigated by Ursell 
(1949) using the method of multipole expansion of the 
time-harmonic stream function. The corresponding velocity 
potential also has a similar expansion. In fact, for an 
infinitely long horizontal cylinder of arbitrary cross section 
floating on the surface of water, the potential function in 
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general can be expressed in terms of a regular wave, a wave 
source, a dipole and wave-free potentials (Ursell, 1968; 
Athanassonlis, 1984). The wave-free potentials are singular 
at some point and tend to zero rapidly at infinity. Obviously 
these satisfy the free-surface condition. Two and three 
dimensional problem of multipole expansions in the theory 
of surface waves in infinite deep water and also in water of 
uniform finite depth water has been given by Thorne (1953). 
Expansions in terms of the wave source and an infinite set of 
wave-free potentials were introduced for the three- 
dimensional problem involving a floating sphere half- 
immersed and making periodic heaving oscillations by 
Havelock (1955). Ursell (1961a; 1961b), Bolton and Ursell 
(1973), Mandal and Goswami (1984) considered problems 
where the potential functions is expansion in terms of wave 
sources and wave-free potentials. Taylor and Hu (1991) 
described expansion of the velocity potential for two and 
three dimensional wave diffraction and radiation problems.  
Linton and McIver (2001) briefly described the construction 
of wave free potentials in the case of water of infinite and 
finite depth water with a free surface. 

There is a large class of problems in the field of fluid 
structure interaction where higher-order boundary 
conditions arise for a second-order partial differential 
equation. Various methods are being used to tackle these 
kind of mixed boundary-value problems (BVP) associated 
with the Laplace equation (or Helmholtz equation) arising in 
the study of waves propagating through solids or fluids. One 
of the widely used methods in wave structure interaction is 
the method multipole expansion. In most of the 
wave-structure interaction problems, the governing equation 
is either the Laplace or the Helmholtz equation and, thus, 
the features of the orthogonal relation mainly depend upon 
the nature of the bottom and upper surface boundary 
conditions. Higher-order boundary conditions occur 
frequently in fluid-structure interaction problems when we 
deal with very large floating structures (VLFS). Evans and 
Porter (2003) analysed the oblique wave scattering caused 
by a narrow crack in ice sheets floating on water of finite 
depth with the eigenfunction expansion method. Chakrabarti 
(2000) analysed the problem of scattering of surface water 
waves by the edge of an ice cover and obtained the explicit 
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solution with a singular, Carleman-type integral equation. 
Das and Mandal (2006; 2009) analysed the problem of water 
wave scattring by a circular cylinder with an ice-cover. Das 
and Mandal (2008) also studied the water wave radiation by 
a sphere submerged in water with an ice-cover. Das and 
Mandal (2010a), Mandal and Das (2010) presented in a 
systematic manner the construction of wave free potentials 
for two- dimensional deep water and finite depth water with 
free surface, or corresponding the effect of the surface 
tension at the free surface and also in water with an 
ice-cover. Dhillon and Mandal (2013) also presented the 
construction of a wave free potential for three dimensional 
deep water as well as finite depth water. 

The multipoles and wave-free potentials have been 
described for single layer fluids, both in two and three 
dimensions and for infinite as well as finite depth water. 
More recently, however, interest has been extended to 
bodies which are floating, submerged or partially immersed 
in two-layer fluids, each fluid having a different density. 
The wave motion in a two-layer fluid has gained importance 
due to plans to construct under water pipe bridge across the 
Norwegian fjords. A fjord consists of a layer of fresh water 
on the top of a deep layer of salt water. For tow-dimension 
motions, Kassem (1982) presented the multipole expansions 
for two superposed fluids, each of finite depth. Linton and 
McIver (1995), Linton and Cadby (2002) have constructed a 
set of multipoles in the theory of surface waves in two-layer 
fluid with free surface for normal and oblique incident wave 
trains. Three-dimensional multipoles in two-layer fluid with 
free surface have been given by Cadby and Linton (2000). 
Das and Mandal (2007; 2010b) constructed the multipole 
potentials in their problems for two-dimension and 
three-dimension in two-layer fluid with an ice-cover. 

In the literature, two-layer fluid water wave problems 
have not been studied for wave-free potential function 
construction. However, for the various classes of water wave 
problems in two-layer fluid many researchers may use the 
wave-free potentials in the mathematical analysis. For 
circular cylinder of arbitrary cross section floating on the 
surface of a two-layer fluid or half-immersed circular 
cylinder in a two-layer fluid, the potential function in 
general can be expressed in terms of a regular wave, 
wave-free potential etc. Also in winter, a fjord is covered by 
a layer of ice, so that we have a cylindrical pipe bridge 
submerged below an ice-cover. Now if we consider the 
problem of partially or half-immersed circular cylinder in a 
two-layer fluid with an ice-cover, then potential functions 
may be expressed in terms of the regular potential as well as 
wave-free potential function. Thus it will study the problem 
of construction of wave-free potential in a two-layer fluid. 
Also in these problems (both single layer and two-layer) the 
higher-order boundary condition involves third order partial 
derivative (surface tension) and fifth order partial derivation 
(ice-cover). However, the boundary value problem involving 
higher-order boundary conditions more than fifth order 
partial derivative (Manam et al., 2006; Das et al., 2008) 

have not been extensively studied with a view to establish 
the multipole potentials and also wave-free potentials. 

In this paper construction of wave-free potentials and 
multipoles are presented in a systematic manner. The cases 
of two-dimensional non-oblique and oblique waves in 
two-layer fluid with free surface condition with higher order 
partial derivative are considered. Also the cases of 
three-dimensional waves in two-layer fluid with free surface 
with higher order partial derivative are considered. When 
the higher order partial derivative reduces to first order (free 
surface) or fifth order partial derivative (ice-cover), 
multipoles exactly coincide with the multipoles for 
two-layer fluid with free surface (Linton and McIver, 1995; 
Linton and Cadby, 2002; Cadby and Linton, 2000), or for 
two-layer fluid with ice-cover (Das and Mandal, 2007; 
2010b). 

2 Multipoles and wave-free potentials for 
non-oblique waves  

In a two-layer fluid, both the upper and lower fluids are 
assumed to be homogeneous, incompressible and inviscid. 
Let ρI be the density of the upper fluid and ρII (>ρI) be the 
same for the lower fluid. Let the lower fluid extend 
infinitely downwards while the upper one has a finite height 
h above the mean interface. Let y-axis points vertically 
upwards from the undisturbed interface y=0. Thus the upper 
layer occupies the region 0<y<h while the lower layer 
occupies the region y<0. Under the usual assumption of 
linear theory and irrotational two-dimensional motion, 

velocity potentials I,II iRe{ ( , )e }tx y   , ω being angular 

velocity, describing the fluid motion in the upper and lower 

layers exist. For a general BVP, I,II  satisfy 

          2 I 0      0, y h                  (1) 
2 II 0       0, y                  (2) 

On the upper surface having the mean position y=h, I
satisfies the free-surface condition with higher-order 
derivatives of the form (Landau and Lifshitz, 1959): 

 
4 I I

4
1 0  on    D K K y hyx
   

 
 
 

     


      (3) 

If the free-surface has an ice-cover modelled as a thin elastic 

plate, where 3 2
0 12(1 )D Eh / g   , 0 0h /   , ρ0 is 

the density of ice, ρ is density of water, h0 is the small 
thickness of ice-cover, E, v are the Young’s modulus and 

Poission’s ratio of the ice and 2K / g , g being the 

acceleration due to gravity. A generalization of (2) for more 
higher-order derivatives has been introduced by Manam et 
al. (2006) and has the form: 

  0        on   0  K yy   L          (4) 

where L  is a linear differential operator of the form: 
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where cm (m=0, 1,…, m0) are known constants. Keeping in 
mind various physical problems involving fluid structure 
interaction, only the even order partial derivatives in x are 
considered in the differential operator L . 

The linearised boundary conditions at the interface y=0 
are  

I II          on     0y yK y  
            

(6)
 

I I II II( )       on        0y yK K y       
       

(7) 

where I II ( 1)/     and the bottom condition is given 

by  

       II 0          as     y            (8) 

2.1 Singularities in the lower layer 
We first consider solutions of Laplace equation in two 

dimensions (x, y) which are singular at (0, f<0). Polar 
co-ordinates (r, θ) are defined in the (x, y)-plane by 

     sin       and      cosx r y f r             (9) 

Now for the case of normal incidence, the solutions of 

Laplace’s equation singular at y=f<0 are cosnr n  and

sin ,  1nr n n  , and these have the integral representations 

(Thorne, 1953) 
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Let s
n  and a

n  denote the symmetric and antisymmetric 

multipoles satisfying (1), (2) except at (0, f) with boundary 
conditions (4) to (7) and 
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Also they represent outgoing waves as | x | . 

The mutipoles are constructed as Linton and McIver 
(1995) 
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where A(k), B(k), C(k) are functions of k to be found such 
that the integrals exist in some sense and satisfy the 
generalized boundary condition (4) and the interface 
conditions (5) and (6) and are of outgoing nature at infinity. 
All the conditions are satisfied if we choose A(k), B(k) and 
C(k) as 
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where H(k) is given by  
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  The path of the integration in the integrals in (14) to (17) 
is indented below the poles at k=k1 and k=k2 on the real 
k-axis to take care of their outgoing behaviour as | x |  

and k1, k2 are only two real positive roots of the equation 
H(k)=0 (Das et al., 2008). 

The far-field forms of the multipoles, in the lower fluid, is 
given by 
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as x  . Here 1kC , 2kC  are the residues of C(k) at 
k=k1 and k=k2, given by 
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Using (22) and (23), we find 

(1) (1) (1)1 2 1 2
2 1 0

1 ( 1)n n n

k k k k
a a a

n n n 


  
            

(25) 



Journal of Marine Science and Application (2015) 14: 270-282 273

(1) (1) (1)1 2 1 2
2 1 0

1 ( 1)n n n

k k k k
b b b

n n n 


  
            

(26) 

The combinations II II II1 2 1 2
2 11 ( 1)

s ,a s ,a s ,a
n n n

k k k k

n n n
   


 

 
 do 

not contribute anything as | x |  so that they are 

wave-free. Now using the representations (25) and (26) it 
can be shown that 
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Letting f→0 in (27) and (28) we obtain the symmetric and 
antisymmetric wave-free potentials with singularity near the 
interface between two-layer and are given by 
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where ( )C* k  is the limiting value of C(k) when f→0. 

2.2 Singularities in the upper layer 
To develop multipoles singular at y= f>0 and polar 

co-ordinates are again defined via (9). The solutions of 
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Also they represent outgoing waves as | x | . 

  The mutipoles are constructed as (Linton and McIver, 
1995) 
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  The path of the integration in the integrals in (33) to (36) 
is indented below the poles at k=k1 and k=k2 on the real 
k-axis to take care of their outgoing behaviour as | x | . 

  The far-field forms of the multipoles, in the upper fluid, is 
given by 

I (2)s
n n~ a  

I (2)a
n n~ b  

where 
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as x .   Here ( )
1( )j

nA k , ( )
2( )j

nA k , and ( )
1( )j

nB k , ( )
2( )j

nB k  

are the residues of ( ) ( )j
nA k  and ( ) ( )j

nB k  respectively at 

k=k1 and k=k2, given by 
( ) 1

1 2( ) ( 1) ( ) ( )

                 1,2,    1,2   

j n j
n s s sA k M k M k

j s

   
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where 
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  Using (40) and (41), we find 
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

1 1 1

2 2 2

(2) (2) (2)1 2 1 2
2 1 1 2

2 1 2 1 1

2 2 2 2 2

2πi
( )

1 ( 1) ( 1)!

( ( )e ( )e ) e

( ( )e ( )e ) e 0

n n n

k y k y ik xn

k y k y ik xn

k k k k
a a a k k

n n n n

M k N k k

M k N k k

 

 

 


    

  

 

 

  (44) 




1 1 1

2 2 2

(2) (2) (2)1 2 1 2
2 1 1 2

2 1 2 1 1

2 2 2 2 2

2π
( )

1 ( 1) ( 1)!

( ( )e ( )e ) e

( ( )e ( )e ) e 0

n n n

k y k y ik xn

k y k y ik xn

k k k k
b b b k k

n n n n

M k N k k

M k N k k

 

 

 


    

  

 

 

   

(45) 

Now using the representations (44) and (45) it can be shown 
that  
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  The last contour integrals in (46) and (47) can be written 
in the form: 
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and 
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the integrals being in the sense of Cauchy principal value. 
  Thus (46) and (47) reduce to 
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the last integrals of (50) and (51) being in the sense of 
Cauchy principal value. Letting f→h in (50) and (51) we 
obtain the symmetric and antisymmetric wave-free 
potentials with singularity in the upper surface of the 
two-layer and are given by 
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and 

I 1 2 1 2
2 1

1 2
1 10

1 2

1
2 20

1 2      

sin( 2) sin( 1) sin

1 ( 1)

1
[( 1) ( ( )e ( )e )]

( 1)!

( )( )sin d

1
[( ( )e ( )e )]

( 1)!

( )( )sin d

a
m m m m

m m * ky * ky

m * ky * ky

m k k m k k m

r m r m m r

k M k N k
m

k k k k kx k

k M k N k
m

k k k k kx k

    

   

  

 
  

 
 

  

  

 

 





(53) 

where ( )*
jM k ， ( )*

jN k ， j=1, 2 are the limiting values of 

( )jM k ， ( )jN k ， j=1, 2 respectively when f→h. 

In particular, choose c0=1, ci=0, i=1, 2,…, m0, the BVP 
becomes the BVP for two-layer fluid with free surface 
(Linton and McIver, 1995) and the multipoles exactly 
coincide with those for the case of two-layer fluid with free 
surface (Linton and McIver, 1995) and the wave-free 
potentials become the wave-free potentials for two-layer 
fluid with free surface. Similarly, if choose c0=1−εK, c1=0, 
c2=D, ci=0, i=3, 4,…, m0, then the BVP becomes the BVP 
for two layer fluid with ice-cover boundary condition (3) 
(Das and Mandal, 2007) and obtain the corresponding 
multipoles (Das and Mandal, 2007) and wave-free potentials. 
If we let c0=1, ci=0, i=1, 2,…, m0 and ρ→0

 
in this problem 

then it can be shown that the multipoles and wave-free 
potential functions go over to the single layer multipoles 
evaluated by Thorne (1953) and wave-free potential 
evaluated by Das and Mandal (2010a). Thus by letting ρ→0 
in the above analysis we recover the results for the single 
layer fluid.  

3 Multipoles and wave-free potentials for 
oblique waves 

  Under the usual assumption of linear theory and 
irrotational two-dimensional motion, velocity potentials 

I,II i iRe{ ( , )e }t zx y     ,   is the wave number component 

along the z-direction, describing the fluid motion in the 

upper and lower layers exist. For a general BVP, I,II  

satisfy  

2 2 I( ) 0     0, y h                 (54) 

          2 2 II( ) 0     0, y                 (55) 

Eqs. (6) and (7) represent the linearized boundary 
conditions at the interface y=0, while the free-surface 
condition with higher-order derivatives at y=h is 

      I I 0        on   y K y h   M         (56)
 

where the differential operator 
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In (57), cm (m=0, 1,…, m0) are known constants. Keeping in 
mind various physical problems involving fluid structure 
interaction, only the even order partial derivatives in x are 
considered in the differential operator M  and (8) is the 
bottom condition of the lower layer. 

3.1 Singularities in the lower layer 

  Let s
n  and a

n  denote the symmetric and 

antisymmetric multipoles satisfying (54) and (55) for upper 
and lower fluid except at (0, f) with boundary conditions (56) 
and (6) to (8) and represent an outgoing waves at infinity. 

Near the point (0, f), the behaviours of IIs ,a
n  are given by 

  II ( )cos        as    0s
n nK r n r             (58) 

II ( )sin        as    0a
n nK r n r             (59) 

where Kn(z) denotes the modified Bessel function of second 
kind. 
  The multipoles are constructed as (Linton and Cadby, 
2002)  
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where coshv k  and A(k), B(k), C(k) are functions of k 

to be found such that the integrals exist in some sense. Also 
we have (Thorne, 1953)  
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The functions s
n  and a

n  are singular solutions of the 

modified Helmholtz equation and satisfy the generalized 
free surface condition (56) and the interface conditions (6) 
and (7) and are of outgoing nature at infinity. Then A(k), B(k) 
and C(k) have the forms: 
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  The path of the integration in the integrals in (60) to (63) 

is indented below the poles at 1k   and 2k  , where 

=cosh ,      1,2j k j j  
             

(69) 

k1, k2 are only two real positive roots of the equation H(v)=0. 
  The far-field forms of the multipoles, in the lower fluid, is 
given by 

II (3)s
n n~ a  

II (3)a
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where 
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as x  , where 1C   and 2C   are given by  
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where 2 2 1 2( ) /
j jk   . 

Using (70) and (71), we find  
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and 
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  Letting f→0 in (75) and (76) we obtain the symmetric and 
antisymmetric wave-free potentials with singularity near the 
interface between two layers and are given by 
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3.2 Singularities in the upper layer 
  To develop multipoles singular at y = f >0 and polar 
co-ordinates are again defined via (9). The solutions of 

Helmholtz equation singular at y = f >0 are ( )cosnK r n   

and ( )sinnK r n  , 1n  . Let s
n  and a

n  denote the 

symmetric and antisymmetric multipoles satisfying (54) and 
(55) for upper and lower fluid except at (0, f) with boundary 
conditions (56) and (6) to (8) and represent an outgoing 
waves at infinity. Near the point (0, f), the behaviours of 

Is ,a
n  are given by 

I ( )cos        as    0s
n nK r n r            (79) 

I ( )sin        as    0a
n nK r n r            (80) 

Also they represent outgoing waves as | x | . 

  The mutipoles are constructed as (Linton and Cadby, 
2002) 
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where the contour is indented below the poles k=μ1 and k=μ2 
in the complex k-plane. 

The far-field forms of the multipoles, in the upper fluid, is 
given by 
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as x  . Here ( )
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1k   and 2k  , given in (42) and (43). 

  Using (88) and (89), we find 
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  Now using the representations (90) and (91) it can be 
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shown that 
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The last contour integrals in (92) and (93) can be written in 
the form 
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 the integrals being in the sense of Cauchy principal value. 
  After substituting (94), (95) in (92), (93) respectively and 
letting f→h in (92) and (93) we obtain the symmetric and 
antisymmetric wave-free potentials with singularity in the 
upper surface of the two-layer and are given by 
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 the last integrals in (96) and (97) being in the sense of 
Cauchy principal value. 
  In particular, choose c0=1, ci=0, i=1, 2,…, m0, the BVP 
becomes the BVP for two-layer fluid with free surface 
(Linton and Cadby, 2002) and the multipoles exactly 
coincide with those for the case of two-layer fluid with free 
surface (Linton and Cadby, 2002) and the wave-free 
potentials become the wave-free potentials for two-layer 
fluid with free surface. Similarly, if choose c0=1−εK, c1=0, 
c2=D, ci=0, i=3, 4,…, m0, then the BVP becomes the BVP 
for two layer fluid with ice-cover boundary condition (3) 
(Das and Mandal, 2007) and obtain the corresponding 
multipoles (Das and Mandal, 2007) and wave-free potentials. 
If we let c0=1, ci=0, i=1, 2,…, m0 and ρ→0

 
in this problem 

then it can be shown that the multipoles and wave-free 
potential functions go over to the single layer multipoles 
evaluated by Thorne (1953) and wave-free potential 
evaluated by Das and Mandal (2010a). Thus by letting ρ→0 
in the above analysis we recover the results for the single 
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layer fluid. 

4 Three dimensional multipoles and wave-free 
potentials 

  Here the velocity potential  
i( ) Re{ ( )e }tx,y,z,t x,y,z     

describing the fluid motion exists where ( , , )x y z  is a 

complex valued function and   is the angular frequency. 

Let the potential in the upper layer be I
m  and that in the 

lower layer be II
m  (m=0, 1, the potential functions for the 

heave and sway problems being denoted by 0  and 1 , 

respectively). The potential functions satisfy the Laplace’s 
Eqs. (1), (2) with 

2 2 2
2

2 2 2x y z

  
   

  
 

and equations (6) and (7) represent the linearized boundary 
conditions at the interface y=0, while the free-surface 
condition with higher-order derivatives at y=h is 

  I I 0        on   y K y h   N
        

(98)
 

where the differential operator 
0 2 2

2 2
0
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m
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c
x z

      
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(99) 

where cm (m=0, 1,…, m0) are known constants. Keeping in 
mind various physical problems involving fluid structure 
interaction, only the even order partial derivatives in x are 
considered in the differential operator N  and (8) is the 
bottom condition of the lower layer. 

4.1 Singularities in the lower layer 
  The velocity potential singular at (0, f, 0) describing the 
motion in the lower fluid, then multipole singular potential 
functions are solutions of the Laplace’s equation which are 
singular at r=0, satisfy the boundary conditions (6) to (8) 
and (98). These can be constructed using the method given 
by Thorne (1953). A solution of Laplace’s equation in the 
spherical polar co-ordinate system (r, θ, α) and singular at 

r=0 is 1 (cos )cos ,  0n m
nr P m n m     , where m

nP  are 

associated Legendre functions. This has the integral 
representation, valid for y>f (Thorne, 1953)  
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where Jm are Bessel functions and 2 2 1 2( ) /R x z  . Let the 

multipole potentials I cosm
n m   and II cosm

n m   (in the 

notation of Cadby and Linton (2000), m=0, 1) be the 
singular solutions of the Laplace’s equation and satisfy the 
free surface boundary condition with higher order 
derivatives (98), the interface conditions (6) and (7) and 

behave as outgoing waves as R→∞. Then I
m
n  and II

m
n  

are obtained as 
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where 
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The path of integration in the integrals in (101), (102) is 
chosen to be indented below the poles at k=k1 and k=k2. It 
can be shown that as R→∞, only the contributions to the 
integrals from these indentations, to the potential functions
 , prevail and behave as waves having outgoing nature. 

  The far-field forms of the multipoles, in the lower layer, is 
given by 
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1kC  and 

2kC being the residues of C(k) at k=k1 and k=k2 

respectively, which are given by 
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Using (106), we find 
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Now using the representations (108), it can be shown that 
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This is the wave-free potential having singularity at (0, f, 
0). Letting f→0 in (109) it is obtained the wave-free 
potentials having singularity near the interface between 
two-layer and is given by 
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4.2 Singularities in the upper layer 
  To develop multipoles singular at y = f >0. The solution 
of Laplace’s equation singular at y = f > 0  is 

1 (cos )cosn m
nr P m   . Let m,s

n  is denote the multipoles 

satisfying (1), (2) except at (0, f, 0) with boundary 
conditions (6), (7) and (98). The mutipoles are constructed 
as (Cadby and Linton, 2000) 
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  The path of the integration in the integrals in (111) and 
(112) is indented below the poles at k=k1 and k=k2 on the 
real k-axis. 
  The far-field forms of the multipoles, in the upper fluid, is 
given by 
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As R→∞. Here A1(k1), A1(k2) and B1(k1), B1(k2) are the 
residues of A1(k) and B1(k) respectively at k=k1 and k=k2, 
given by 
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  Using (116), it is found that   
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  Now using the representation (119) it can be shown that
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The last contour integrals in (120) can be written in the 
form: 
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the integral being in the sense of Cauchy principal value. 
Thus (120) reduces to 
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This is the wave-free potential having singularity at (0, f, 
0). Letting f→h in (122) it is obtained the wave-free 
potentials with singularity in the upper surface of the 
two-layer and are given by 
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In particular, choose c0=1, ci=0, i=1, 2,…, m0, the BVP 
becomes the BVP for two-layer fluid with free surface 
(Cadby and Linton, 2000) and the multipoles exactly 
coincide with those for the case of two-layer fluid with free 
surface (Cadby and Linton, 2000) and the wave-free 
potentials become the wave-free potentials for two-layer 

fluid with free surface. Similarly, if choose c0=1−εK, c1=0, 
c2=D, ci=0, i=3, 4,…, m0, then the BVP becomes the BVP 
for two layer fluid with ice-cover boundary condition (3) 
(Das and Mandal, 2010b) and obtain the corresponding 
multipoles (Das and Mandal, 2010b) and wave-free 
potentials. If we let c0=1, ci=0, i=1, 2,…, m0 and ρ→0 in this 
problem then it can be shown that the multipoles and 
wave-free potential functions go over to the single layer 
multipoles evaluated by Thorne (1953) and wave-free 
potential evaluated by Dhillon and Mandal (2013). Thus by 
letting ρ→0 in the above analysis we recover the results for 
the single layer fluid.  

5 Conclusions  

  Wave-free potentials and multipoles in two-layer fluid 
with a free surface condition with higher order derivatives 
for non-oblique and oblique waves (two dimensions) and 
also three dimension are constructed in a symmetric manner. 
Appropriate modifications of the wave-free potentials can be 
made in the circumstances when the two-layer fluid are of 
uniformly finite depth for both the layers having a free 
surface conditions with higher order derivatives. In 
particular, these are obtained taking into account of the 
effect of the presence of surface tension at the free surface 
and also in the presence of an ice-cover modelled as a thin 
elastic plate. Also for limiting case, it can be shown that the 
multipoles and wave-free potential functions go over to the 
single layer multipoles and wave-free potential. 
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