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Abstract: The scattering of oblique incident surface waves by the 
edge of a small cylindrical deformation on a porous bed in an 
ocean of finite depth, is investigated here within the framework of 
linearized water wave theory. Using perturbation analysis, the 
corresponding problem governed by modified Helmholtz equation 
is reduced to a boundary value problem for the first-order 
correction of the potential function. The first-order potential and, 
hence, the reflection and transmission coefficients are obtained by 
a method based on Green's integral theorem with the introduction 
of appropriate Green’s function. Consideration of a patch of 
sinusoidal ripples shows that when the quotient of twice the 
component of the incident field wave number along x-direction and 
the ripple wave number approaches one, the theory predicts a 
resonant interaction between the bed and the free-surface, and the 
reflection coefficient becomes a multiple of the number of ripples. 
Again, for small angles of incidence, the reflected energy is more 
as compared to the other angles of incidence. It is also observed 
that the reflected energy is somewhat sensitive to the changes in 
the porosity of the ocean bed. From the derived results, the 
solutions for problems with impermeable ocean bed can be 
obtained as particular cases. 
Keywords: oblique waves; bottom deformation; porous bed; 
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1 Introduction1 
The propagation of surface waves over an obstacle or a 

geometrical disturbance at the bottom of an ocean is 
important for its possible applications in the area of coastal 
and marine engineering, and as such it is being studied with 
interest for a long time. A train of progressive waves 
traveling on the surface of an ocean, without any obstacle, 
experiences no reflection when the ocean is of uniform 
finite depth. If the bed of the ocean has a deformation, the 
wave train is partially reflected by it, and partially 
transmitted over it. However, the determination of reflection 
and transmission coefficients for a general type of bottom 
deformation is quite a difficult task for marine researchers. 
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Scattering of surface waves by a small deformation of an 
impermeable ocean-bed with free-surface create interesting 
mathematical problems drawing attention of various types 
for obtaining their useful solutions. 

Davies (1982) solved the reflection of normally incident 
surface water waves by a patch of sinusoidal undulations on 
the seabed in a finite region by using Fourier transform 
technique. Mei (1985) developed wave evolution and 
reflection theory at and near the Bragg resonance condition 
for shore-parallel sinusoidal bars. Miles (1981) and Davies 
and Heathershaw (1984) considered the problem of 
water-wave scattering by an undulating bottom topography 
in an ocean. Mandal and Basu (1990) generalized the 
problem of Miles (1981) to include the effect of surface 
tension at the free surface. Martha and Bora (2007a) worked 
on the propagation of obliquely incident surface waves over 
a small bottom undulation on the ocean bed. Employing a 
simplified perturbation analysis, they reduced the original 
boundary value problem (BVP) to another one up to first 
order and obtained the velocity potential, reflection and 
transmission coefficients up to the first order by using finite 
cosine transformation. For the problem of free surface flow 
over an undulating bed, the mild-slope equation, initially 
devised by Kirby (1986) and later on Chamberlain and 
Porter (1995) (modified mild slope equation)  introduced 
approximate analytical techniques essentially involving 
depth-averaging under the assumption of the small variation 
of the bed. Staziker et al. (1996) considered the problem of 
two-dimensional wave scattering by a local bed elevation of 
any shape on an otherwise horizontal bed using linearized 
water wave theory. The behavior of water waves over 
periodic beds was considered by Porter and Porter (2003) in 
a two-dimensional context using linear water wave theory. 
They developed a transfer matrix method incorporating 
evanescent modes for the scattering problem, which reduced 
the computation to that required for a single period, without 
compromising full linear theory.  

All the above works are focused only on the wave motion of 
the fluid region, where the effect of porosity of the ocean-bed 
was not taken into account. When the ocean bed is composed 
of porous material of a specific type, the hydrodynamic 
characteristics such as the wave energy dissipation, wave 
damping or decaying of wave height reaching towards the coast 
etc., are modified by the wave-induced pore pressure and soil 
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displacements within the soil skeleton on the ocean bed. 
Therefore, due to many interesting applications in the theory of 
scattering of waves, porosity of the ocean bed becomes an 
extremely important aspect to be handled for marine 
researchers. Gu and Wang (1991) investigated the problem of 
water wave propagation within a porous ocean bed both 
theoretically and experimentally. Zhu (2001) studied the 
problem of water wave propagation within porous media on an 
undulating bed by employing a Galerkin eigenfunction 
expansion technique and obtained the reflection coefficient 
numerically. Silva et al. (2002) considered waterwave reflection 
and/or transmission problems where a porous medium was 
assumed to lie on an ocean-bed of varying quiescent depth. Jeng 
(2001) developed wave dispersion relation in a porous seabed 
by employing the complex wave number in the poro-elastic 
model of wave–seabed interaction. Martha and Bora (2007b) 
considered the problem of oblique wave scattering by a small 
patch of sinusoidal bottom undulation over a porous ocean bed 
and obtained the reflection and transmission coefficients by 
employing Fourier transform technique. Recently, Mohapatra 
(2014) investigated the problem of normally incident surface 
waves diffraction by small undulation on a porous bed in an 
ocean with ice-cover using Green’s integral theorem with the 
introduction of appropriate Green’s function. 

In this article, we consider a three-dimensional problem 
involving an oblique incident progressive wave propagates in 
an ocean where the bottom is bounded by a porous surface 
which has a small deformation. The motion of the fluid below 
the porous bed of an ocean is not analyzed here and it is 
assumed that the fluid motions are such that the resulting 
boundary condition on the porous bed as considered here 
holds good and depends on a known parameter P, called 
porosity parameter, in this analysis. In this case, 
time-harmonic waves of a particular frequency can propagate 
with one wave number at the free-surface. Applying 
perturbation analysis involving a small parameter ( 1)  , 

which measures the smallness of the deformation, the original 
problem governed by modified Helmholtz equation reduces 
to a simpler boundary value problem for the first-order 
correction of the potential function. The solution of this 
problem is then obtained by the use of a Green’s integral 
theorem of the potential function describing the boundary 
value problem. The reflection and transmission coefficients 
are evaluated approximately up to the first-order of ε in terms 
of integrals involving the shape function when a train of 
oblique incident progressive waves propagates on the porous 
bed in an ocean having a small deformation. We present a 
special form of bottom deformation, that is, a patch of 
sinusoidal ripples and the first-order reflection coefficient is 
depicted graphically for various values of the different 
parameters. Investigations of such wave problems have 
gained reasonable importance due to various reasons. One of 
these is to understand the mechanism and effects of surface 
wave propagation through the porous bed of an ocean. 
Furthermore, another important reason for considering this 
kind of problems stems from the need to construct an 

effective reflector of the incident wave energy for protecting 
coastal areas from the rough ocean. 

2 Mathematical formulation of the problem  
The irrotational motion of an inviscid incompressible fluid 

flow of an ocean where the bottom is bounded by a porous 
surface which has a small cylindrical deformation is 
considered. A right-handed Cartesian coordinate system is 
used in which the xz-plane coincides with the undisturbed 
free-surface of the fluid. The y-axis points vertically 
downwards with y=0 as the mean position of the free-surface 
and y=h as the bottom surface. We further assume that the 
motion is time harmonic with angular frequency . Here, the 
bed has a porous type surface with a small deformation which 
is described by y=h+εc(x), where c(x) is a bounded and 
continuous function describing the deformation of the ocean 

bed and ( ) 0c x   as x  so that the ocean is of 

uniform finite depth h far to either side of the deformation. 
Under the assumptions of linear water wave theory, the 

velocity potential  , , ,x y z t  in the fluid of density ρ can 

be written as  

      
 

i, , , Re , e

, , 0

z tx y z t x y

x z y h c x

  





      
       (1) 

where υ is the component of the incident field wave number 
along z-direction, Re stands for the real part and the 

potential  ,x y  satisfies the modified Helmholtz 

equation: 

 
 

2 2
, 0

, 0

x y

x y h c x

 



  

      
          (2) 

where 2
,x y  is the two-dimensional Laplacian operator. 

The linearized boundary conditions at the free-surface and 
at the bottom surface are: 

 0, , 0y K x y         (3) 

  0, ,n P x y h c x           (4) 

where 2 ,K g g  the acceleration due to gravity, n   

the derivative normal to the bottom at a point  ,x y and P  

is the porous effect parameter on the ocean bed. The time 

dependence of ie t  has been suppressed. 
Within this framework in the fluid region, ,x     

0 ,y h   a train of progressive surface waves takes the 

form (up to an arbitrary multiplicative constant) 

       
 

2 2

0
cosh sinh

, e
cosh sinh

, 0

ix kk h y P k k h y
x y

kh P k kh

x y h

    



     

 (5) 

is obliquely incident upon the bottom deformation from 

negative infinity, where  sin 0 π 2 ,k      θ is the 

angle of the oblique incident progressive waves (θ=0 

corresponds to normal incidence),  cosh sinh 0kh P k kh   

and k satisfies the following dispersion relation, 
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    tanh 0k P k K kh K P            (6) 

In the above dispersion equation, there is a positive real 
root k=u (say), which indicates the propagating modes of 
the fluid at the free-surface and a countable infinity of 

purely imaginary roots i nk   1,2,...n   that relate to a set 

of evanescent modes, where kn's are real and positive 
satisfying the following equation in κ: 

  / tan 0P K h K P              (7) 

The negatives of all of these are also roots, being wave 
numbers of the waves traveling in the opposite direction. 
The intensity of the evanescent mode of waves decays 
exponentially with distance from the free-surface at which 
they are formed. Due to this evanescent mode of waves 
appearing in the fluid region, a part of the incident wave 
becomes trapped and leads to a standing wave pattern over 
the bottom irregularities, when the incident wave is 
scattered by the bottom undulation. Since the dispersion 
equation has exactly one nonzero positive real root u, so 
there exists one mode of wave propagating at the 
free-surface along the positive x-direction. 

An oblique incident surface wave of mode u making an 

angle θ, 0 π 2   with the positive x-direction is of the 

form: 

       
 

i cos
0

cosh sinh
, e

cosh sinh

, 0

uxu h y P u u h y
x y
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x y h

   



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  (8) 

Since the train of oblique incident progressive surface 
waves is partially reflected and partially transmitted over 
the bottom deformation, the far-field behavior of   is 

given by 

  
   
 
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    (9) 

where the unknown coefficients R and T are the reflection 
and transmission coefficients, respectively, and are to be 
determined. Here the perturbation method can be employed 
to obtain these coefficients up to first-order. 

Assuming, for small bottom deformation,   to be very 
small and neglecting the second order terms, the boundary 
condition (4) on the bottom surface ( )y h c x   can be 

expressed in an appropriate form as 

       

    
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    (10) 

By using the perturbation technique, the entire fluid 
region 0 ( ),y h c x   x     is reduced to the 

uniform finite strip 0 ,y h  x     in the following 

mathematical analysis. 

3 Method of solution 

3.1 Perturbation technique  
Suppose that a train of progressive waves of mode u  to 

be obliquely incident at an angle , 0 π 2   on the 

bottom deformation on a porous surface in an ocean. If there 
is no bottom deformation, then the oblique incident wave 
train will propagate without any hindrance and there will be 
only transmission in this case. This, along with the 
appropriate form of the boundary condition (10), suggest that 

 ,x y , R and T which were introduced in the last section, 

can be expressed in terms of the small parameter ε as: 
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     (11) 

where  0 ,x y  is given by equation (8). It must be noted 

that such a perturbation expansion ceases to be valid at Bragg 
resonance when the reflection coefficient becomes much 
larger than the deformation parameter  , as pointed out by 
Mei (1985). Also this theory is valid only for infinitesimal 
reflection and away from resonance. For large reflection, the 
perturbation series, as defined in Eq. (11), needs to be refined 
so that it can deal with the resonant case, which is reported in 
Mei (1985). 

Using Eq. (11) in Eq. (2) and boundary conditions (3), (10), 
(9) and then comparing with the first-order terms of ε on both 
sides of the equations, we find a boundary value problem for 

the first-order potential  1 ,x y  which satisfies the Eqs. (2) 

and (3) together with the following other conditions: 

      
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To solve the above boundary value problem for 1 , we need 

a two-dimensional source potential (in terms of Green's 
function) for the modified Helmholtz equation due to a source 
submerged in the fluid region. Then Green's integral theorem 

will be employed and the first-order coefficients 1R  and 1T  
will be obtained in terms of integrals involving the shape 

function  c x . 

 
3.2 Introduction of Green’s functions  

In this section, Green’s function method is introduced for 
solving the above boundary value problem. Then a 
two-dimensional source potential is obtained for the modified 
Helmholtz equation due to a source submerged in the fluid. 

Suppose the source term  ,   is submerged in the fluid 

region ,x     0 y h  . Then for 0 h  , the 

source potential in terms of Green’s function  , ; ,G x y    
satisfies the following boundary value problem: 
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 
 

2 2
, 0, , 0 ,
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x y G x y h

 

        
   (14) 
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imultiple of e asxG x            (17) 

   2 2
0 ( )  as  = 0G K r r x y         (18) 

where  0K   denotes the modified Bessel function of the 

second kind. Now we try to solve the boundary value 

problem defined by Eqs. (14)–(18) in the form  , ; ,G x y   , 

where 

     

        

0 0, ; ,

1
cosh sinh cos d

G x y K r K r
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
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



  

  
 (19) 

where 2 2k    and    2 2r x y      . 

With the help of the boundary conditions at the 

free-surface and at the bottom surface, we find  A k  and 

 B k as  

      
 

2 cosh sinh
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k k h P k h
A k

kh k
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where 

      sinh coshk k P k K kh K P kh        (22) 

It may be noted that  k  has one simple non-zero 

positive root at k=u, from Eq. (6). Since k=0 and 

 cosh sinh 0kh P k kh   will indicate that there is no 

wave in the fluid region, hence the terms k and 

 cosh sinhkh P k kh  can never be zero. So the integrand 

in Eq. (19) has one simple pole at k=u which will be from 

∆(k) only. Since the source potential  , ; ,G x y    behaves 

like outgoing waves as x   , so the path of 

integration is indented to pass beneath the simple pole at 
k=u. Solving Eq. (19) by using Eqs. (20) and (21), we 

obtain the solution  , ; ,G x y    as x    , is given 

by 
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(23) 
where   denotes the derivative of ∆ with respect to k. To 

calculate the value of  1 ,   , we apply the Green’s integral 

theorem to  1 ,x y  and  , ; ,G x y    in the form 

 1 1 d 0n n

C

G G s              (24) 

where C is a closed contour in the xy-plane consisting of the 

lines y=0, −X ≤ x ≤ X; y=h, −X ≤ x ≤ X; 0 ≤ y≤h, x X  and 
a small circle of radius γ with center at (ξ,η) and ultimately let 
X  and 0  . Finally, the resultant integral Eq. (24) 

will give the determination of the solution 1  of the 

boundary value problem as given by 

     1
1

, , ; , d
2π

yG x h f x x
P
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



       (25) 

The first-order reflection and transmission coefficients 1R  

and 1T , respectively, are now obtained by letting   , in 

Eq. (25) and comparing with Eq. (13) by replacing  ,x y  

with (ξ, η). Thus we obtain the values of R1 and T1 as 
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cosh sinh

P u
T c x x

u uh P u uh

 
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

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Therefore, the first-order reflection and transmission 
coefficients due to oblique incident surface wave 
propagation over a small bottom deformation on the porous 
surface of an ocean bed are now can be evaluated from Eqs. 
(26) and (27), once the shape function c(x) is known. Here, 
if θ=0 is taken (i.e., the case of normal incidence), then the 
above results (26) and (27) coincide with the corresponding 
results as seen in Mohapatra (2014). 

In the following section we proceed to examine the effects 
of reflection and transmission for a special sinusoidal form of 
the shape function c(x). 

4 A special form of the bottom surface   
Here, we consider a special sinusoidal form of the shape 

function c(x) for an uneven bottom to the porous surface in an 
ocean bed. As mentioned earlier, this functional form of the 
bottom disturbance closely resembles some naturally occurring 
obstacles formed at the bottom due to sedimentation and ripple 
growth of sands. Because of the importance of the bed 
topographies with sinusoidal ripples from the application point 
of view, significant emphasis is laid upon them and subsequent 
consideration of the following example is deemed appropriate.  

The shape function c(x) in the form of patch of sinusoidal 
bottom ripples on the bottom surface with amplitude a  on 
an otherwise flat bottom has the form 

  1 2sin ,

0 otherwise

a lx L x L
c x

  


          (28) 

where L1=−nπ/l; L2=−mπ/l; m and n are positive integers, and  

l is the wave number of the patch in the region 1 2L x L  . 
The patch of sinusoidal ripple bed consists of total (m+n)/2 
number of ripples. 

Substituting the value of c(x) from the Eq. (28) into Eqs. 
(26) and (27), we obtain the reflection coefficient R1 and 
transmission coefficient T1, respectively, as follows: 
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It may be noted from Eq. (29) that when the sinusoidal 
ripples wave number is approximately twice the component 
of the incident field wave number along x-direction (i.e., 
2 cosu l  ), the theory points at the possibility of a 
resonant interaction taking place between the bed and the 
free-surface waves. Hence, we find that near resonance, i.e., 
2 cosu l  , the limiting value of the reflection coefficient 
assumes the value 
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In this case, the reflection coefficient 1R  becomes a 

constant multiple of   2m n , the total number of ripples 

in the patch. Hence, the reflection coefficient 1R  increases 
linearly with n and m. Although the theory breaks down 
when l=2ucosθ, a large amount of reflection of the incident 
wave energy by this special form of bed surface will be 
generated in the neighborhood of the singularity at 
l=2ucosθ. 

Note that when 2 cosu   approaches l and the number of 
ripples in the patch of the deformation on the porous bed 
(m+n)/2 become large, the reflection coefficient becomes 
unbounded contrary to our assumption that R1 is a small 
quantity, being the first-order correction of the infinitesimal 
reflection. Consequently, we consider only the cases 
excluding these two conditions in order to avoid the 
contradiction arising out of resonant cases. 

Again, it is clear from Eq. (30) that when the number of 
ripples in the patch of the deformation on the porous bed is 
a positive integer (i.e., both m and n are even or odd), the 
first-order transmission coefficient vanishes identically. 

5 Numerical results 
In this section, the numerical computation and graphical 

presentation related to the special form of bottom surface 
mentioned in the previous section are shown for the 
first-order reflection and transmission coefficients. We 
consider the numerical computations for the 

non-dimensionalized first-order reflection coefficient 1R , 

which is calculated from Eq. (29), due to an oblique 
incident surface waves of wave number u making an angle θ 
to the positive x-direction propagating along the free-surface 
and a ripple bed with wave number l having (m+n)/2 
number of ripples in the patch of the porous ocean bed. 
Again, in this case we consider the ratio of the amplitude of 
the ripples and the depth of the fluid (a/h) is taken as 0.1 . 

 

 

Fig. 1 Reflection coefficient 1R  plotted against Kh for 
Ph=0.1, m=2 and n=3 

The different curves in Fig. 1 correspond to four different 

angles of incidence, 0, π 10, π 6   and π 5 . For all 

these curves, m  and n  are fixed at 2m   and 3n  , the 
porous parameter Ph as 0.1  and the ripple wave number lh 
as l. It may be noted that for θ=0 (the case of normal 

incidence), the maximum value of 1R  is 0.208148 , 

attained at 0.506998uh   (when Kh=0.151), that is, when 
the ripple wave number la of the bottom deformation on the 
porous ocean bed becomes approximately twice as large as 
the component of the incident field wave number uhcosθ 
along x-direction. The same can be observed when the angle 
of incidence θ is non-zero (the case of oblique incidence). 
Another common feature in Fig. 1 is the oscillating nature of 
the absolute value of the first-order coefficient as a function 
of the wave number Kh. As the angle of incidence θ increases, 

the peak value of 1R  decreases. When θ approaches to π 4, 

the reflection coefficient 1R  is much less as compared to 

the other angles of oblique incidence. In the case of normal 

incidence, the peak value of 1R  is the largest. 

In Fig. 2, 1R  is plotted against Kh for different porous 

effect parameter Ph of the ocean bed, while we fixed the 
angle of incidence at θ=π/6, the ripple wave number lh as 1, 
m=2 and n=3. This is most evident in the curves that the 

peak value of 1R  increases as the porous effect parameter 

of the ocean bed increases. This shows that the first-order 
correction to the reflection coefficient is somewhat sensitive 
to the changes in the porous effect parameter of the ocean 
bed. The peak values of the first-order reflection coefficient 
corresponding to the porous effect parameters Ph=0, 0.01, 
0.05 and 0.1 are attained at uh= 0.584073, 0.585435, 
0.583963 and 0.581682, respectively. Here also it is 
observed that its peak value is attained when the ripple 
wave number lh of the bottom deformation on the porous 
ocean bed becomes approximately twice as large as the 
component of the incident field wave number cosuh   
along x-direction. 
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Fig. 2 Reflection coefficient 1R  plotted against Kh for 
θ=π/6, m=2 and n=3 

 

Fig. 3 Reflection coefficient 1R  plotted against Kh for 
Ph=0.1 and θ=π/6 

 

Fig. 4 Reflection coefficient 1R  plotted against Kh for 
θ=π/6, m=2 and n=3 

 
In Fig. 3, different curves correspond to different number 

of ripples in the patch of the deformation on the porous bed. 
For all these curves, we consider the porous parameter Ph as 
0.1 , the angle of incidence θ as π/6 and the ripple wave 
number lh as 1. It is clear from this figure that as (m+n)/2, 
the number of ripples in the patch of the bottom 
deformation increases, the value of uhcosθ converges to a 
number in the neighborhood of lh/2 and also the peak value 

of the reflection coefficient 1R  increases. But when the 

number of ripples, becomes very large, the reflection 

coefficient become unbounded. That means the perturbation 
expansion which is discussed in section 3.1, ceases to be 
valid when the reflection coefficient becomes much larger 
than the deformation parameter, as pointed out by Mei 
(1985). Its oscillatory nature against Kh is more noticeable 

with the number of zeros of 1R  increased but the general 

feature of 1R  remains the same. 

In Fig. 4, different curves correspond to different ripple 
wave numbers lh=0.8, 1, 1.2 and 1.4 in the patch of the 
deformation on the porous ocean bed. In this figure, for all 
curves, we consider Ph=0.1, θ=π/6, m=2 and n=3. Here also, 
it has been clear that the peak values of the reflection 
coefficient are attained at different values of Kh. The reason 

is, the values of reflection coefficient 1R  (calculated from 

Eq. (29)) become maximum, only when 2 coslh uh  . It 
is also observed from this figure that as the ripple wave 

numbers increase the reflection coefficient 1R  becomes 

smaller than those for the bigger ripple wave numbers. That 
means when an oblique incident wave propagates over a 
porous bed in an ocean having a small ripple wave number 
in the patch of the deformation, a substantial amount of 
reflected energy can be produced. 

From all the figures, it is also clear that the oscillating 
nature of the absolute values of the first-order coefficient as 
functions of the wave number Kh . 

6 Conclusions 

The work described in this article is the classical problem 
of scattering of oblique incident surface waves by a small 
bottom deformation on the porous surface in an ocean. In 
such a situation propagating waves can exist in only one 
wave number for any given frequency. A perturbation 
analysis has been deployed and thereby finding new 
expressions for the first-order corrections to the reflection 
and transmission coefficients for the problem by using a 
method based on Green’s integral theorem with the 
introduction of appropriate Green’s function. For the 
particular example of a patch of sinusoidal ripples, 
first-order approximations to the reflection and transmission 
coefficients are obtained in terms of computable integrals 
and the reflection coefficient depicted graphically through a 
number of figures. The main result that follows is that, the 
resonant interaction between the bed and the free-surface 
attains in the neighborhood of the singularity when the 
ripple wave numbers of the bottom deformation become 
twice the component of the incident field wave number 
along x-direction. This singularity point varies with the 
angles of oblique incident progressive waves, porous effect 
parameters of the ocean bed and the ripple wave numbers 
on the bottom surface. Another main advantage of this 
method, demonstrated through this example, is that a very 
few ripples may be needed to produce a substantial amount 
of reflected energy. It is also observed that for small angles 
of incidence, the reflected energy is more as compared to 
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other angles of incidence (except at θ=π/4). From the 
computational results it is observed that when the porosity 
of the ocean bed increases, the values of the reflected 
energy increase so that the amplitude of the generated wave 
increases. Again, from the derived results, the solutions for 
problems with impermeable ocean bed can be obtained as 
particular cases. Also the theory discussed in this article is 
valid only for infinitesimal reflection and away from 
resonance. The solution obtained here is expected to be 
qualitatively helpful for a wide class of surface waves 
scattering problems involving an uneven bottom on the 
porous surface in an ocean. 
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