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Abstract: The scattering of plane surface waves by bottom 
undulations in channel flow consisting of two layers is investigated 
by assuming that the bed of the channel is composed of porous 
material. The upper surface of the fluid is bounded by a rigid lid 
and the channel is unbounded in the horizontal directions. There 
exists only one wave mode corresponding to an internal wave. For 
small undulations, a simplified perturbation analysis is used to 
obtain first order reflection and transmission coefficients in terms 
of integrals involving the shape function describing the bottom. For 
sinusoidal bottom undulations and exponentially decaying bottom 
topography, the first order coefficients are computed. In the case of 
sinusoidal bottom the first order transmission coefficient is found to 
vanish identically. The numerical results are depicted graphically in 
a number of figures. 
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1 Introduction1 

Wave scattering and generation problems in continuously 
stratified or multi-layered fluid have recently attracted a 
good deal of attention. Although, propagation of waves in a 
two-layer fluid was described by Stokes (1847) long back, 
till now the literature of two-layer fluid problems is rather 
limited. Linear wave motion in a two-layer fluid is described 
in the text books of Lamb (1932) and Landau and Lifshitz 
(1989). For normally incident waves, the corresponding 
problem of wave scattering by small bottom undulations in a 
two-layer fluid with the upper layer extending infinitely 
upwards and the lower layer having bottom undulations, was 
studied by Mandal and Basu (1993). The oblique interface 
wave scattering in such a two-layer fluid was also 
considered by Mandal and Basu (1994). A number of wave 
problems in such a two-layer fluid were studied by Dolai 
and Mandal (1994, 1995), Mandal and Chakrabarti (1995). 
A two-layer model of an ocean consisting of a layer of fresh 
water over a deep layer of saline water requires special 
attention as in this case there exist waves of two different 
wave numbers, one with lower wave number propagating 

                                                        
Received date: 2013-11-26. 
Accepted date: 2014-07-31. 
*Corresponding author Email: soumenisi@gmail.com  
 

© Harbin Engineering University and Springer-Verlag Berlin Heidelberg 2014 

along the free surface and the other with higher wave 
number propagating along the interface. Linton and McIver 
(1995) considered scattering of water waves by a horizontal 
cylinder in an infinitely deep two-layer fluid where in the 
upper layer has a free surface. Using linear theory, they 
examined the interaction of surface and interface waves with 
a horizontal circular cylinder. The motivation for their work 
came from a plan to build an underwater pipe-bridge across 
one of the Norweigian fjords, bodies of water which 
typically consist of a layer of fresh water on top of salt water. 
Cadby and Linton (2000) considered three-dimensional 
water wave scattering in such a two-layer fluid. They 
developed a general three-dimensional linear scattering 
theory and then illustrated it by solving problems involving 
submerged spheres. 

Much work has been done on wave/structure interactions 
in such fluid region approximating the free surface by a 
rigid lid. With the free surface approximated by rigid lid 
Sturova (1994), for example, has studied the radiation of 
wave by an oscillating cylinder which is also moving 
uniformly in a direction perpendicular to its axis. Sturova 
(1999) considered the radiation and scattering problem in a 
cylinder in both a two and a three layer fluid bounded above 
and below by rigid horizontal walls. Gavrilov et al. (1999) 
also investigated the effects of a smooth pycnocline on wave 
scattering, again for horizontal circular cylinder where the 
fluid is bounded above and below by rigid walls. 

Sherief et al. (2003) investigated the motion generated by 
a vertical wave-maker immersed in a two-layer fluid, the 
prescribed normal velocity on the wave-maker varying with 
depth and harmonically with time. The wave-maker was 
also assumed tobe porous. Sherief et al. (2004) also 
investigated a vertical cylindrical porouswave-maker 
immersed in a two layer fluid. Chamberlain and Porter 
(2005) considered two-layer fluid problem involving bottom 
variation while Ten and Kashiwagi (2004), Kashiwagi et al. 
(2006) studied hydrodynamics of a body floating in a 
two-layer fluid. Mase and Takeba (1994), Zhu (2001) and 
Silva et al. (2002) investigates the wave scattering problem 
involving porous bed. Martha et al. (2007) considered the 
problem of oblique water-wave scattering by small 
undulation on porous sea bed. They obtain the first order 
reflection and transmission coefficients. The problem of 
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oblique wave propagation over a small deformation in a 
channel flow consisting of two layers was considered by 
Mahapatra and Bora (2012). 

In the present paper scattering by porous bottom 
undulation in a two layered channel is investigated. Using 
linear theory, the problem is formulated as a coupled 
boundary value problem for the two potential functions 
describing the fluid motion in each of two layers. A 
simplified perturbation technique is employed to reduce the 
original boundary value problem coupled one upto first 
order. This problem is solved here by a method, based on the 
Fourier transform technique, to obtain the first order 
reflection and transmission coefficients in terms of integrals 
involving the shape function describing the bottom 
undulations. The first-order coefficients are depicted 
graphically against the wave number for two different shape 
functions. The effect of porosity is observed in the 
numerical results. 

2 Mathematical formulations 

We consider a two-layer invicide, incompressible fluid 
flowing through a channel with upper layer bounded by a 
rigid lid, while the lower layer has small cylindrical 
undulations at the porous bottom. Here a two dimensional 
co-ordinate system is chosen in such a way that 'y h   

denotes the position of the rigid plate and 0y   denotes 

the undisturbed interface while y-axis directed vertically 
downwards. The bottom of the lower layer can be 
represented by ( )y h c x  , where   is a dimensionless 

small quantity, measures the smallness of the deformation 
and ( )c x  is a bounded and continuously differentiable 

function describing the shape of the undulating bottom, such 
that ( ) 0c x   as | |x  . Thus the lower layer is of 

uniform finite depth h  below the mean interface far away 
from the undulations on either side. As the fluid motion is 
irrotational, the time dependent harmonic velocity potentials 
of the upper and lower layer can be described by 

iRe[ ( , )e ]tx y    and iRe[ ( , )e ]tx y   , where   is the 

angular frequency of the incoming wave. The density of the 

upper fluid is 1  and the lower fluid is 2 1( )  . The 

functions ( , )x y  and ( , )x y  satisfy 
2 0   in the upper fluid            (1) 
2 0   in the lower fluid            (2) 

The linearized boundary conditions at the interface and 
the two boundaries of the channel are given by 

0
y

 


 on 'y h                (3) 

( )K K
y y

  
 

  
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 on 0y         (4) 

y y

  


 
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and 

0G
n





 


 on ( )y h c x             (6) 

where 
2

K
g


 , g  being the acceleration due to gravity,  

1

2

( 1)



   and 
n




 denoting the normal derivative at a 

point ( , )x y  on the sea bed, G is the porous effect 

parameter on the porous bed. Though we have considered  
G as a real quantity, it is possible to find the dispersion 
relation for complex G too. 

The velocity potentials of the progressive interface wave 

train coming from the negative infinity are i
0 ( , )e tx y    

and i
0 ( , )e tx y    in the lower and upper fluids, 

where 0 ( , )x y  and 0( , )x y  has the following forms: 

i
0

cosh ( ' )
e( , )

sinh '
kxk h y

x y
kh



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kxG k h y k k h y

x y
k kh G kh

   



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where k is real, positive and satisfies the dispersion relation 
( ) 0k                     (9) 

where 
2csch

( ) (1 ) (coth coth ')
( coth )

KG kh
k k K kh kh

k G kh
      


(10) 

The dispersion equation has exactly one positive real root, 
m  ( 0)m  , say; describing mode of the wave propagating 

through the interface. Since upper layer is bounded by a 
rigid lid, there is only one wave mode, corresponding to an 
internal wave. The explanation of roots of the dispersion 
equation has been given in the Appendix. 

The progressive waves of mode m  in the upper and 
lower fluid are given by the velocity potentials 

( ) icosh ( ' )
e( , )

sinh '
m mxm h y

x y
mh




          (11) 

and 

( ) isinh ( ) cosh ( )
( , ) e

sinh cosh
m mxG m h y m m h y

x y
m mh G mh

   



  (12) 

When a train of progressive wave with mode m incident 
upon the undulating porous sea bottom, it produces reflected 
wave train in the negative x direction for x  and 
transmitted wave train in the positive x direction for 
x   mode m. These conditions can be mathematically 
expressed as far field conditions for   and   by 

( ) ( )

( )

, as( , ) ( , )
( , )

, as( , )

m m m

m m

r xx y x y
x y
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, as( , ) ( , )
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m m m

m m
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   (14) 

where mr and mt  denotes the reflection and transmission 
coefficients corresponding to the reflected wave and 
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transmitted wave of mode m respectively. 
 

 
Fig. 1 Sketch of the problem 

3 Method of solution 

The bottom condition (6) can be expressed approximately 
as 

d
( ) ( ) on

d
c x G c x y h

y x x y

   
               

  (15) 

The form of the approximate bottom condition (15) 

suggests that  ,  , mr , mt  have the following 

perturbational expansions, in terms of the small parameter 
  as 
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where ( )m , ( )m  are given by the expressions (11) and 

(12). 
On substituting (16) in Eqs. (3)–(5), (15) and on equating 

the coefficients of   from both sides, results the following 
coupled BVP for first order potential functions as: 
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where, 
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and 
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The infinite requirements (13) and (14) give 
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4 First order reflection and transmission 
coefficients 

Solutions of the problem described by Eq. (17) for the 

potentials 1( , )x y  and 1( , )x y  are obtained by using 

Fourier transform technique.  

Let us define the Fourier transform of 1( , )x y  and 

1( , )x y  by 

i
1 1 e d( , ) ( , ) kxk xy x y 



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             (22) 

i
1 1 e d( , ) ( , ) kxk xy x y 






             (23) 

The above transformation exists when 1( , )x y  and 

1( , )x y decreases exponentially as | |x  and it is 

possible if we assume that, k  has a small positive 

imaginary part, i.e, we are replacing k  by 1ik k . 

To decouple the BVP (17) we write 

1 ( ), on 0p x y
y


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so that 

1 ( ), on 0p x y
y
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              (25) 

where ( )p x  is an unknown function. 

We get the following boundary value problems 
2
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and 
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where, ( )p k  and ( )V k  respectively, given by 

i( ) e d( ) kxp k p xx



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The solution of the BVP (26)–(27) can be expressed as 
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where ( )p k is given by 
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Using (30) and (31), we get 
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By inverse Fourier transform, Eqs. (33) and (34) gives 
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Now, since ( ) ( )k k    , we can write 
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The integrands on the right hand side of (39) and (40) has 

singularities at the zeros of ( )k . As 1 0k   the 

dispersion equation has only two real values of k and an 

infinite no of values i , 0,1,2,...nk n  ; satisfying the 

equation 
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The first order reflection and transmission coefficients 

1
mr  and 1

mt  are obtained by making x    in (39) and 

(40) and comparing with the infinite requirements (20) and 
(21) respectively. 

As x   the transmission coefficient is obtained by 

rotating the contour of integration involving ie kx  into a 

contour in the first quadrant by an angle 
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integration involving ie kx  into the fourth quadrant by the 

same angle  . Then the integrand involving ie kx  has no 

effect in calculating 1( , )x y and 1( , )x y . By complex 

integration technique we get 
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Similarly, as | |x   the first order reflection 

coefficient is obtained from the analysis of the behavior of 

1( , )x y  and 1( , )x y  in Eqs. (39) and (40) by rotating the 

path of the second integrals into a contour in the first 
quadrant, so that we must include the residue term at k m . 
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the expressions of 1  and 1  and these are: 
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Comparing (42) and (43), (45) and (46) with (20) and (21), 
we get the first order coefficients as: 
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where ( )m  and A  are given by equations (10) and (19) 

respectively. 
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5 Numerical results 

Example1: For sinusoidal undulations at the bottom of the 
two-layer fluid, the shape function ( )c x  as 

 

π π
sin , for

( )

0 otherwise

n n
a x x
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 
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         (50) 

where n  is a positive integer. a  and   are the 

amplitude of the sinusoidal ripple on the bottom surface and 
the ripple wave number  respectively. 

Substitute (50) in the expressions (48)–(49), the first order 
reflection coefficients and the transmission coefficients are 
given as follows: 

1 2 2
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sinh (4 ) '( )

n
m KaA G m n m

r
mh m m


 

 


 
       (51) 

1 0mt                     (52) 

where ( )m  and A  are given as in expressions (10) and 

(19) respectively. 

 
Fig. 2 Sinusoidal undulations mr1  is plotted against Ka for 

different Ga 
 

The Fig. 2 depicted here is the first order reflection 
coefficient against Ka. The graph plotted for ρ=0.05, 

5 , ' 5 , 0.47, 2h a h a a n     and three different 

values of Ga, viz. 0.0, 0.04, 0.08. The results obtained here 
agree with the known results when the bed has no porous 
effect (Ga=0.0). We have considered a very small density 
ratio for sake of batter interfacial effect, but it can take any 

value less than one. In the expression (51), 1
mr  is 

unbounded when μ~2m, i.e.. The graph showing that, the 
energy reflection increases with the porous effect. 

Fig. 3 showing the reflection coefficients for different 
values of the bottom ripple number (n=1, 3, 5) and for 

0.05, 5 , ' 5 , 0.47h a h a a      when 0.05Ga   

and it is clearly seen that the peak values of the coefficients 
increases. Which shows that, if the ripple number increases 
indefinitely, the first order coefficients become unbounded 
for certain value of Ka . 

In Fig. 4, 1
mr are plotted for three different density ratios 

of the fluid layers and for 0.04Ga  , 5h a , ' 5h a , 
0.47a  , 5n   found that for a particular porous effect 

the wave energy decreases with the density ratio. 

 
Fig. 3 Sinusoidal undulations mr1  is plotted against Ka for 

different n 

 
Fig. 4 Sinusoidal undulations mr1  is plotted against Ka for 

different ρ 
 

In expression (51), 1
mr  is a periodic function of 

m


 

with period 
1

n
. So, the number of oscillation increases as 

the ripple number. Also when 
m


 is exactly half a unit, i.e. 

the ripple wave number is approximately equal to twice of 
the surface wave number the reflection coefficient becomes 
unbounded and in that case Bragg resonance occurred. At 
Bragg resonance the reflection coefficient is given by 

2 2( ) π

sinh '( )

KaA G m n

mh k 



               (53) 

Example 2: We consider the shape function c(x) in the 
form of an exponentially decaying bottom as  

( ) e , for and 0xc x a x           (54) 

where a  and   are the amplitude of the ripple on the 

bottom surface and the ripple wave number respectively. On 
substitution (54) in the expressions (48)–(49), the first order 
reflection and transmission coefficients are given as follows: 

  
2 2

1 2 2

2i ( )

sinh (4 ) '( )
m KaA G m

r
mh m m






 

          (55) 

2 2

1

2i ( )

sinh '( )
m KaA G m

t
mh m





             (56) 

where ( )m and A  are given by the expressions (10) and 

(19). 

The graphs depicts in Figs. 5 and 6 are 1
mr  and 1

mt  as 

a function of Ka for three different values of Ga (viz. 0.0, 
0.04, 0.08) and 0.05,  5 ,h a ' 5 ,h a a =0.47. In 
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each of these figures the peak value increases as with porous 
effect parameter.  

 
Fig. 5 Exponentially decaying bottom mr1  is plotted 

against Ka for different Ga 

 
Fig. 6 Exponentially decaying bottom mt1  is plotted against 

Ka for different Ga 

 
Fig. 7 Exponentially decaying bottom mr1  is plotted against 

Ka for different ρ 

 
Fig. 8 Exponentially decaying bottom mt1  is plotted against 

Ka for different ρ 
 
In Figs. 7 and 8, reflection and transmission coefficients 

1
mr  and 1

mt  are depicted against Ka  for different values 

of the density ratio ρ for Ga=0.04, h=5a, ' 5 ,h a  a =0.47. 

In each of these two figures it is observed that as ρ increases 

the peak value of 1
mr  and 1

mt  decreases. Thus the first 

order coefficients are quite sensitive to the density ratio. 

6 Conclusions 

Scattering of surface waves by porous bottom undulation 
in a two layered channel is investigated. Using a simplified 
perturbation analysis, the problem is reduced upto first order 
to a coupled boundary value problem. The boundary value 
problem is solved by Fourier transform technique. First order 
reflection and transmission coefficients are obtained in terms 
of integrals involving the shape function representing the 
bottom undulations. The bottom undulations are described by 
sinusoidal ripples on an otherwise flat bed and also by an 
exponentially decaying profile. For the important case of 
sinusoidal bottom undulations, the first-order correction for 
the reflection coefficient is depicted graphically against the 
wave number, while the same for transmission coefficient 
vanishes identically. For the case of exponentially decaying 
bottom topography the first order corrections to reflection 
and transmission coefficients are also depicted graphically. It 
is observed that the reflection coefficient increases with 
increasing porous effect. Also for the sinusoidal bottom the 
wave reflection increases as the ripple number increases.  
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Appendix: roots of the dispersion equations 

Here we find the roots of the dispersion equations in a 
fluid of finite depth with porous bottom when the upper 
surface of the fluid is bounded by a rigid lid. 

The dispersion equation given by (9) is 
2csch

(1 ) (coth coth ') 0
( coth )

KG kh
k K kh kh

k G kh
     


 (A1) 

where 
2

K
g


 . 

The plot (Fig. A1) of the functions (coth coth ')Kh kh kh   
2csch

( coth )

Kh Gh kh

kh Gh kh




 and (1 )kh  intersect exactly at one 

point for 0Kh   for 0.2, 0.05,Kh Gh 
'

1,
h

h
    

0.05  . Similarly when we plot for or 1   , the result 

will be the same. Since each of these functions is odd in kh , 
there are always exactly two real roots occurring as plus and 
minus of some positive quantity which we denote as m .  

When k  is purely imaginary, ik   for some real  , 
the Eq. (A1) becomes 

2csc
(1 ) (cot cot ') 0

( cot )

KG h
K h h

G h

    
 
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

  (A2) 

Thus the purely imaginary roots of the Eq. (A2) are 
obtained from the plots (Fig. A2) of (cot cot ')Kh h h      

2csc

( cot )

Kh Gh h

h Gh h


 




 and (1 ) h   against h . 

It is obvious that there exists an infinite no of purely 

imaginary roots of the Eq. (A2) given by i n , 

n=1,2,3…(say). 

 

Fig. A1 
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Fig. A2 
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By Rauche’s theorem of complex variable theory, we can 
show that the dispersion Eq. (A1) has two real roots, infinite 
no of purely imaginary roots and there is no other roots (Das 
and Mandal, 2005). 


