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Abstract: Motivated by the need for improving the isolation 
performance, many research studies have been performed on isolators 
with nonlinear characteristics. Based on the shape of their phase 
portrait, such devices can be configured as either a mono- or bi-stable 
isolator. This paper focuses on investigating the relative performance 
of these two classes under the same excitations. Force transmissibility 
is used to measure the isolation performance, which is defined in 
terms of the RMS of the ratio of the transmitted force to the excitation 
force. When the system is subjected to harmonic excitation, it is 
found that the maximum reduction of the force transmissibility in the 
isolation range using Quasi-Zero stiffness is achieved. When the 
system is subjected to random excitation, it has the same effect of 
Quasi-Zero stiffness. Further, optimum damping can be changed with 
stiffness and has minimum value. 
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1 Introduction1 

Linear vibration isolators are useful if their natural 

frequencies are less than 1 / 2  excitation frequency 
(Rivin, 2003; Mead, 1998; Piersol and Paez, 2009). But to 
achieve low natural frequency vibration isolation, a large 
static deflection is undesirable. To overcome this problem, a 
nonlinear isolator can be used which has a large static but 
low dynamic stiffness (Carrella et al., 2007, 2009; Le and 
Ahh, 2011; Shaw et al., 2013; Lu and Bai, 2011). Such 
systems can be modeled by a combination of springs which 
are arranged geometrically to achieve a low dynamic 
stiffness and hence a low natural frequency, but at the same 
time have a low static deflection (Carrella et al., 2012; 
Alabuzhev et al., 1989; Robertson et al., 2009). The review 
paper (Ibrahim, 2008) compares many nonlinear isolators 
and shows that research into nonlinear isolators is very 
active (Tang and Brennan, 2013; Xiao et al., 2013). Yang et 
al., (2014) studied the steady-state performance of a 
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two-stage vibration isolator, which is configured by a 
bistable oscillator and a linear oscillator, it is found that the 
single periodic valley and intral-well responses for isolation 
purposes can be increased by greater bistable stage damping. 
The paper (Lu et al., 2013) incorporates geometric stiffness 
nonlinearity into a two-stage isolator to overcome the 
problems of high static deflection and low roll-off rates at 
high frequency. It has been found that nonlinearity in the 
lower stage has a profound effect, and significantly 
improves the effectiveness of the isolation system. So the 
force transmissibility in the isolation range is reduced as 
horizontal stiffness increases. However, determining if the 
isolation performance of the nonlinear isolation system with 
linear negative stiffness is improved is difficult. 

The aim of this paper is to explore the advantages of 
using linear negative stiffness that can be gained by 
incorporating geometrical stiffness nonlinearity. After the 
isolation performance of the system subjected to harmonic 
excitation is investigated, the force transmissibility under 
random excitation is determined to show whether the benefit 
of linear negative stiffness incorporating geometrical 
stiffness nonlinearity in this case can be achieved. 

The positioning of the auxiliary springs with a larger 
value so that the system becomes bi-stable in the single 
stage isolator is considered. Although the force 
transmissibility is defined as in the Lu et al. (2013), the 
RMS of the ratio of the transmitted force to the excitation 
force is used, as the authors’ intention is to investigate the 
basic dynamics of the system when it has a response at 
harmonic excitation and random excitation. Numerical 
simulation is a simple and appropriate method for this type 
of analysis. 

2 Description of the bi-stable isolation system  

Fig. 1 shows a simple lumped parameter model of a 
nonlinear vibration isolator with linear negative stiffness. 
The system is the nonlinear isolator which is a particular 
configuration of three linear springs because of the 
geometrical configuration (Carrela et al., 2009). The 

horizontal springs have critical value ck . If the horizontal 

stiffness of the system is smaller than the critical value, it is 
a mono-stable system; otherwise, it becomes bi-stable, 
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which has more complicated dynamic behaviors compared 
with the mono-stable system (Pellegrini et al., 2012; Mann 
and Owens, 2013). 

The force-deflection curve for the isolator is given by: 
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which can be written in non-dimensional form as: 
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Fig. 1 Model of a non-linear isolator that can behave as a  
mono- or double-well system 

where ˆ sx x x , in which  1 22 2
s ox l l   is the static 

defection of the isolator, when the mass is placed onto it, 
such that its static equilibrium position is when the two 

springs hk  are horizontal as depicted in Fig. 1; ˆ
ol l l , in 

which ol  is the free length of the lateral springs, l is their 

length when they are in the horizontal position 

and ˆ
h vk k k . 

By choosing appropriate values for the two parameters k̂  

and l̂  for the oblique springs, zero dynamic stiffness can 
be achieved, i.e. Quasi-Zero stiffness can be realized when 

the critical stiffness ĉk  needs to satisfy: 
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As shown in Fig. 2, it is found that the phase trajectory 

presents a single or double well shape when k̂  is smaller 

or larger than ĉk  respectively. When l̂  is less than 1, the 

effect of the horizontal springs is to soften the isolator so 

that its stiffness is less than the vertical spring vk . When l̂  

is larger than 1, it has a detrimental effect that the linear 
stiffness is increased and the amplitude-frequency curve 
bends to the right. When the stiffness and initial length of 
the horizontal spring are fixed, it is found that the bi-stable 
configuration has a shorter installation length than the 
mono-stable configuration. 

For 0.2x l  Eq. (1) can be approximated by f=−k1+k3x
3, 

in which  1 2 1 ,o h vk l l k k     3
3 o hk l l k  and the 

equation of the motion of the system in Fig. 1 under both 

harmonic excitation cos( )eF t  and random excitation 

( )eD t  (D is the noise intensity) can be approximated by 

the Duffing equation, which can be written in 
non-dimensional form as: 
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( ) d( ) / d    and ( ) ( )e W     is a white-noise 

( ( )W  being a Wiener process). 

 
Fig. 2 Kinds of phase portraits in a parameter space 

It should be noted that   is the non-dimensional natural 
frequency of the system when the amplitude of the 

oscillation is small enough so that the nonlinear term 3x̂  

has a negligible effect. 
Written as a stochastic differential equation, Eq. (4) 

becomes: 
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where, 3ˆ ˆˆ ˆ ˆ( ) cos( )ef x x x F      

This equation can be written as the system of integral 
equations: 
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Eq. (6) written as the Euler-Maruyama scheme (Kloeden 
and Platen, 1995; Vanden-Eijnden and Ciccotti, 2006) is 
given by: 
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where, 2 3/ 2
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The force transmissibility FT  of the system is the 

measure used in the investigation. It is defined in terms of 

the RMS of the ratio of the transmitted force tf  to the 

excitation force ef . 
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where, 3ˆ ˆ ˆ2tf x x x     . 

 

 

3 Harmonic excitation 

This section investigates the response behavior of the 
bi-stable isolation system only subjected to the harmonic 

excitation which has ˆ cos( )e ef F  and the force 

transmissibility to the base.  
The maximum amplitude of the excitation force that can 

be applied to the peak in the transmissibility to occur at 
frequencies lower than non-dimensional frequency 1   
is given by (Carrella et al (2012)). 

max

2ˆˆ 4
ˆ3(1 )

eF l
l




            (9) 

3.1 Frequency response 
Reduction of the force transmissibility using a bi-stable 

system is of considerable interest in vibration isolation. To 
provide  insight  into  the  isolation   performance, numerical  

 

  

 
(a) max

ˆ ˆ0.06e eF F                   (b) max
ˆ ˆ0.2e eF F                     (c) max

ˆ ˆ0.6e eF F   

 

 
(d) max

ˆ ˆ
e eF F                     (e)  max

ˆ ˆ1.3e eF F                      (f) max
ˆ ˆ2e eF F  

 
Fig. 3 The displacement amplitude-frequency responses of the bi-stable isolator at different excitation amplitudes, with 

increasing frequency; ˆ 0.7l  , ˆ 2k  , 0.05  , max
ˆ 0.088eF   
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simulations were performed on Eq. (4) for linearly 
increasing excitation frequencies. The graphs of 3(a-f) show 
an array of frequency responses that were predicted for 
different excitation levels. Blue shadow, black points and 
red line reprent the continuous sampling of the displacement, 
amplitude of the displacement and equilibrium points of the 
system respectively. More specifically, when the excitation 

amplitude êF  is very small, the response is almost the 

linear one and the peak is near the linear natural frequency 

as shown in Fig 3(a). As êF  is increased, the jump-up 

phenomenon occurs as the system develops a softening 
nonlinearity, as shown in Fig. 3(b) and 3(c). Here, the 
system is constrained to vibrate in one of the wells. When 

êF  has a moderate level it reveals chaotic motion, reducing 

the peak resonance and jumping between the two wells 
around the linear natural frequency, as shown in Fig. 3(d). 

Fig. 3e and 3f show the dynamic behavior when F̂  has a 
large level. It is clear that the system develops the hardening 
nonlinearity which has a jump-down phenomenon, and the 
range of the jumping between the two wells extends to 
lower frequencies. At the highest excitation, the harmonic 
response is so low at high frequency that the system is 
constrained to vibrate in one of the wells. There it is seen to 
have a jump-up phenomenon as shown in Fig. 3(f). The 
system being constrained to vibrate in which specific well 
depends on the state of the previous moment. As shown in 
Fig. 3(d,e,f), the system begins to randomly jump between 
the two wells around the non-dimensional frequency 1  , 
so at the next higher excitation frequency, the system is 
randomly constrained to vibrate in one of the wells. 

3.2 Force transmissibility 
Fig. 4 shows the force transmissibility of the bi-stable 

system changing with excitation amplitude êF  for the 

cases max
ˆ ˆ
e eF F . And the parameters are the same as those 

in Fig.3, black points: max
ˆ ˆ0.06 ,e eF F  red points: 

max
ˆ ˆ0.2 ,e eF F  green points: b max

ˆ ˆ0.6 ,e eF F lue points: It is 

found that max
ˆ ˆ .e eF F  the peak of the force transmissibility 

is reduced and bends to the left with the increasing 

excitation amplitude êF ; Another observation is that all the 

curves gather together into one line at low and high 
frequencies. 

Fig. 5 shows the comparison of the force transmissibility 

between the mono- ( ˆ
ĉk k ) and the bi-stable ( ˆ

ĉk k ) 

configurations, with parameters used in Fig. 4, and critical 

stiffness ˆ 1.17ck  . Red line: ˆ 0hk  , blue line: ˆ 0.7k  ,black 

line: ˆ
ĉk k , brown line: ˆ 1.6k  , green line: ˆ 2k  . As shown 

in Fig. 5(a) with the small excitation amplitude, it is clear 
that the isolation range is extended to lower frequencies as 

k̂  increases in the range of the mono-stable system until 

ˆ 1.17k  , then narrows in the range of the bi-stable system. 
As a bi-stable system, a softening nonlinearity is observed 
and the peak moves to the right. As shown in Fig. 5(b) with 
the large excitation amplitude, which may vibrate between 

the two wells, the same effect of the stiffness ratio k̂  on 
the force transmissibility of the mono- and bi-stable systems 
at high frequency is indicated. 

 

 

Fig. 4 The magnitude of force transmissibility of the 
bi-stable isolator at different excitation amplitudes  

 

 

(a) max
ˆ ˆ0.2e eF F  

  

(b) max
ˆ ˆ
e eF F  

Fig. 5 The force transmissibility of the isolator at different k̂  
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4 Random excitation 

The response and force transmissibility of the bi-stable 

system subjected to the random excitation ( )e ef D t , 

with the parameter k̂  varying from 0 to 4, are investigated 
in this section. The same isolation performance between the 
harmonic and the random excitation is found for the linear 
system, but not for the bi-stable system. The degenerative 
equation of motion of the bi-stable system only subjected to 
random excitation in Fig. 1 can be approximated by: 

3ˆ ˆ ˆ ˆ2 ( )ex x x x                 (10) 

where, D̂   

4.1 Time response 
When the system is excited by a force which has 

Gaussian random characteristics, the responses of the mass 
and the phase portrait are shown in Fig. 6. It can be seen that 
for lower excitation forces, the system is constrained to 
vibrate in one of the wells (see Fig. 6(a)). For moderate 
force levels, the system will jump between the two wells and 
the displacement response shows some regularity (see Fig. 
6(b)). For large force levels, the regular motion is disrupted 
and the response becomes stochastic again (see Fig. 6(c)). 

4.2 Force transmissibility 
The definition of force transmissibility for the bi-stable 

isolation system subjected to random excitation is the same 
as the previous section, but the noise intensity domain is 

used. Fig. 7(a) shows the effect of changing k̂  on the 
magnitude of force transmissibility. And the parameters are 

the same as in Fig. 6. Red line: ˆ 0k  , black line: ˆ
ĉk k , green 

line: ˆ 1.5k  , light green line: ˆ 1.8k  , blue line: ˆ 2k  .When 

k̂  is fixed at a chosen value, it is found that the force 
transmissibility of the bi-stable isolation system is decreased 

as D̂  is increased, until opt
ˆ ˆD D , then increased. The 

optimum force transmissibility at each k̂  is shown as the 

brown dashed line. Interestingly, both the optimum intensity 

of noise optD̂  and the suppression bandwidth of the valley 

are increased as k̂  increases. Fig. 7(b) shows the force 
transmissibility compared with that of the mono-stable 

isolation system configured by k̂ . When the noise intensity 

D̂  is fixed at 0.01, it is found that the minimum magnitude 
of force transmissibility occurs at the Quasi-zero stiffness. 

Fig. 7c shows the escaping area in the ˆ ˆk D  plane. Shadow 

area in the ˆ ˆk D  plane indicates the escaping area, red 
crossed points are the same with the brown dashed line in 
Fig. 7(a) and indicates the optimum points for isolation. It is 

clear that the optimum noise intensity optD̂  for isolation is 

in very good agreement with the up D̂ -limitation boundary 
for escaping. 

A parametric study was carried out to illustrate how the 
parameters affect the dynamic behaviour and the results are 

shown in Fig. 8. Fig. 8(a) shows the effects of   and k̂  

on the magnitude of the force transmissibility. It is found 
that an oblique bowl occurs. Fig. 8(b) shows the optimum 

damping opt  variation with k̂ . For the linear isolator, the 

optimum damping opt  is the constant which has 

opt 0.5  . For the bi-stable isolator, it is clear that the 

optimum damping is decreased as k̂  increases, until 

ˆ
ĉk k , then it increases, as shown in Fig. 8(b). Fig. 9(a) 

shows the effects of k̂  and l̂  on the magnitude of the 
force transmissibility. It is found that an arc-trench occurs in 

the  ˆ ˆ
FT k l   3D surfance chart. Fig. 9(b) shows the 

optimum stiffness ratio ˆ
optk  changing with l̂ . Red cross 

points reprent numerical results, blue solid line reprents 
theory reslut predicted by Eq. (2), they are in very good 
agreement. 
 

 

 

 

         (a) Low noise intensity, ˆ 0.001D                       (b) Moderate noise intensity, ˆ 0.01D   
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(c) Large noise intensity, ˆ 0.1D   

Fig. 6 Responses of the system when it is subjected to random excitation, at ˆ 0.7l  , ˆ 2k  , 0.5 
 

 

    

       (a)Effect of D̂                (b) Effect of k̂ at ˆ 0.01D              (c) Escaping area in the ˆ ˆk D  plane 
    

Fig. 7 The magnitude of force transmissibility at different D̂ and k̂  
 

 
 

 
 

Fig. 8  The magnitude of force transmissibility at different k̂  and   at ˆ 0.7l  , ˆ 0.01D  . 

(a) Effects of   and k̂  on the magnitude of 
the force transmissibility 

(b) Optimum damping opt varing with 

 stiffness ratio k̂ . 
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Fig. 9 The magnitude of force transmissibility at different k̂ and l̂ , at 0.5  , ˆ 0.01D   

 

5 Conclusions 

This paper investigates the usage of a nonlinear system 
with linear negative stiffness to improve isolation 
performance with the additional benefit of a small 
installation length as compared with the linear positive 
stiffness. Force transmissibility is used to measure the 
isolation performance, which is defined in terms of the RMS 
of the transmitted force. It is found that the Quasi-Zero 
stiffness is the optimum stiffness for both isolation of 
harmonic and random excitation. Three phenomena 
regarding the nonlinear isolator with linear negative stiffness 
subjected to random excitation are particularly interesting. 
First the magnitude of the force transmissibility is decreased 

as D̂  increases, until opt
ˆ ˆD D , then it is increased. 

Second, the optimum damping is changed with k̂  and has 
minimum value. Third, the optimum magnitude of force 

transmissibility occurs along the arc-trench in the ˆ ˆk l  
plane. 
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