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Abstract: This paper presents a review of the work on 
fluid/structure impact based on inviscid and imcompressible liquid 
and irrotational flow. The focus is on the velocity potential theory 
together with boundary element method (BEM). Fully nonlinear 
boundary conditions are imposed on the unknown free surface and 
the wetted surface of the moving body. The review includes (1) 
vertical and oblique water entry of a body at constant or a 
prescribed varying speed, as well as free fall motion, (2) liquid 
droplets or column impact as well as wave impact on a body, (3) 
similarity solution of an expanding body. It covers two dimensional 
(2D), axisymmetric and three dimensional (3D) cases. Key 
techniques used in the numerical simulation are outlined, including 
mesh generation on the multivalued free surface, the stretched 
coordinate system for expanding domain, the auxiliary function 
method for decoupling the mutual dependence of the pressure and 
the body motion, and treatment for the jet or the thin liquid film 
developed during impact. 
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solution; fully nonlinear simulation 

 
Article ID: 1671-9433(2014)03-0237-08 

1 Introduction1 

Fluid/structure impact occurs when fluid and solid 
approach each other with high relative speed. It has a wide 
range of practical applications. The physical process usually 
involves air cushion effect (Smith et al., 2003), trapped air 
cavity or bubbles (Hattori et al., 1994; Kiger and Duncan, 
2012), cavitation inception (Arndt, 2002), high speed jet or 
thin liquid film (Wu et al., 2004), extremely large impulsive 
pressure and acceleration (Peregrine, 2003), structural 
deformation (Lu et al., 2000; Korobkin et al. 2006), liquid 
compressibility (Lesser and Field, 1983; Korobkin and 
Pukhnachov, 1988; Korobkin et al., 2008), etc. Many of 
these physical parameters change rapidly in the space and 
with time. This makes experimental and numerical studies of 
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this problem extremely challenging. The present work does 
not intend to cover all these aspects. The air cushion effect 
will not be considered based on the assumption that the 
impact starts with a small contact area and air can escape 
before collision. Air trapping will be ignored, assuming the 
liquid and solid surfaces will not form a closed volume at the 
moment of impact. The relative speed of impact may be large, 
but it will still be much smaller than the speed of the sound in 
the liquid, and therefore its compressibility can be ignored. 
The viscosity may also be neglected if the period of impact is 
short as its effect takes time to develop (Batchelor, 1967). 
Therefore we will focus on the inviscid and incompressible 
liquid with irrotational flow. However, we shall follow the 
deformation of the liquid surface with the jet and thin liquid 
film, on which the fully nonlinear boundary conditions will 
be imposed. 

Mathematically, the governing equation for the irrotational 
flow of an ideal and incompressible liquid is the Laplace 
equation. The pioneering work was started by Von Karman 
(1929) through a water entry problem. When a two 
dimensional body entered water, he used an equivalent plate 
with its width equal to distance between intersections of the 
body with the calm water surface. The analytical solution for 
a plate on the calm water surface was used as an 
approximation at each time step. When the body continues 
entering the water, the width of the plate changes. While Von 
Karman’s work did not consider the water surface 
deformation, Wagner (1932) introduced a correction. From 
Von Karman’s theory, the vertical velocity on the free surface 
could be obtained. Using that, the free surface elevation was 
obtained. The intersection of the body with the elevated free 
surface was then used as the width of the equivalent plate in 
the Wagner's theory. This theory has been widely used in the 
fluid/structure impact problem ever since. Typical work based 
on analytical or semi-analytical solution includes those by 
Armand and Cointe (1987), Howison et al. (1991), Scolan 
and Korobkin (2001, 2012), Korobkin and Scolan (2006) and 
Moore et al. (2012). 

In addition to the Wagner’s approximation, there has been 
extensive work using the analytical method for the fully 
nonlinear problem. Cumberbatch (1960) obtained the 
mathematical solution for vertical impact of a symmetrical 
liquid wedge on a horizontal flat surface. Dobrovol’skaya 
(1969) converted the problem into an integro-differential 
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equation for ( )f t  between 0 1t  . Shu (2004) solved the 

oblique impact of a water wedge on a flat wall at initial stage 
by using the Taylor expansion in terms of time, similar to that 
used by Korokin and Wu (2000) for the impact caused by the 
impulsive motion of a floating semi-circular cylinder. 
Semenov and Iafrati (2006) used the integral hodograph 
method for vertical entry of an asymmetric wedge into calm 
water. The same method was used by Semenov and Wu (2013) 
for the steady flow problem of a body gliding along the free 
surface and by Semenov et al. (2013) for the problem of 
collision between two liquid wedges. Christodoulides and 
Dias (2009) used conformal mapping method for the steady 
flow problem of a rising stream hitting a plate of finite extent. 

Here we shall give an overview for the extensive work 
based on the boundary element method (BEM). This method 
has particular advantage for this kind of impact problem. 
Although physical parameters change rapidly during impact, 
the affected area is usually confined compared with 
body/water wave interaction problem which is usually over a 
much larger domain. In such a case, the BEM is usually 
computationally more efficient compared with the volume 
mesh based method, such as the finite element method (Wu 
and Eatock Taylor, 1995; Wu and Eatock Taylor, 2003). The 
jet or liquid film also makes the mesh generation in the latter 
method more difficult. In the section below, we will give an 
overview for the following fluid/structure impact problems (1) 
water entry, (2) water droplets and water block, wave impact 
on a wall and (3) similarity solution for water entry of an 
expanding body with curvature. 

2 The fully nonlinear boundary element 
method  

The fluid is assumed to be inviscid and incompressible, and 

flow to be irrotational. Thus a velocity potential   with its 

gradient equal to the velocity can be introduced and it 
satisfies Laplace equation 

2 =0                      (1) 

From Green's identity, this equation can be transformed 
into an integral form  

( )
( ) ( ) ( ) d q

q q

q G
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n n

 
  
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where integration is performed with respect to point q  over 

the boundary of the fluid domain, ( )A p  is the solid angle at 

point p and G is the Green function. For 2D problems 

ln pqG R , and for 3D problems 1/ pqG R   where 

pq q qR  r r  is the distance between the field point p  and 

source point q , x y z  r i j k  denotes position vector 

from the origin of the Cartesian system O xyz , and i, j, k 
are unit vectors in the x, y, z directions respectively. In the 2D 
case, Eq. (2) can also be written based on the complex 
potential through the Cauchy theorem, and thus the BEM can 

be written in a different form involving the velocity potential 
and the stream function, rather than the potential and its 
normal derivative.  

The potential satisfies the impermeable boundary condition 
on the wetted body surface  

n


    


v n Ω r n                 (3) 

where U V W  v i j k  and x y z    Ω i j k  are 

respectively the translational and rotational velocities of the 
body and n is the normal pointing out of the fluid domain. In 
the Lagrangian framework, the kinematic and dynamic 
boundary conditions on the free surface can be respectively 
written as  
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where the effect of gravity has been ignored in Eq. (5) on the 
basis that the impact time is much smaller than the ratio of the 
relative impact speed and the acceleration due to gravity. Eqs. 
(4) and (5) can also be written based on the Eulerian 

framework through wave elevation  , or  

z x x y yt
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            (6) 

1
0

2t                  (7) 

Far away from the impact, the fluid is assumed to be 
undisturbed by the impact. The potential there is assumed to 
be zero or the incident potential due to incoming flow. 

3 The stretched coordinate system  

Many problems of fluid structure impact starts with a 
contact point. Earlier work let the contact zone be initially 
finite, or a small part of the body be put into the water (Lu et 
al., 2000; Zhao and Faltinsen, 1993, 1999; Battistin and 
Iafrati, 2003) and assumed that the water surface was flat and 
the potential on it was zero. It was also noticed by Wu et al. 
(2004) that this practice became problematic for the free fall 
motion, or other problems when the body motion/deformation 
was nonlinearly coupled with the flow. They proposed to 
solve the problem using the stretched coordinate system 
O   defined  as        

/x s  ,  /y s  , /z s            (8) 

Here, the length scale s  can be appropriately chosen. In the 
water entry problem of a wedge (Wu et al., 2004), it was 
chosen as the distance that the wedge has travelled into the 
water. For a 2D water column or liquid droplet of curvature it 
was found that the local varying width of the liquid is a more 
rational choice for s  (Wu, 2007a, 2007b). The use of the 
stretched coordinate system in Eq. (8) allows us to adopt the 
similar element size and computational domain in the space 
as the time step is marching forward, while in the physical 
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system the element size is very small initially and then 

increases with the time step. Furthermore, the initial 0s s  

in Eq. (8) can be chosen as small as possible, for example 
610  or smaller as in Wu et al. (2004). This can reduce or 

remove the initial transient effect on the results of interest at 
later stage. It fact, detailed analysis by Sun and Wu (2013a) 
for the case of water entry of a cone has shown that when 

0/ 20 30s s   , the initial transient effect is hardly noticeable. 

Because of its advantages, this stretched coordinate system 
method has been used in the wide range of problems (Wu et 
al. 2004; Wu, 2007a, 2007b; Wu, 2006, 2012; Duan et al. 
2009; Xu et al. 2008, 2010, 2011a; Xu et al. 2011b; Sun and 
Wu, 2013a, 2013b, 2014; Wu and Sun, 2014). 

4 Jet and intersection point treatments 

During fluid/structure impact, it is common that, a thin 
liquid layer moving along the body surface with very high 
speed will be formed. To ensure numerical accuracy, the 
elements on the two sides of the thin fluid layer must have the 
size smaller than the thickness of the layer. This will lead to 
an extremely large number of elements, which can easily 
beyond the capacity of computers. To resolve this problem, 
Zhao and Faltinsen (1993) and Lu et al. (2000) cut the thin 
liquid layer and used a line element to connect the body 
surface and the free surface. This may cause numerical 
fluctuation locally, but it does not affect the global result 
when the fluctuation is not fed back into the flow. Wu et al. 
(2004) treated the thin jet on the wedge surface by assuming 
that the potential across the layer was a linear function. 
Because of the Laplace equation, the potential is then also a 
linear function in the other direction. As a result the potential 
and velocity become known on the both sides of the thin layer 
and they do not have to be solved from the boundary integral 
equation. The advantage of this is therefore that the inclusion 
of the jet does not increase the number of unknowns and the 
CPU and memory requirement still depends on the number of 
elements in the main flow region. This method was refined by 
Wu (2007b) for more general 2D cases and was extended by 
Sun and Wu (2013a) for 3D problems. 

5 Pressure and force calculation 

The pressure on the body surface can be written based on 
the Bernoulli's equation  

1
( )

2tp                     (9) 

We notice that the meaning of t  is the partial temporal 

derivative for a point fixed in the space. This could be 
problematic on the body surface. The numerical calculation of 

t  has to take the value of   from the previous time step 

(explicit scheme) or the next time step (implicit scheme). 
However due to the body motion, the point fixed in the space 
may not be in the fluid domain at the previous time or the 

next time step. To overcome that, Eq. (9) can be written in the 
following from  
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Here 
d

dt


 is taken for a point fixed on the body surface. This 

avoids the problem associated with t . However for a body 

at the free surface, finite difference calculation of 
d

dt


 

usually causes very sharp spikes in the pressure curve.  

Alternative to calculation of t  through finite difference 

for 
d

dt


 is to treat t  as another potential problem and find 

it through the boundary integral equation similar to Eq. (2). 

The boundary condition of t  on the free surface can be 

obtained easily from the zero pressure condition. Its rigid 
body surface boundary condition can be obtained from the 
equation derived by Wu (1998). However, the latter involves 
the body acceleration which depends on the fluid force. The 
fluid force then depends on the pressure in Eq. (9) which 
further depends on the acceleration. To avoid this nonlinear 
mutual dependence, Wu and Eatock Taylor (2003) introduced 

some auxiliary functions k , 1, 6k   . They satisfy the 

Laplace equation, 0k   on the instantaneous free surface 

and k
kn

n





, where 1 2 3( , , )n n nn  and 4 5 6( , , )n n n r n . 

Through the use of these auxiliary functions, the body 
acceleration can be obtained without the knowledge of the 
pressure distribution. This method was used by Wu et al. 
(2004) and Xu et al. (2010, 2011a). When the body has the 

constant velocity or the known acceleration, t  can be 

solved directly without the need of the auxiliary function (Wu, 
2007a, 2007b; Sun and Wu, 2013a, 2013b; Wu, 2006, 2012; 
Duan et al. 2009; Xu et al. 2008). 

6 Case studies and discussions  

6.1 Water entry 
A classic fully nonlinear solution for water entry of a 

wedge at constant speed was obtained by  Dobrovol’skaya 
(1969) using the complex potential to convert problem into 
an integral equation along a straight line. This integral 
equation was resolved by Zhao and Faltinsen (1993) with a 
much higher degree of accuracy. In the same paper, they 
solved the problem using the BEM described in Eq. (2). They 
provided details on how the free surface was updated in the 
time marching method and how the BEM elements were 
regularly generated, which laid a good foundation for much 
of the work followed. They also carefully cut the jet and 
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showed that although that caused some local fluctuation of 
the pressure, this was very much confined to a small area 
where the jet was cut. Battistin and Iafrati (2003) considered 
water entry of a 2D cylinder and an axisymmetric body of 
curvature. Jet cutting was also applied. The water entry of 
two wedges at constant speed was solved by Wu (2006). At 
initial stage, the ratio of the distance between the two wedges 
to the distance which the body has travelled into the water is 
virtually infinite. Thus two wedges can be considered as fully 
independent. The initial solution for each wedge can be 
obtained from the self similar flow. As time progresses, the 
interaction between the two wedges becomes important. The 
flow is no longer self similar and the problem of the 
combined two wedges has to be solved in the time domain. 
Xu et al. (2008) considered the problem of oblique entry of 
an asymmetric wedge at constant speed. When the horizontal 
velocity is zero, or the body enters water vertically, they 
compared their results with those obtained by Semenov and 
Iafrati (2006) using the integral hodograph method and very 
good agreement was found. While all the work above are on 
2D problems, Sun and Wu (2013a) solved a 3D problem of 
oblique water entry of a cone. One of the main challenges to 
BEM in this kind of problem is regular generation of 3D 
meshes in the time domain. This becomes particularly 
complex when the free surface elevation is non single valued, 
or a vertical line will intersect the free surface more than once. 
To resolve that, Sun and Wu (2013a) first generated line 
elements in each given azimuth of the cylindrical coordinate 
system. The line element nodes were then linked in the 
circumferential direction to form surface elements. The free 
surface was updated in a modified Eulerian method. In 
particular, instead of in the vertical direction, the free surface 
elevation was updated in the direction parallel to the body 
surface in each given azimuth. This worked well apart from in 
the liquid film attached the body, where the slope of the free 
surface elevation in the direction parallel to the local body 
surface becomes extremely large. Sun and Wu (2013b) 
overcome the difficulty by replacing this direction with the 
normal direction of the free surface or the direction of the 
relative velocity between the local flow and the body surface. 
This has laid a good foundation for successful simulations for 
3D problems. 

For non-constant speed, Zhao et al. (1997) solved water 
entry problem of arbitrary two-dimensional sections with 
prescribed speed variation. Wu et al. (2004) undertook the 
numerical simulation and experimental study of vertical water 
entry of a wedge in free fall motion. As the body speed is no 
longer prescribed and has to be updated from its acceleration 
obtained from the hydrodynamic force, accuracy of the 
solution at each time step becomes more important. The 
pressure fluctuation due to jet cutting could be fed back into 
the fluid flow through the body motion. Great care was 
therefore taken by Wu et al. (2004). When the wedge touched 
the water surface, they used the self similar flow as the initial 
solution to allow a smooth start with the pressure distribution 
and the acceleration. The nonlinear mutual dependence of the 

body motion and the fluid flow was decoupled by the use of 
the auxiliary function described in Section 4. They also 
performed the model test and found the numerical results and 
experimental data were in good agreement. This work was 
extended by Xu et al. (2010). In addition to the vertical 
motion, they included the horizontal and rotational motions 
when the wedge was in free fall. Despite the fact that the 
similarity solution was no longer possible due to rotation, 
they found that use of the self similar flow with equivalent 
speed as the initial solution could greatly improve the 
accuracy of the solution at the later stage. Xu et al. (2011a) 
further consider an axisymmetric problem of vertical water 
entry of a cone in free fall motion. The auxiliary function 
method was once again used. The calculated results were 
found in good agreement with the experimental data by 
Baldwin (1971). 

 It was known that solution for water entry of a wedge at 
constant speed would be self similar, which led to the 
pioneering work of Dobrovol’skaya (1969). Wu (2012) 
demonstrated that self similar solution would be also possible 
for a wedge with a varying speed, proved its travelled 
distance s  into water and time t  follow the relationship 

s Dt  where D and   are constants. When 1  , this 

becomes the case of constant speed. When 1  , Wu (2012) 
showed that the line linking the origin on the undisturbed 
water surface and the interaction of the wedge surface and the 
free surface is perpendicular to the free surface. Sun and Wu 
(2013b) extended this to 3D. They showed that even when 
the body was not axisymmetric, self similar solution would 

still possible under the same condition of s Dt , provided 
the plan cutting through the body axis at each azimuth formed 
a triangle. 

For non-rigid bodies, Lu et al. (2000) conducted the 
coupled hydrodynamic and structural analysis for water entry 
of an elastic wedge at constant speed. The nonlinear velocity 
product term in the Bernoulli equation was calculated using 
the velocity at the current time step (unknown to be found) 
and the velocity at the previous step (known). This allows the 
differential equation for the body deformation to be solved 
based on Newmark integral method (Bathe and Wilson, 
1976). Lu et al. (2000) also used velocity at current step for 
the product term in the Bernoulli equation and used iteration 
to obtain the body deformation. They found that the results 
from the two methods were in good agreement.    

6.2 Water droplets and water block, wave impact on a 
wall 

We focus on our discussions in the context of 
fluid/structure impact. More general discussions on droplets 
and bubbles can be found in Yarin (2006) and Thoroddsen et 
al. (2008). Discussion on wave impact in a wider context can 
be found in Peregrine (2003).  

A typical earlier work on wave impact on a wall was that 
by Cooker and Peregrine (1991). One very interesting thing 
which they noted is flip through. In such a case, the incoming 
wave will not hit the wall directly. Instead the free surface at 
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the wall will rise rapidly in the form of a jet. The local 
acceleration could be thousands of times larger than the 
acceleration due to gravity. Zhang et al. (1996) obtained the 
self-similar solution of a water wedge impact on a wall and 
used this solution as the initial solution for plunging wave 
impact. They approximated the free surface shape using the 
exponential function. Duan et al. (2009) solved the problem 
of a water wedge impact on a wall without such an 
approximation and obtained far more accurate solution, 
which was confirmed by Semenov and Wu (2012) using the 
integral hodograph method. In the same paper, Duan et al. 
(2009) considered the oblique impact of a liquid wedge on a 
solid wedge, extended from the work of Wu (2007b) on 
perpendicular impact. In 3D, Sun and Wu (2014) considered 
the oblique impact of a water cone on a wall. The 3D mesh 
was generated and then regularly regenerated following the 
deformation of the free surface, based on the technique 
developed in Sun and Wu (2013a, 2013b). A snapshot of the 
mesh of quadrilateral elements on the instantaneous free 
surface is shown in Fig.1(a) together with the obtained 
pressure distribution on the wall shown in Fig.1(b), taken 

from Sun and Wu (2014). In the figure 1  and 2  are the 

angles from the cone surface and the wall surface to the plane 
perpendicular to the axis of the water cone.  

The surface of a liquid wedge or a cone has no curvature 
(in a given azimuth for the case of cone). Wu (2007a) 
considered a case of a 2D water column described by 

( )y f x  hitting on a wall with constant speed W. He 

found that if s Wt  was used, the initial wetted surface 
tended to infinity, which became problematic in numerical 
simulation. Thus it is crucial to choose s  properly. In that 
case, when ( )s f Wt , the above difficulty could be 

resolved. In the same paper, it was shown when a liquid 

column with 1f a x   hitting on a wall with speed W, 

where 0 1  , the pressure distribution depends only on 

/Wt a  and it does not depend on W and a  individually, 
which is consistent with the PI theorem. Wu (2007b) further 
considered liquid column hitting on a solid wedge. In the 
same paper, he also considered a liquid droplet hitting on the 
solid wedge. The simulation started from the solid wedge 
cutting into the droplet on one side in the stretched coordinate 
system. The simulation returned to the physical domain when 
the width of droplet began to decrease. A numerical scheme 
was introduced to allow the wedge edge to come out from the 
other side of the droplet, or to allow the wedge to bisect the 
droplet. The single droplet was then split into two parts 
sliding on each side of the solid wedge. In the paper, it was 
also found that when a 2D body has no curvature, the normal 
derivative of the pressure on the body surface is zero. Xu et al. 
(2011b) solved the problem an axisymmetric problem of a 
liquid block hitting on a solid cone. The simulation, however, 
was not sufficiently long to let the tip of the cone to pierce 
through the other side of the liquid block. Water droplet 
impact is important in a much wider range of problems. 
Further details can be found in Yarin (2006). 

 

 

(a) Free surface 
 

 

(b) Pressure distribution 
 

Fig. 1 Oblique impact of a water cone on an inclined wall, 
the deadrise angle of the water column is 1 π / 3   

and the inclined angle of the wall 2 π / 12  . (Sun 

and Wu, 2014) 

6.3 Similarity solution for water entry of an expanding 
body with curvature 

In general, the spatial and temporal dependence of the 
fluid/structure impact problem is fully separate. However 
there are many cases in which the spatial and temporal 
variables can be combined to form new variables and the 
flows become self similar in these cases. Importantly even 
when the similarity solution is for special cases, it can play 
some crucial role in fluid/structure impact problems. It can 
help to resolve the local singularity in the solution (Zeff et al., 
2000; Iafrati and Korobkin, 2004). The use of the 
self-similar solution as the initial solution for general transient 
problem can greatly improve the numerical results at later 
stages (Wu et al., 2004; Xu et al., 2010, 2011a). In some 
cases, the limit of a similarity solution tends to a steady 
solution (Semenov and Wu, 2012).   
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As discussed by Wu and Sun (2014), among many others, 
well known examples of similarity solutions include those by 
Cumberbatch (1960) for liquid wedge impacting on a flat 
wall, by Dobrovol’skaya (1969) and Zhao and Faltinsen 
(1993) for a solid wedge entering a calm water surface, by 
Semenov and Iafrati (2006) and Xu et al. (2008) for an 
asymmetric wedge entering water vertically and obliquely, 
respectively, by Wu (2007b) and Duan et al. (2009) for 
impact of a liquid wedge and solid wedge. Similarity solution 
can also be found in impact of two liquid wedges of same 
density (Semenov et al. 2013) and impact of two liquid 
wedges of different densities (Semenov et al., 2014).  

It may be noticed that the self-similar solution in water 
entry of a rigid body was obtained only for a wedge in 2D or 
a cone in 3D. This is expected as the body continues moving 
into the water, the shape below the water surface must be 
geometrically similar even though its size increases. Thus it 
seems to rule out a body with curvature in the vertical plane. 
Wu and Sun (2014) realized that this might be true when a 
body was rigid. However if the body was allowed to deform 
during water entry to maintain the geometric similarity, self 
similar solution might be still possible. They used the 
paraboloid as an example and discovered when the body 
expanded in a particularly prescribed way, the self similar 
flow was indeed possible. As discussed by Wu and Sun 
(2014), such consideration is not purely for mathematical 
purpose and it has important physical significance and 
practical applications. Its importance could be partly reflected 
by the role of the Dirichlet’s ellipsoid (Lamb, 1932) in the 
free surface flow problem. Similar examples could also be 
found in the work of Longuet-Higgins (1976) on a family of 
self similar problem for an expanding Dirichlet ellipse, 
hyperbola and other shapes. These mathematical solutions 
were later found to give significant insight into wave breaking 
(Longuet-Higgins and Cokelet, 1976; Longuet-Higgins, 
1980, 1983a) and bubble busting through the free surface 
(Longuet-Higgins, 1983b). Wu and Sun (2014) commented 
that a potential application of the water entry of an expanding 
body could be in the 2D+t theory for a ship (Faltinsen et al., 
1991). When calculation starts from a 2D section at the bow 
and then continues along the ship length, it is equivalent to 
the problem that the body is expanding (Tassin et al., 2013). 

While similarity solution can be possible for a variety of 
bodies with varying shape, a specific example considered by 
Wu and Sun (2014) is the following paraboloid 

2 2( , , , ) ( ) 0f x y z t x y s z s           (11) 

where =s Wt  and   is a constant. Thus the body enters 

water with speed W  and the radius of its horizontal cross 

section increases at the rate of 1/ 2s . In this case, the problem 
will no longer depend on the time explicitly in the stretched 
coordinate system. However, the free surface boundary 
conditions are fully nonlinear and its shape is unknown. Wu 
and Sun (2014) converted the differential equations for the 
free surface boundary conditions into integral equations along 
a line at each given azimuth plane, similar to that used in Wu 

et al. (2004). These conditions were then satisfied through 
iterations.   

7 Concluding remarks and further research 

Fluid/structure impact is of vital importance in many 
engineering applications. It is also one of the most 
challenging problems in experiment and numerical 
simulations. Tremendous progress in both solution techniques 
and understanding of the physical nature has been achieved 
since the time of Von Karman (1929), as the present review 
has shown. However, the success in many aspects is still 
limited. Further research is required in a wide range of 
problems. 

(1) Kutta condition at shape edge. 
During the oblique entry of a wedge (Xu et al., 2008) or a 

cone (Sun and Wu, 2013a), pressure is found to be 
discontinuous or even singular. This is of course not unique 
for the impact problem. A well known example of this is a 
hydrofoil. An effective solution for the foil within the 
framework of the potential theory is to use Kutta condition. 
Through allowing the vortices being shed from the trailing 
edge, the pressure there becomes continuous. Numerical 
implementation of the Kutta condition has been made for a 
foil with large amplitude motion and moving vortex sheet 
shed from the trailing edge (Xu and Wu, 2013). This scheme 
can be incorporated into the water entry of a wedge. 

(2) Water entry into waves with gravity effect. 
When a body enters a wave instead of calm water, the fluid 

motion due to the incident wave changes the relative impact 
velocity between body and fluid. The slope of the wave will 
also change the effective deadrise angle of the body. The total 
potential will involve both incident potential and the 
disturbed potential caused by the body. The method based on 
the stretched coordinate system described in Section 2 will 
have to be modified. 

(3) Impact with compressible liquid. 
In some cases, even though the speed of the body is much 

smaller than the speed of the sound, the magnitude of the 
local fluid velocity can be much larger. Also when a liquid 
contains bubbles, the speed of sound can be significantly 
reduced. In such cases, the compressibility of the liquid is no 
longer negligible. The governing equation is no longer 
Laplace equation but wave equation. When the latter is 
converted into an integral equation, it involves not only the 
integration over the boundary but also an integration over the 
time (Zhang et al., 2013), which is in fact the delayed effect 
as a disturbance travels at the speed of sound. The solution 
procedure for such an integral equation becomes much more 
complicated.  

Other effects in more general cases to be considered in 
further research include (1) large structural deformation, (2) 
trapped air and bubble, (3) cavitation inception, (4) air 
cushion, (5) flow detachment from the body (6) viscousity, (7) 
surface tension, etc.  
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