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Abstract: A pneumatic launcher is theoretically investigated to 
study its natural transverse vibration in water. Considering the mass 
effect of the sealing cover, the launcher is simplified as a uniform 
cantilever beam with a top point mass. By introducing the boundary 
and continuity conditions into the motion equation, the natural 
frequency equation and the mode shape function are derived. An 
iterative calculation method for added mass is also presented using 
the velocity potential function to account for the mass effect of the 
fluid on the launcher. The first 2 order natural frequencies and 
mode shapes are discussed in external flow fields and both external 
and internal flow fields. The results show good agreement with 
both natural frequencies and mode shapes between the theoretical 
analysis and the FEM studies. Also, the added mass is found to 
decrease with the increase of the mode shape orders of the launcher. 
And because of the larger added mass in both the external and 
internal flow fields than that in only the external flow field, the 
corresponding natural frequencies of the former are relatively 
smaller.  
Keywords: underwater launcher; free transverse vibration; natural 
frequency; mode shape; added mass; fluid-structure interaction 
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1 Introduction1 

A certain form of underwater pneumatic launcher, which 
uses high-pressure air as the energy source to discharge the 
weapon out of the launch tube, vibrates in different flow fields 
during and after the launching process. During the launching 
process, the launcher vibrates in the external flow field while 
after the weapon is launched out, the launcher vibrates in both 
the external and internal flow fields. The study of the free 
transverse vibration has great significance for further research 
on the structural response and sound radiation for these types 
of launchers when subjected to dynamic forces.  

Because of the sealing cover at the free end, the vibration 
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characteristics of the launcher are more difficult to study than 
those without top structures. Generally, the top component is 
simplified into a point mass (Auciello, 1996; Posiadala, 1997; 
White and Heppler, 1995; Wu and Chen, 2003; Salarieha and 
Ghorashi, 2006). For structures with top point mass which are 
immersed in water, there is plenty of literature concerned with 
their vibration. Uscilowska and Kolodziej (1998) studied the 
free vibration of a partially immersed column with a 
concentrated mass at the top. Closed form frequencies and 
eigenfunctions were presented. The parameters’ influence on 
the frequency equations was also discussed. Öz (2003) 
presented a non-dimensional transverse vibration equation for 
an Euler-Bernoulli type beam partially immersed and studied 
the effects of water height, tip mass and water density on the 
frequencies. Wu and Chen (2005) developed a theory to 
determine the natural frequencies and the corresponding mode 
shapes of an immersed and elastically fixed wedge beam. A 
comparison between the FEM numerical results was made 
and good agreement was achieved. Zhou (1997) investigated 
a cantilever beam with a tip mass which was elastically 
supported. Exact and analytical expressions for 
eigenfrequencies and mode shapes of a beam were derived. 
Wu and Hsu (2006 and 2007) studied an immersed uniform 
beam carrying an eccentric tip mass with elastic and fixed 
support. Shen (2009) used the finite difference method to 
investigate the nonlinear free vibration of a compliant beam 
partially immersed in water.  

Little attention has been paid to the structures fully 
immersed in both external and internal flow fields. In this 
study, an underwater pneumatic launcher is examined by 
modeling it into a cantilever beam with a top mass. Not only 
the external flow field but also the external field and the 
internal flow field are studied. The natural frequency equation 
and mode shape function of the transverse vibration are 
established. An iterative calculation method of added mass is 
proposed, which gives more precise predictions. Vibration 
results of the different dimensions are analyzed as examples 
and the first 2 order natural frequencies and mode shapes are 
given. In the end, a comparison between the FEM results is 
made and a good consistency with the natural frequencies and 
mode shapes is achieved.  
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2 Analytical model 

Fig.1 shows the sketch of a type of underwater pneumatic 
launcher. Considering the mass effect of the sealing cover 
and ignoring its volume influence, the launcher is modeled 
as a uniform cantilever with a top mass at the free end. 
Taking into account the fluid-structure interaction with the 
added mass, the free transverse vibration equation of the 
beam model may be written in the form: 

 
4 2

4 2
' 0

u u
EI m

z t

 
 

 
 (1) 

where EI is the bending stiffness, u is the transverse 
displacement, 'm  denotes the effective mass of the beam 
per unit length in water. 'm m m   , in which m  is the 
structure mass per unit length in air and m  is the added 
mass of entrained water per unit length.  

Separating the variables of z and t, the solution of Eq. (1) 
can be written as: 
 ( , ) ( ) ( )u z t X z T t  (2) 

Substituting Eq. (2) into Eq. (1) yields 
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in which 2 / 'a EI m . 
 

  
(a) front view of the launcher 

(b) cross-section of the launch tube 
Fig. 1 Sketch of an underwater pneumatic launcher  

 
Noting that the left side of Eq. (3) is a function of t only 

and the right side is a function of z only, the equation can be 
satisfied for arbitrary values of t and z only if each side of 

Eq. (3) is a constant. Supposing the constant is 2 , two 
separate differential equations are derived: 

 2( ) ( ) 0T t T t   (4.a) 
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The general solutions of Eqs. (4.a) and (4.b) can be 
expressed in the form:  

 1( ) sin( )T t A t    (5.a) 

 1 2 3 4( ) sin( ) cos( ) sh( ) ch( )X z B kz B kz B kz B kz    (5.b) 

where 1A  and 1 4~B B  are unknown constants,   is the 
natural frequency of the transverse vibration,   is the 

initial phase angle and k  meets the requirements of 
2 2

4
2
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k
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The transverse displacement ( , )u z t  in Eq. (2) must 
satisfy the zero displacement and zero slope boundary 
conditions at the fixed end and the zero moment and shear 
boundary conditions at the free end, i.e., the conditions: 

 
( , )

0 : ( , ) 0, 0
u z t

z u z t
z


  


 (6.a) 
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in which M is the mass of the sealing cover. 
Substituting Eqs. (6.a) and (6.b) into Eq. (2) leads to 

 2 4 0B B   (7.a) 

 1 3 0B B   (7.b) 

 1 2 3 4sin( ) cos( ) sh( ) ch( ) 0B kl B kl B kl B kl      (7.c) 
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(7.d) 
Writing Eqs. (7.a) ~ (7.d) in a matrix form derives: 
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in which 1 4~B B form a column vector. The elements of the 
coefficients matrix of Eq. (8) are given by:  
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According to the non-zero solution condition and 

noting 2 4 / 'k EI m  , an equation about k is obtained: 

 
1 1 cos( )ch( )

' sin( )ch( ) cos( )sh( )
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
 (9) 

Considering the relationship between 1 4~B B  and 
solving k  from Eq. (9), the mode shape function is also 
obtained:  

sin( ) sh( )
( ) sin( ) sh( ) [ch( ) cos( )]

cos( ) ch( )

kl kl
X z kz kz kz kz

kl kl


   


(10) 

Eq. (9) is a transcendental equation and has an infinite 
number of roots. After solving the n-th root of nk , the n-th 

natural frequency is then determined: 
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Introducing nk  into Eq. (10), the n-th mode shape of the 

launcher can also be determined.  

3 Added mass 

The mass 'm  in Eqs. (1), (9) and (11) is the mass per 
unit length considering the effects of the added mass m . 
It is known that m  is relevant to the parameters including 
structure geometry, material properties, mode shapes, etc. 
(Qian et al., 1996; Su and Huang, 2003; Ju and Zeng, 1983). 
In the previous study of beams with top mass, m was 
usually calculated as the mass of the water displaced by the 
beam per unit length (Uscilowska and Kolodziej, 1998; Wu 
and Chen, 2005; Wu and Hsu, 2006 and 2007). This kind of 
calculation ignores the effects of the differences between 
mode shapes and cannot be used in the circumstances of 
structures immersed in both external and internal fluid.  

Generally, considering the viscosity of water will make 
the natural vibration analysis of the structures complicated 
and there is no significant difference according to 
non-viscous water. Therefore, the additional inertia effect of 
the water (i.e., added mass) is mainly taken into account 
rather than its viscosity. As mentioned in the research done 
by Ju and Zeng (1983), in irrotational and non-viscous fluid, 
the velocity potential function  of a uniform hollow 

cylindrical beam satisfies the Laplace equation in cylindrical 
coordinates. 
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where , ,r z  are the components in cylindrical coordinates.  

At the free surface and the surface adjacent to the 
stationary structures, the boundary conditions must be 
satisfied. At the boundary surface between the beam and 
fluid, the continuity condition is required as follows:  

 : cos ; : cos
2 2

D u d u
r r

r t r t
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One form of the solution of Eq. (12) can be obtained by 
assuming   in the following form:  
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in which ( )f r  is a function of radial coordinate r , nq  is 

the generalized velocity. Substituting Eq. (14) into Eq. (12) 
leads to a modified Bessel function of the first kind: 
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where 1
π

2
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h
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 Noting the velocity continuity indicated as Eq. (13)，the 

function of 1( )f r could be expressed as follows: 

 1 1 1 1 1( ) ( ) ( )ns s ns sf r B I r C K r   (16) 

in which nsB  and nsC are constants determined by the 

cylindrical boundary conditions, 1 1( )sI r  and 1 1( )sK r are  

modified Bessel functions of the first kind and second kind 
respectively. According to the characteristics of the modified 

Bessel function, two series of 1 1( )sI r  and 1 1( )sK r  are 

used to express the velocity potential functions of the 
internal and external flow field respectively. After 
superposition, the unified potential function becomes: 

1 1 1 1
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(17) 
Expanding the transverse displacement ( , )u z t  into a 

series of the product of the underwater mode shape nX  and 

the generalized coordinate nq , one obtains 
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Substituting Eqs. (18) and (17) into Eq. (13), the 

constants of nsB  and nsC are found to be: 
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where '
1sI  and '

1sK are first order derivations of the 

modified Bessel function of the first kind and second kind 

respectively, 1 / 2a D  and 2 / 2a d  are the outer and 
inner radius of the launch tube section respectively. 

Substituting Eqs. (19.a) and (19.b) into Eq. (17), the 
velocity potential function   becomes finally 
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 (20) 
Suppose the beam vibrates under a certain frequency n , 

according to the theorem of kinetic energy of fluid, one 
obtains 

 
1

d
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w
S

T S
r
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in which T is the kinetic energy of the fluid around the 
beam, w  is water density, S  is the fluid boundary. 

Noting that 2 / 2T mV  , in which V  is the velocity, 
added mass m  can be determined as follows: 
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in which nm  is the added mass per unit length of the n-th 
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free transverse vibration,   is the axial coordinate. sH  is 

expressed as follows: 

 2 1

1 1
2 1' '

1 1

1 ( ) ( )
[ ( ) ( ) ]

( ) ( )
s s

S r a r a
s s

I r K r
H a a

s I r K r
    (23) 

nm  could not be directly determined yet by Eq.(22) 

because the wet mode shape function nX  is still unknown. 

A feasible method to solve the problem is to substitute the 
wet mode shape with the dry mode shape (Ju and Zeng, 
1983). It can be deduced that this type of substitution 
method for beams without point mass could be extended to 
beams with top mass. Further more, if an iterative method is 
used more precisely, a prediction will be reached. As for the 
launcher model studied in this work, first, a dry mode shape 
is used to give "rough" results of nm , n  and nX  

through Eqs. (22), (11) and (10) respectively. Then, with the 
"rough" wet mode shape nX , a relatively more precise 

nm  can be calculated, as well as n  and nX . By 

repeatedly using this iteration, a precise transverse response 
can be achieved. The flowchart of the iterative method is 
shown in Fig.2. The analytical computation mentioned 
above is realized with MATLAB. 

 
Fig. 2 Flowchart of the iterative calculation 

4 Results and discussion 

In order to check the validation of the theoretical analysis 
derived in this work, a 3D FEM calculation is conducted 
using ANSYS. The axisymmetric plane of the FSI (fluid 
structure interaction) model is shown in Fig.3. The element 
type SOLID45 is used to model the structure and FLUID30 
is used to simulate the fluid medium. Interfaces between the 
structure and fluid are specified as the FSI coupling surfaces 

in ANSYS. The fluid field in the simulation is cylinder 
shaped, with its radius 6 times as large as the outer diameter 
of the launch tube and its length 2 times as long as that of 
the launcher. The structure model is meshed into 5 elements 
in thickness direction and 100 elements in length direction. 
Such fluid region size and element mesh density are 
considered as meeting the requirements of calculation 
accuracy (Huang et al., 2001; Yang et al., 2009). The main 
parameters used in the calculation are as follows: the fluid 
density is 1,000 kg/m3, the sonic velocity underwater is 
1,400 m/s, the structure density is 7,850 kg/m3, Yong's 
modulus and Poisson ratio are 200 GPa and 0.3 respectively. 
Nodes at the bottom surface of the launcher are fixed in 
displacements. The pressure of the outer surface of the fluid 
is set to zero. The normal displacement of the fluid at the 
bottom surface is also set to zero.  

Different dimensions of h, D and d are discussed as 
examples in ANSYS, with the sealing cover's diameter 4 cm 
larger than D and the height 4 cm in length. 

 
Fig. 3 FSI model of the launcher 

4.1 External flow field  
The first 2 order numerical natural frequencies are given 

in Table 1, and compared with the analytical results and the 
traditional method (i.e., added mass is regarded as the mass 
of water displaced by the structure per unit length). 

Table 1 First 2 order natural frequencies in external flow field 

h/m D/m d/m
Analytical FEM Traditional 

f1/Hz f2/Hz f1/Hz f2/Hz f1/Hz f2/Hz

0.8 0.10 0.07 107.6 639.7 108.5 667.7 103.6 599.7 

0.8 0.10 0.08 105.5 631.6 105.7 660.0 100.4 588.3 

0.8 0.10 0.09 94.1 581.3 93.2 596.0 87.8 529.2 

0.9 0.11 0.07 95.4 563.4 96.3 591.1 92.9 532.8 

0.9 0.11 0.08 95.8 565.2 96.5 586.5 93.0 535.7 

0.9 0.11 0.09 93.6 554.6 93.8 578.5 90.0 524.0 

1.0 0.12 0.07 84.8 500.5 85.8 523.1 83.4 475.9 

1.0 0.12 0.08 86.0 505.3 86.9 530.5 84.4 504.3 

1.0 0.12 0.09 86.2 505.5 86.8 524.0 84.4 503.8 

It can be seen from Table 1 that the analytical frequencies 
have a better consistency with the FEM results, with a 
maximum relative error of －4.75%, less than －6.53% of 
the traditional results. The mode shapes of the first 2 order 
natural frequencies are shown in Fig.4(a)-(c). Good 
agreements are also achieved with the curves between the 
analytical and FEM results. 
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(a) h = 0.8 m, D = 0.10 m, d = 0.09 m 

 

 
(b) h = 0.9 m, D = 0.11 m, d = 0.09 m 

 

 
(c) h = 1.0 m, D = 0.12 m, d =0.09 m 

Fig. 4 The first 2 order mode shapes in the external flow 
field obtained from analytical and FEM solutions  

4.2 External and internal flow field  
The flow of the fluid in both external and internal cases is 

also considered in ANSYS by setting both the outer and 
inner surface of the launcher as FSI surfaces. Natural 
frequencies, as well as the mode shapes, are given in Table 2 
and Fig. 5(a)-(c) respectively, from which good agreements 
can be seen. The maximum relative error rate of the first 2 
order natural frequencies is about 6.81%. 

Due to the relatively larger added mass of the launcher in 
both the external and internal flow field, the natural 
frequencies are generally smaller than those obtained in only 
the internal flow field. 

 

Table 2 The first 2 order natural frequencies in both the 
external and internal flow field  

h/m D/m d/m
Analytical FEM 

f1/Hz f2/Hz f1/Hz f2/Hz 

0.8 0.10 0.07 102.2 634.1 103.3 610.0

0.8 0.10 0.08 97.6 607.5 99.0 585.1

0.8 0.10 0.09 83.2 513.7 85.1 508.0

0.9 0.11 0.07 91.3 565.2 92.1 542.4

0.9 0.11 0.08 90.3 564.1 91.2 534.8

0.9 0.11 0.09 85.9 528.1 87.0 509.8

1.0 0.12 0.07 81.8 514.6 82.3 484.9

1.0 0.12 0.08 82.0 516.7 82.5 483.8

1.0 0.12 0.09 80.7 495.8 81.4 475.1

 
(a) h = 0.8 m, D = 0.10 m, d = 0.09 m 

 
(b) h = 0.9 m, D = 0.11 m, d = 0.09 m  

 
(c) h = 1.0 m, D = 0.12 m, d = 0.09 m 

Fig. 5 The first 2 order mode shapes in both the external and 
internal flow field obtained from analytical and FEM 
solutions 
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An examination of Fig.4 and Fig.5 indicates that the 
consistency of the mode shapes of the first order is better 
than the second order. This is probably due to the greater 
similarity of the first order dry mode shape to the real wet 
mode shape in the iteration calculation for the first time.  

4.3 Effects of modes on added mass 
According to the proceeding derivation of added mass, 

nm  is not a constant but a function determined by the 

orders of vibration modes and the geometry of the launcher. 
Table 3 gives the added mass of the first 3 modes for the 
launcher in different flow fields.  

It can be seen from Table 3 that the added mass decreases 
with the increasing of the mode orders of the launcher. For 
the same order of vibration mode, the added mass in both 
the external and internal flow field is relatively larger than 
that of only the external flow field. 

Table 3 Added mass per unit length in different flow fields of the launcher 

l/m D/m d/m 
External flow field 

External and internal 
flow field 

m1/kg m2/kg m3/kg m1/kg m2/kg m3/kg 

0.8 0.10 0.07 11.46 9.15 7.18 15.56 12.83 10.89 

0.8 0.10 0.08 11.48 8.80 7.39 16.85 13.72 12.29 

0.8 0.10 0.09 11.53 8.91 7.54 18.36 15.11 13.65 

0.9 0.11 0.07 13.72 10.46 9.13 17.82 14.27 12.90 

0.9 0.11 0.08 13.74 10.78 9.86 19.08 16.53 13.73 

0.9 0.11 0.09 13.76 10.73 7.92 20.54 16.94 13.89 

1.0 0.12 0.07 16.20 12.60 11.61 20.30 16.38 13.50 

1.0 0.12 0.08 16.21 12.52 11.38 21.55 17.47 16.40 

1.0 0.12 0.09 16.22 12.25 10.71 22.98 18.61 16.89 

 

5 Conclusions 

In this research, the characteristics of the transverse 
vibration of an underwater launcher in two different flow 
fields are presented. First, the launcher is modeled as a 
cantilever beam with a point mass at the top by simplifying 
the sealing cover into a concentrated mass. The natural 
frequency equation and the mode shape function are then 
derived by taking the boundary conditions into account in 
the motion equation. Then, an iterative calculation method 
of added mass is proposed to give a more precise prediction 
of the vibration response. Two cases of flow field are 
discussed. The numerical results given by FEM are used to 
validate the analytical theory and results. Good agreements 
are obtained with the natural frequencies and mode shapes. 
For the flow field in both the external and internal cases, due 
to the relatively larger added mass, the natural frequencies 
are relatively smaller than with those only in the external 
flow field. The research involved with this work may be 
helpful in future studies of the dynamic response and sound 
radiation for underwater launchers when subjected to 
transient actions.  
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