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Abstract: The scattering problem involving water waves by small 
undulation on the porous ocean-bed in a two-layer fluid, is 
investigated within the framework of the two-dimensional linear 
water wave theory where the upper layer is covered by a thin 
uniform sheet of ice modeled as a thin elastic plate. In such a 
two-layer fluid there exist waves with two different modes, one 
with a lower wave number propagate along the ice-cover whilst 
those with a higher wave number propagate along the interface. An 
incident wave of a particular wave number gets reflected and 
transmitted over the bottom undulation into waves of both modes. 
Perturbation analysis in conjunction with the Fourier transform 
technique is used to derive the first-order corrections of reflection 
and transmission coefficients for both the modes due to incident 
waves of two different modes. One special type of bottom 
topography is considered as an example to evaluate the related 
coefficients in detail. These coefficients are depicted in graphical 
forms to demonstrate the transformation of wave energy between 
the two modes and also to illustrate the effects of the ice sheet and 
the porosity of the undulating bed. 
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1 Introduction1 

Understanding the problems involved with wave 
propagation over an obstacle in a two-layer fluid and 
developing solutions to these problems is important for their 
possible applications in costal hydrodynamics, and as a result 
these problems have been studied by scientists and engineers 
for the last few decades. For two-layers of incompressible and 
inviscid fluid, separated by a common interface, with the 
upper layer fluid of lower density having a free surface, Lamb 
(1932) has shown that for a given frequency, time-harmonic 
small amplitude gravity waves with a lower wave number 
(mode) propagate along the free surface while those with a 
higher wave number propagate along the interface. When a 
train of progressive waves of a particular mode encounter an 
obstacle, the wave train is partially reflected into waves of 
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both modes and are also partially transmitted into both modes. 
Thus there is a transfer of energy from the surface wave to the 
interface wave and vice versa. 

Linton and McIver (1995) considered the problem based on 
the linear wave theory concerning the interaction of water 
waves with horizontal cylinders in a fluid consisting of a layer 
of finite depth bounded above by a free surface and below by 
an infinite layer of fluid of greater density. They obtained the 
reflection and transmission coefficients for different wave 
numbers due to the incident wave of different wave numbers. 
Linton and Cadby (2002) extended the problem of Linton and 
McIver (1995) to oblique water wave scattering and solved 
this particular problem by using multipole expansion. Later 
on, Chamberlain and Porter (2005) studied the problem 
involving the scattering of water waves in a two-layer fluid of 
varying mean depth in a three-dimensional context using 
linear theory. They used variational techniques to construct a 
particular type of approximation that had the effects of 
removing the vertical coordinate and reducing the problem to 
two coupled partial differential equations in two independent 
variables. 

Christodoulides and Dias (1995) examined the problem 
involving periodic capillary-gravity waves at the interface 
between two bounded fluids of different density using weakly 
nonlinear analysis. A relation between wave frequency and 
wave amplitude was obtained. They also discussed about the 
stability of travelling and standing waves with respect to 
three-dimensional modulation. Based on the quantum 
mechanical scattering theory, Olbers (1981) analyzed the 
scattering of internal waves when localized in homogeneities, 
like topographic features, variations of the mean sea level, and 
jet-like currents, in the oceanic waveguide. Sveen et al. (2002) 
examined a series of quantitative laboratory studies to 
determine the spatial and temporal development of the 
velocity, vorticity and density field associated with the flow of 
an internal solitary wave. Bhatta and Debnath (2006) 
analyzed transient two layer fluid flows over a viscoelastic 
ocean bed and solved the problem using the Laplace 
transform and the Fourier transform. 

When the obstacle appears in the form of small undulations 
at the bottom, the problem involving reflection of water 
waves by patches of bottom undulation has received an 
increasing amount of attention as its mechanism is important 
in the development of shore parallel bars. Davies (1982) 
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considered the problem involving reflection of normally 
incident surface waves by a patch of sinusoidal bottom 
undulation for a single layer fluid and solved the problem 
using the Fourier transform technique. Martha and Bora (2007) 
solved the problem involving oblique scattering of surface 
waves by a small undulation on the bottom of a single layer 
fluid by using the Finite cosine transform technique. 

Mohapatra and Bora (2009) considered the problem 
involving scattering of internal waves in a two-layer fluid 
over a channel. Based on perturbation and Green's function 
technique they derived the reflection and transmission 
coefficients up to the first order in terms of integrals involving 
the shape function representing the bottom undulation. Maiti 
et al. (2009) analyzed the diffraction of interface waves in two 
layer fluid by using Green's function technique and obtained 
the quantities of physical interest, namely the reflection and 
transmission coefficients. Mohapatra and Bora (2012) 
extended their problem for oblique wave scattering and 
successfully obtained the solution with the help of Green's 
function technique. 

The above works are related to the water wave problems 
without giving consideration to the ice-cover at the surface. In 
recent times, due to the increase in scientific activities in the 
Polar Regions, many researchers have shown an interest in the 
investigation of ice-wave interaction problems. For example, 
Fox and Squire (1994), Chakrabarti (2000), Tkacheva (2001), 
Chung and Fox (2002) and others have analyzed various types 
of water wave problems in an ice-covered ocean where the ice 
cover is modelled as a thin elastic plate. The researchers are 
interested in studying these interaction problems due to their 
possible applications in the areas of coastal and marine 
engineering and other practical areas. One practical example 
is to understand the effects of wave propagation through the 
marginal ice zones in Antarctica. These kinds of problems are 
also considered for modelling floating breakwaters and very 
large floating structures like off-shore pleasure resorts, 
floating airports, floating oil storage bases etc. 

All the above works were focused only on the solutions of 
the water wave interaction problems where the ocean bed is 
not permeable. If the bottom is composed of some specific 
type of porous materials, non-rigid, the effects of porosity on 
the hydrodynamic coefficients will be an important aspect of 
the study. In practical terms, the flow of fluid into the porous 
media leads to different phenomena like wave energy 
dissipation, damping etc. as reported in the literatures. Water 
wave interaction with the porous media was studied by many 
scientists like Chakrabarti (1989), Jeng (2001) and references 
therein. Mase and Takeba (1994) focused on the Bragg 
scattering of gravity waves over a permeable sea bed. Zhu 
(2001) considered the problems involving wave propagation 
within porous media on an undulating bed in a single layer 
and developed a solution by employing the Galerkin 
eigenfunction expansion technique. They investigated the 
wave reflection coefficient numerically. Gu and Wang (1991) 
investigated the interaction of water waves with a rigid porous 
seabed in a single layer both theoretically and experimentally. 

Silva et al. (2002) discussed the water wave reflection and 
transmission problem in a single layer where a porous 
medium was assumed to lie on an ocean-bed of varying 
quiescent depths. Martha et al. (2007) considered the problem 
of water wave scattering by small undulation on a porous bed 
in a single layer. 

In the present study, we consider surface wave scattering by 
small undulation on a porous ocean-bed in a two-layer fluid 
whose upper layer is covered by a very thin uniform ice-sheet 
modeled as a thin elastic plate. In this case, time-harmonic 
progressive waves of a particular frequency can propagate 
with two different wave numbers: waves with a lower wave 
number propagate at the ice-cover and the other with a higher 
wave number propagates at the interface. The motion of the 
fluid inside the porous bed is not analyzed here and it is 
assumed that the fluid motions are such that the bottom 
condition as is used here holds good and depends on a known 
parameter G, called the porosity parameter as reported in the 
notes by Martha et al. (2007). By employing Perturbation 

analysis involving a small parameter ( )1ε  being present in 

the representation of the small undulations of the porous 
ocean-bed, the governing BVPs are reduced to simpler BVPs. 
The solution of the zeroth order BVP is obvious. The BVPs at 
the first order are solved by using the Fourier transform 
technique to obtain the first-order velocity potentials and these 
potentials are utilized in obtaining the first-order reflection 
and transmission coefficients in terms of integrals involving 

the shape function ( )c x representing the bottom undulation. 

From the application point of view, a patch of sinusoidal 
ripples is taken as an example to evaluate the integrals for 
reflection and transmission coefficients. The numerical values 
for the first order reflection and transmission coefficients of 
various modes due to normal incident waves of two different 
modes are computed and depicted graphically to demonstrate 
the transformation of wave energy between two modes in the 
presence of porosity at the bed.  

2 Mathematical formulations  

The geometry of the two-layer fluid is shown in Fig. 1. Here, 
the upper layer is of finite depth h and is covered by a thin 
uniform ice sheet of infinite length, while the bottom layer has 
small undulations. Each fluid is ideal, inviscid, 
incompressible, and immiscible having constant but different 
densities. The effects of surface tension at the surface of 
separation is neglected. We use the right hand side Cartesian 
coordinate system with the (x,y)-plane lying in the mean 
position of the interface and the y-axis is measured vertically 
downward from the undisturbed interface between the two 
fluids. The porous bed, the bottom of the lower layer having 

small undulation is described by ( ).y H c xε= + Here, ( )c x is a 

bounded and continuous function, describing the shape of the 
undulation and ( ) 0c x →  as | |x → ∞ so that the ocean is of 

uniform finite depth H far away from the undulation on either 
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side, ( )1ε  is a small parameter giving a measure of the 

smallness of the undulation. In this article, the ice sheet is 
modelled as a thin elastic plate and the motion of the fluid 
inside the porous bed is not analyzed. The upper layer

0,h y− ≤ ≤ is referred to as region I, whilst the lower layer 

( )0 y H c xε≤ ≤ + is referred to as region II. The velocity 

potential in the upper layer is ψ  and in the lower layer is .φ  

 

 
Fig. 1 Definition sketch  

 
The motion is assumed to be irrotational and so both ψ  

and φ  satisfy Laplace's equations: 
2 2

2 2
0 in region I

x y

ψ ψ∂ ∂+ =
∂ ∂

     (1) 

2 2

2 2
0 in region II

x y

φ φ∂ ∂+ =
∂ ∂

     (2) 

Assuming the density of the fluid in the upper layer is 1ρ
and in the lower layer 2ρ with 1 2ρ ρ< , the linearized 

boundary conditions on the upper surface, interface and 
bottom are: 

4

4
1 0, on  ,yK K D y h

x
ψ δ ψ

 ∂ + − + = = −
 ∂ 

 (3)

,    on   =0,yy yψ φ=  (4)

( ) ,    on   0,y yK K yρ ψ ψ φ φ+ = + = (5)

0 on  ( )G y H c x
n

φ φ ε∂ − = = +
∂

      (6) 

where ( )1 2/ 1ρ ρ ρ= < , 2 /K gσ= , the time-dependence of 

e i tσ− having been suppressed, g is the acceleration due to 
gravity, G is the porous effect parameter corresponding to the 
ocean-bed, / n∂ ∂ denotes the normal derivative at a point (x,y) 
on the bottom, δ  is a constant having the dimension of the 
length and D is given by: 

( )
3
0
2

112 1

Eh
D

gυ ρ
=

−
  

with E being Young's modulus, υ being Poisson's ratio and h0 
is the very small thickness of the ice-sheet. 

The boundary conditions (3), (4) and (5) represent the 
linearized ice-cover condition, the continuity of normal 
velocity and pressure at the interface, respectively. Now the 

equation (6) can be approximated as: 

( ) ( ) ( )2 0c x G c x O
y x x y

φ φ φε φ ε ε ∂ ∂ ∂ ∂ − − + + =  ∂ ∂ ∂ ∂   

   

y=H 

                                        (7) 
Within this framework in the two-layer fluid system, a train of 
time-harmonic progressive waves takes the form: 

( ) ( ) i in e  , , 0uxx y yf u y hψ ± − ≤ ≤=    (8) 

 

( ) ( ) ( ) i

in    0

, cosh sinh e uxG
x y u H y u H y

u

y H

φ ± = − − − 
≤



≤
     (9) 

where, 

( )

( )

( )

4

4

sinh 1 cosh

sinh

sinh
,

cosh 1 sinh

Du
uH u u h y

G KuH
u

K u h y
f u y

Du

K uh u uh

K

δ

δ

  
    + +        −−       − + =

 
 

− + 
  − 

 
 

(10)

with u satisfying the dispersion relation 

( ) ( )( )
( )( )

( )
( )

( )( )

( ) ( )

( )

2 4

4

2

4

4

2

1 1

1 coth coth

1 coth

coth coth

2 1 coth coth

1 1 coth

coth coth 0

u u Du K

Du K uh uH
Ku

uh

K uh uH

GK Du K uh uH

Du K uG uH

K G
uh uH

u

ρ δ

δ ρ

ρ

ρ

δ ρ

δ ρ

ρ

Δ ≡ − + − −

 + − +
  +
 + − 

+ +

 + − + −  

+ − − −

+ =

 

 
 
 
 
 
 
 
 
 
 
 
 
 

(11)
The dispersion relationship (11) has two positive real roots 

m and M which indicate the propagating modes; a complex 
conjugate pair of roots corresponding to the damped 
propagating modes and a countable infinity purely imaginary 
roots corresponding to a set of evanescent modes. Due to the 
evanescent mode of waves appearing in a fluid region, when 
the incident wave is scattered, a part of the incident interfacial 
wave may become trapped and may lead to a standing wave 
pattern over the bottom irregularities. This phenomenon is 
called the Anderson localization. Since these waves do not 
affect the asymptotic behavior of the resultant reflected and 
transmitted waves, any type of localization is not considered 
while formulating and solving the present problem. More 
information related to the Anderson localization can be found 
in Guazzelli et al. (1983), Devillard et al. (1988) and Ye 
(2004). 

Since the dispersion relation has only two positive real 
roots m and M, say (m<M), there exists two modes of 
propagating waves. The wave of mode m propagates at the 
ice-cover while the wave of mode M propagates at the 
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interface. 
Now we consider a normal incident progressive wave of 

mode m, in the form: 

( ) ( ) i
0 , , e in   0,mxx y f m y h yψ = − ≤ ≤  (12)

( ) ( ) ( ) i
0

in  

, cosh sin

0

h e mxG
x y m H y m H y

y H

m
φ  = − − − 

≤

≤

    (13) 

When there is a normal incident of the progressive wave 
from the direction x = −∞ on the bottom undulation then the 

far-field behaviors of ψ  and ,φ respectively, are given by: 

( )

( )( )
( )

( )
( )

i i

i

i

i

, e e

, e as ,

,

, e

, e as ,

mx m mx

m Mx

m mx

m Mx

f m y r

R f M y x

x y

t f m y

T f M y x

ψ

−

−

 +


+ → −∞
→ 




+ → ∞


 (14)

and 

( )

( )
( )

( )

( )

( )

( )

( )

i i

i

i

i

cosh ( )
e e

sinh ( )

cosh
e as

sinh

,

cosh
e

sinh

cosh
e as ,

sinh

mx m mx

m Mx

m mx

m Mx

m H y
rG

m H y
m

M H y
R xG

M H y
M

x y

m H y
t G

m H y
m

M H y
T xG

M H y
M

φ

−

−

 − 
  + + − −  


 − 
  → −∞  − −   

→ 
  −     − −   
  −    → ∞  − −   

+

 

(15)

where the unknown coefficients rm, Rm in relations (14) and 
(15) are respectively the reflection coefficients associated with 
reflected waves of modes m and M, due to a normal incident 
wave of mode m. Similarly in relations (14) and (15), the 
unknowns t m and T m denote the transmission coefficients 
associated with transmitted waves of modes m and M 
respectively, due to a normal incident wave of mode m. These 
unknown coefficients are to be determined here. 

Similarly, when we consider the incidence of progressive 
waves of mode M, we will have two other far-field conditions 
with another four unknown coefficients (reflection and 
transmission) which are also to be determined.  

3 Method of solution  

3.1 Perturbation analysis 
Let us first consider a train of progressive waves of mode 

m to have normal incidents on the bottom undulation. If 
there is no undulation at the bottom, the interface wave train 
will propagate without any obstruction and there will be 
transmission only. In view of this along with the 

approximate form of relation (7), ,ψ ,φ ,mt ,mr mT and mR

can be expressed in terms of the small parameter ε as 
follows: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( )
( )
( )

2
0 1

2
0 1

2
1

2
1

2
1

2
1

, , , ,

, , , ,

1 ,

,

,

,

m m

m m

m m

m m

x y x y x y O

x y x y x y O

t t O

r r O

T T O

R R O

ψ ψ εψ ε

φ φ εφ ε

ε ε

ε ε

ε ε

ε ε

= + +

= + + 
= + + 


= + 

= +

= + 

(16)

where ( )0 ,x yψ and ( )0 ,x yφ are given by (12) and (13) 

respectively. 
Now substituting relation (16) in equations (1)-(5), (7), 

(14), (15) and then comparing the first order terms of ε on 
both sides of the equations, we have: 

2
1 0   0,h yψ∇ = − ≤ ≤  (17)

2
1 0 0 ,y Hφ∇ = ≤ ≤  (18)

4

1 141 0 on   yK K D y h
x

ψ δ ψ
 ∂+ − + = = − ∂ 

(19)

1 1           on  0,y y yφ ψ= = (20)

( )1 1 1 1    on  0,y yK K yρ ψ ψ φ φ+ = + = (21)

1 1 ( ) on  ,y G q x y Hφ φ− = = (22)

where 

i 2d
( ) i ( )e ( ),

d
mxq x m c x G c x

x
 ≡ +   (23)

and the far-field behaviors are: 

( ) ( ) ( )
( ) ( )

i i
1 1

1 i i
1 1

, e , e as ,
,

, e , e as ,

m mx m Mx

m mx m Mx

r f m y R f M y x
x y

t f m y T f M y x
ψ

− − → −∞→
∞

+


+ →
(24)

and 

( )

( )

( )

( )

( )

( )

( )

i
1

i
1

i
1

i
1

cosh ( )
e

sinh ( )

cosh
e as ,

sinh

,

cosh
e

sinh

cosh
e as ,

sinh

m mx

m Mx

m mx

m Mx

m H y
r G

m H y
m

M H y
R xG

M H y
M

x y

m H y
t G

m H y
m

M H y
T xG

M H y
M

φ

−

−

 − 
  
  − −   


 − 
  → −∞  − −   

→ 
  −     − −   
  −    → ∞  − −   

+

+

 
(25) 

3.2 Fourier transform technique 
The solution of the above coupled BVP described by 

equations (17)−(22) for the potentials 1( , )x yψ and 1( , )x yφ , 
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is obtained by using the Fourier transform technique. Now 
to solve the coupled BVP, we decouple the BVP by 
replacing the condition (20) with: 

( )1     on     0y p x yψ = =  (26)

and 

( )1     on    0y p x yφ = = (27)

where p(x) is an unknown function. 
Then the above BVP involving the relations (17)−(22) can 

be decomposed into two independent BVPs for 1ψ  and 1φ
as follows: 
 
BVP-I, corresponding to 1,ψ is 

 
2

1 0 0,h yψ∇ = − ≤ ≤  (28)
4

1 14
1 0yK K D

x
ψ δ ψ

 ∂+ − + =  ∂ 
  on y = −h    (29) 

( )1  y p xψ =       on y =0      (30) 

BVP-II, corresponding to 1,φ is 

2
1 0 0 y Hφ∇ = ≤ ≤             (31) 

( )1  on   0y p x yφ = =             (32) 

( )1 1  on   y G q x y Hφ φ− = =            (33) 

Now using relations (30) and (32), relation (21) can be 
written as: 

( ) ( )1 1 1 ( ) on      0K p x yφ ρψ ρ− = − =     (34) 

To solve the BPV-I and BVP-II, we assume that m and M  
have small positive imaginary parts so that 1ψ and 1φ
decrease exponentially as | | .x → ∞ This ensures the existence 

of Fourier transforms ( )1ˆ ,k yψ  and ( )1̂ ,k yφ  of ( )1 ,x yψ

and ( )1 ,x yφ  respectively, and are defined as: 

( ) ( ) i
1 1ˆ , , e d ,kxk y x y xψ ψ

∞ −
−∞

=   (35)

with inverse 

( ) ( ) i
1 1

1
ˆ, , e d

2π
kxx y k y kψ ψ

∞

−∞
=   (36)

and 

( ) ( ) i
1 1
ˆ , , e d ,kxk y x y xφ φ

∞ −
−∞

=   (37)

with inverse 

( ) ( )1 1
1 ˆ, , e d .

2
ikxx y k y kφ φ

π
∞

−∞
=   (38)

Using Fourier transform in relations (28)-(30) we have:  
 

2
1 1ˆ ˆ 0 0,yy k h yψ ψ− = − ≤ ≤             (39) 

( )4
1 1ˆ ˆ1 0 on ,yK K Dk y hψ δ ψ+ − + = = −          (40) 

( )1ˆ on 0,y p k yψ = =             (41) 

where ( )p k is the Fourier transform of ( )p x . 

Similarly, using Fourier transform in the relations 
(31)−(33) we get: 

2
1 1
ˆ ˆ 0 0yy k y Hφ φ− = ≤ ≤           (42) 

( )1̂  on   0y p k yφ = =            (43) 

( )1 1
ˆ ˆ  on   y G q k y Hφ φ− = =           (44) 

where ( )q k is the Fourier transform of q(x). 

Now the solutions of the above BVPs can be obtained in 

the term of ( )p k . Using the relation (34), the final solution 

for ( )1ˆ ,k yψ and ( )1̂ ,k yφ  are obtained as: 

( )

( ) ( ) ( )

( )

4

1

sinh 1 cosh

ˆ ,
sinh sinh

Dk

K q k K k h y k k h y

K
k y

k kh kH k

δ
ψ

  
  

+ − + +  
   −   =

Δ

 
(45)

and 

( ) ( )
( )

( )
( )

( )
( )

1

4

ˆ ,
sinh cosh

cosh

coth cosh

1 sinh

sinh

q k
k y

k kH G kH

ky

K kh k k H y
K

k Dk K G k H y

k kH k

φ

δ
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−

− 
 

  −       − + − − −   
 Δ 

 
 

(46)

Using inverse Fourier transform we get 1( , )x yψ and 

1( , )x yφ as follows: 

( )

( ) ( )

( )
( ) ( )

1

4

0

,

1
sinh cosh

2π sinh sinh

  e e dikx ikx

x y

Dk
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KK

k kh kH k

q k q k k

ψ

δ∞

−

=

  ++ − +   −   
Δ

 × + − 


 

 
 

(47)

and 

( )

( )
( )

( )

( ) ( )

1 0

4
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1 1
,

2π ( sinh cosh )
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ky
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 
 
 
 

 + − 



 

 
 
 
 
 
 

(48)

where the path in each integral is intended below the poles 
at k = m, M. 

Due to a normal incident wave of mode m, the first-order 
reflection and transmission coefficients can be obtained by 
letting x → ± ∞ in relation (47) or (48) and then comparing 

with relation (24) or (25). 
Now, to obtain the first order transmission coefficients, 

we let x → ∞ in either relation (47) or (48). As x → ∞ , then

( )1 ,x yψ or ( )1 ,x yφ can be obtained by rotating the path of 

the integral involving term ikxe into a contour in the first 
quadrant by an angle β (0<β<π/2) and the contour in the 
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integrals involving ie kx− in the fourth quadrant by the same 
angle so that the integral involving the term e−ikx does not 
contribute anything as .x → ∞ Then comparing the resultant 

integral value with the equations (24) or (25), we have: 
 

( )
( ) ( ) ( )

4

1

i 1 sinh cosh

sinh sinh sinh cosh
m

K Dm K m mh K mh
t q m

mh mH m mH G mH m

δ + − − =
′− Δ

(49)

and  

( )
( ) ( )

( )

4

1

i 1 sinh cosh

sinh sinh sinh cosh

,

m
K DM K M Mh K Mh

Mh MH M MH G
T

MH M

q M

δ + − −
′Δ

×

= 
−

 
(50)

where ( )k′Δ is the derivative with respects to k. 

 

Now using the value of ( )q m  and ( )q M  as given by: 

( ) ( ) ( )2 2 dq m G m c x x
∞

−∞
= −  (51)

and 

( ) ( ) ( ) ( )i2 e d ,M m xq M G mM c x x
∞ − −
−∞

= −  (52)

we obtained the results for 1
mt and 1

mT as follows: 

( ) ( )
( ) ( )

( )

1

4 2 2i 1 sinh cosh

sinh sinh sinh cosh

d

mt

K Dm K m mh K mh G m
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c x x

δ

∞

−∞

=
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× 

(53)

and 

( ) ( )
( ) ( )

( ) ( )

1

4 2

i

i 1 sinh cosh

sinh sinh sinh cosh

e d .

m

M m x

K DM K M Mh K Mh G mM

Mh MH M MH G MH M

T

c x x

δ

∞ − −
−∞

=

 + − − × − 
′− Δ

× 

(54)

Similarly, to find the first order reflection coefficients, we 
let x → − ∞  in either relation (47) or (48). As x → − ∞ , the 

behavior of ( )1 ,x yψ or ( )1 ,x yφ can be obtained by rotating 

the path of the integral involving term ,ikxe− into a contour 

in the first quadrant, so that we must include the residue 

term at k = m, M and the path of the integrals involving ikxe  
is rotated into a contour in the fourth quadrant so that the 

integral involving the term ikxe does not contribute as
x → − ∞ . Then comparing the resultant integral value with 

equation (24) or (25), we obtain: 

( ) ( )
( ) ( )

( )

1

4 2 2

2i

i cosh 1 sinh

sinh sinh sinh cosh

e d

m
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δ

∞

−∞

=
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

 
 
 

(55)

And 

( ) ( )
( ) ( )

( ) ( )

1

4 2

i

i cosh 1 sinh

sinh sinh sinh cosh

e d .

m

M m x

R

K K Mh DM K M Mh G mM

Mh MH M MH G MH M

c x x

δ

∞ +
−∞

=

 − + − × − 
′− Δ

× 

  (56) 

 
When we consider a train of progressive waves of mode 

M to be at normal incident on the bottom topography, the 
same mathematical procedure, described above for the case 
of mode m, is followed to obtain the first-order reflection 

and transmission coefficients 1 ,Mt  1
MT , 1

Mr and 1 .MR  The 

final expressions are as follows: 

( ) ( )
( ) ( )

( ) ( )

1

4 2

i

i 1 sinh cosh

sinh sinh sinh cosh
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(57) 
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1
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(58) 
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1

4 2i cosh 1 sinh
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(59) 

and 

( ) ( )
( ) ( )

( )

1

4 2 2

2

i cosh 1 sinh

sinh sinh sinh cosh

d .

M

iMx

R

K K Mh DM K M Mh G M
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c x e x

δ

∞
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=

 − + − × − 
′− Δ

× 

 
 
 
(60) 

 
The above integral forms can be evaluated once the 

bottom profile ( )c x is known. In the next section, we 

consider a special form for the shape function ( )c x .  

 

4 Bottom profile 

Davies (1982) found that an undulating bed has the ability 
to reflect incident wave energy which has an important 
implication for the application of coastal protection, and in 
the case of possible ripple growth if the bed is erodible. 
Here we consider a special form for the shape function 

( )c x  in the form of a patch of sinusoidal bottom ripples, 

which is considered as the bottom undulation. The following 
bottom undulation closely resembles some naturally 
occurring obstacles formed at the bottom due to 
sedimentation and ripple growth of sands: 
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( )
π π

sin for  ,

0 otherwise,

n n
a x x

c x
γ

γ γ
− ≤ ≤= 

  
(61)

where n is a positive integer. This represents a patch of 
sinusoidal ripples with amplitude a on an otherwise flat 
bottom, the patch consisting of n ripples having the same 

wave number γ. By substituting ( )c x given by (61), in 

relations (53)−(60), the first-order reflection and 
transmission coefficients can be obtained due to normal 

incident waves of both the modes m and M. Since ( )c x  is 

an odd function, 1
mt , 1

MT vanish and the other coefficients 

are as follows: 
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and 
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(67) 

Relations (62)−(67) illustrate that for a given number of n 
ripples, the first order reflection and transmission 
coefficients due to incident waves of both modes are 
oscillatory in nature. Furthermore, at the critical conditions γ 
=2m or γ = M +m or γ = M −m or γ = 2M, the theory predicts 
a resonant interaction, namely the Bragg resonance (see Mei 
(1985), Alam et al. (2009) and others), between the bed and 
the surface or internal-mode wave. Hence, we find from the 
relations (62)-(67) that: 

( ) ( )
( ) ( )

1

4 2 2

( 1)

cosh 1 sinh

sinh sinh sinh cosh

π
,

2

m nr

K K mh Dm K m mh G m

mh mH m mH G mH m

an

m

δ

= −

 − + − × − 
′− Δ

×

×

 

 
 
 
(68)

( ) ( )
( ) ( )

( )

1

4 2

( 1)

cosh 1 sinh

sinh sinh sinh cosh

π
,

m nR

K K Mh DM K M Mh G mM

Mh MH M MH G MH M

an

M m

δ

= −

 − + − × − 
′− Δ

×
+

×
 
 
 
(69)

( ) ( )
( ) ( )

( )

1
1

4 2

( 1)

1 sinh cosh

sinh sinh sinh cosh

π
,

m nT

K DM K M Mh K Mh G mM

Mh MH M MH G MH M

an

M m

δ

+= −

 + − − × −
′−

×

×


Δ

−

 
 
 
(70)

( ) ( )
( ) ( )

( )

1
1

4 2

( 1)

1 sinh cosh

sinh sinh sinh cosh

π
,

M nt

K Dm K m mh K mh G mM

mh mH m mH G mH m

an

M m

δ

+= −

 + − − × −
′−

×

×


Δ

−

 

 
 
 
(71)

( ) ( )
( ) ( )

( )

1

4 2

( 1)

cosh 1 sinh

sinh sinh sinh cosh

π
,

M nr

K K mh Dm K m mh G mM

mh mH m mH G mH m

an

M m

δ

= −

 − + − × − 
′− Δ

×
+

×

 

 
 
 
(72)

and 

( ) ( )
( ) ( )

1

4 2 2

( 1)

cosh 1 sinh

sinh sinh sinh cosh

π
.

2

M nR

K K Mh DM K M Mh G M

Mh MH M MH G MH M

an

M

δ

= −

 − + − × −
 

′− Δ

×

×
 
 
 
(73) 

 

 



Srikumar Panda, et al. Interaction of Water Waves with Small Undulation on a Porous Bed in a Two-layer Ice-covered Fluid  

 

388 

In this case the first order reflection and transmission 
coefficients become a constant multiple of n, the number of 
ripples in the patch. Although the theory breaks down when 
n becomes large and the solution is singular (γ = 2m or γ = 
M + m or γ = M - m or γ = 2M), a large amount of reflection 
of the incident wave energy by the bed forms is predicted in 
the neighborhood of the singularity. 

5 Numerical results and discussion 

The first-order reflection and transmission coefficients 
given in relations (62)−(67) are computed numerically and 
are shown in for the different values of the different 
dimensionless parameters. 

In Figs. 2−10, the reflection and transmission coefficients 
are plotted when an incident wave of wave number m is at 
normal incident on the undulation of the porous bottom.  

1| |,mr 1| |mR and 1| |mT are plotted respectively in Figs. 2, 3, 4 

against wave number Kh by considering the parameters D/h4 

= 1, δ/h = 0.01, depth ratio H/h = 2, density ratio ρ = 0.5, the 
amplitude of the sinusoidal ripple a/h = 1, number of ripples 
n = 3 and wave number of ripples γh = 1 for three different 
porous effect parameters Gh = 0, 0.01 and 0.02. From these 

figures, it is clear that 1| |,mr 1| |mR and 1| |mT  are oscillating in 

nature as a function of wave number Kh, which validates the 
theoretical observation obtained in section 4. The peak 

values of 1| |,mr 1| |mR and 1| |mT  are obtained respectively 

when γh = 2mh (the wave number of the undulating bottom 
becomes approximately twice the surface wave number), γh 
= (M + m)h, γh = (M−m)h. For these three different values 

of Gh, the peak value of 1| |mr is respectively given by 

0.04115, 0.04048, 0.03981 (in Fig. 2); the peak value of 

1| |mR is respectively given by 0.01108, 0.01236, 0.0138 (in 

Fig. 3) and the peak value of 1| |mT is given by 0.00475, 

0.00478, 0.00484 (in Fig. 4) for certain values of Kh. From 
these numerical data, it is observed that at Bragg resonance 

the peak value of 1| |mr decreases as the value of the porous 

effect parameter increases whilst the peak value of 1| |mR , 

1| |mT increases as the porosity increases.  

1| |,mr 1| |mR  and 1| |mT are plotted for three different values 

of ice-cover parameter D/h4 = 1, 3, 5 with ρ = 0.5, n = 3, H/h 
= 2, γh = 1, δ/h = 0.01 and Gh = 0.01 in Figs. 5, 6 and 7 
respectively. From Figs. 5 and 6, we observe that the peak 

value of 1| |mr decreases while the peak value of 1| |mR

increases as D/h4 increases. But in Fig. 7, it is observed that 
there is an insignificant change in the transmission 

coefficient 1| |mT with the change in ice-cover parameter D/h4. 

This is mainly due to the fact that the ice-cover is somewhat 
above the interface.  

 

 
Fig. 2 Reflection coefficient at mode m due to an incident 

wave of mode m for D/h4 = 1, H/h = 2, ρ = 0.5, γh = 1, 
δ/h = 0.01, n = 3.  

 
Fig. 3 Reflection coefficient at mode M due to an incident 

wave of mode m for D/h4 = 1, H/h = 2, ρ = 0.5, γh = 1, 
δ/h = 0.01, n = 3.  

 
Fig. 4 Transmission coefficient at mode M due to an incident 

wave of mode m for D/h4 = 1, H/h = 2, ρ = 0.5, γh = 1, 
δ/h = 0.01, n = 3.  

 
Fig. 5 Reflection coefficient at mode m due to an incident 

wave of mode m for ρ = 0.5, n = 3, H/h = 2, γh = 1, δ/h 
= 0.01, Gh = 0.01.  
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Fig. 6 Reflection coefficient at mode M due to an incident 

wave of mode m for ρ = 0.5, n = 3, H/h = 2, γh = 1, δ/h 
= 0.01, Gh = 0.01.  

 
Fig. 7 Transmission coefficient at mode M due to an incident 

wave of mode m for ρ = 0.5, n = 3, H/h = 2, γh = 1, δ/h 
= 0.01, Gh = 0.01.  

 
Fig. 8 Reflection coefficient at mode m due to an incident 

wave of mode m for ρ = 0.5, D/h4 = 1, H/h = 2, γh = 1, 
δ/h = 0.01, Gh = 0.01.  

 
Fig. 9 Reflection coefficient at mode M due to an incident 

wave of mode m for ρ = 0.5, D/h4 = 1, H/h = 2, γh = 1, 
δ/h = 0.01, Gh = 0.01.  

 
Fig. 10 Transmission coefficient at mode M due to an 

incident wave of mode m for ρ = 0.5, D/h4 = 1, H/h = 
2, γh = 1, δ/h = 0.01, Gh = 0.01.  

1| |,mr 1| |mR and 1| |mT are plotted respectively in Figs. 8, 9, 

10 for three different values of number of ripples (n = 3, 5, 7) 
with D/h4 = 1, ρ = 0.5, H/h = 2, γh = 1, δ/h = 0.01 and Gh = 
0.01. In each of these figures, the peak value of the 
coefficients increases as the number of ripples increases. 
Thus, if the number of ripples increases indefinitely, the 
first-order coefficients become unbounded for certain values 
of Kh and this is known as Bragg resonance, due to which 
the perturbation analysis fails as described by Mei (1985). 

The first-order reflection and transmission coefficients are 
plotted against the wave number Kh for the incident wave of 
mode M as shown in figures 11-19.  

1| |,Mr 1| |Mt and 1| |MR are plotted against wave number Kh 

in Figs. 11, 12, 13 respectively for three different values of 
the number of ripples (n = 3, 5, 7) with D/h4 = 1, δ/h = 0.01, 
H/h = 2, ρ = 0.5, a/h = 1, γh = 1 and Gh = 0.01. In each of 
these  

 

 
Fig. 11 Reflection coefficient at mode m due to an incident     

wave of mode M for ρ = 0.5, D/h4 = 1, H/h = 2, γh = 1, 
δ/h = 0.01, Gh = 0.01.  

 
Figs. 11−13, it is observed that the peak value of the 

coefficients increases as the number of ripples increases. 
Here also, if the number of ripples increases indefinitely, the 
first-order coefficients become unbounded for a certain 
value of Kh as observed in Figs. 8−10 for an incident wave 
of mode m. The same remark made earlier about Bragg 
resonance also applies here. 

1| |,Mr 1| |Mt and 1| |MR are plotted in Figs. 14, 15, and 16 
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respectively for three different values of the ice-cover 
parameter (D/h4 = 1, 3, 5) with ρ = 0.5, H/h = 2, γh = 1, δ/h 
= 0.01, a/h = 1, n = 3 and Gh = 0.01. From these figures, it 
is clear that the values of the 1| |Mr and 1| |MR are almost the 

same with the increase of the ice parameter D/h4 due to the 
fact that the train of waves of mode M propagate along the 
interface while from Fig. 16, we observe that the peak value 
of 1| |Mt decreases with the increase of D/h4. 

 

 
 

Fig. 12 Transmission coefficient at mode m due to an 
incident wave of mode M for ρ = 0.5, D/h4 = 1, H/h = 
2, γh = 1, δ/h = 0.01, Gh = 0.01. 

 

 
 

Fig. 13 Reflection coefficient at mode M due to an incident     
wave of mode M for ρ = 0.5, D/h4 = 1, H/h = 2, γh = 1, 
δ/h = 0.01, Gh = 0.01.  

 

1
Mr , 1

Mt and 1
MR are plotted respectively in Figs. 17, 

18, and 19 for different values of the porous effect 
parameter (Gh = 0, 0.01, 0.02) with D/h4 = 1, δ/h = 
0.01, H/h = 2, ρ = 0.5, a/h = 1, γh = 1 and n = 3. From 

these figures it is clear that the peak values of 1
Mr and 

1
Mt  decreases while the reflection coefficient 1

MR

increases as the porous effect parameters increase.  
 
 

 
Fig. 14 Reflection coefficient at mode M due to an incident     

wave of mode M for ρ = 0.5, n = 3, H/h = 2, γh = 1, 
δ/h = 0.01, Gh = 0.01.  

 
Fig. 15 Reflection coefficient at mode m due to an incident  

wave of mode M for ρ = 0.5, n = 3, H/h = 2, γh = 1, 
δ/h = 0.01, Gh = 0.01.  

 
Fig. 16 Transmission coefficient at mode m due to an 

incident wave of mode M for ρ = 0.5, n = 3, H/h = 2, 
γh = 1, δ/h = 0.01, Gh = 0.01.  

 
Fig. 17 Reflection coefficient at mode m due to an incident     

wave of mode M for ρ = 0.5, D/h4 = 1, H/h = 2, γh = 1, 
δ/h = 0.01, n = 3. 
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Fig. 18 Transmission coefficient at mode m due to an 

incident wave of mode M for ρ = 0.5, D/h4 = 1, H/h = 
2, γh = 1, δ/h = 0.01, n = 3.  

 
Fig. 19 Reflection coefficient at mode M due to an incident     

wave of mode M for ρ = 0.5, D/h4 = 1, H/h = 2, γh = 1, 
δ/h = 0.01, n = 3. 

6 Conclusion 

The problem of water wave scattering by small 
undulation at the porous bottom of a two-layer ocean in 
which the upper layer is covered by a thin elastic uniform 
sheet of ice, is considered here for its solution. The BVPs 
which are derived from the physical problem are solved by 
using perturbation analysis in conjunction with the Fourier 
transform technique and the first order velocity potentials, 
reflection and transmission coefficients are obtained. The 
main advantage of this Fourier transform method is that we 
solve relatively easier ordinary differential equations to find 
the velocity potentials. Furthermore, the numerical results 
for the reflection and transmission coefficients are evaluated 
for a particular case of undulation, namely a patch of 
sinusoidal ripples. From the numerical results it is observed 
that, the reflection corresponding to the surface wave mode 
decreases while the reflection coefficient corresponding to 
the interface mode increases with the flexural rigidity of the 
ice-cover due to an incident wave of lower wave number 
(m). But the transmission coefficient corresponding to the 
interface mode remains unaffected by the flexural rigidity of 
the ice-cover.  

When the incident wave is of higher wave number (M), 
the value of the reflection and transmission coefficients 
corresponding to the surface mode decreases while the value 
of the reflection coefficient corresponding to the interface 

mode increases as the flexural rigidity of the ice-cover 
increases. The reflection and transmission increases as the 
number of ripples of the porous ocean-bed increases due to 
the incident progressive wave of both modes. The reflection 
and transmission coefficients corresponding to the surface 
mode decrease while the reflection at the interface mode 
increases as the porosity increases. Especially, the concept 
of porosity may be useful for a class of scattering problems 
in the areas of coastal and marine engineering. The problems 
involving ice cover of variable thickness and the sea-bed 
consisting of arbitrary undulations will be the subject matter 
of our future investigations. 
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