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Abstract: Two problems of scattering of surface water waves 
involving a semi-infinite elastic plate and a pair of semi-infinite 
elastic plates, separated by a gap of finite width, floating 
horizontally on water of finite depth, are investigated in the present 
work for a two-dimensional time-harmonic case. Within the frame 
of linear water wave theory, the solutions of the two boundary 
value problems under consideration have been represented in the 
forms of eigenfunction expansions. Approximate values of the 
reflection and transmission coefficients are obtained by solving an 
over-determined system of linear algebraic equations in each 
problem. In both the problems, the method of least squares as well 
as the singular value decomposition have been employed and tables 
of numerical values of the reflection and transmission coefficients 
are presented for specific choices of the parameters for modelling 
the elastic plates. Our main aim is to check the energy balance 
relation in each problem which plays a very important role in the 
present approach of solutions of mixed boundary value problems 
involving Laplace equations. The main advantage of the present 
approach of solutions is that the results for the values of reflection 
and transmission coefficients obtained by using both the methods 
are found to satisfy the energy-balance relations associated with the 
respective scattering problems under consideration. The absolute 
values of the reflection and transmission coefficients are presented 
graphically against different values of the wave numbers. 
Keywords: surface water waves; floating elastic plates; 
over-determined systems; least squares method; singular value 
decomposition method; scattering problem; reflection and 
transmission coefficients  
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1 Introduction1 

Scattering of surface water waves by very large floating 
structures (VLFS) have been studied in recent decades. 
VLFSs can serve as various offshore constructions, such as 
floating airports, oil storage facilities, wind and solar power 
plants, etc. Accordingly, the elastic deformations are 
predominant over the rigid body motions in the response of 
the structure to water waves. Thus VLFSs are usually 
modelled as elastic plates. It is noted that the ice sheets in 
the polar region can also be considered as thin elastic plates. 
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The interaction between water waves and elastic plates has 
been a subject of interest for both VLFS designers as well as 
polar marine researchers. Scattering of surface water waves 
by floating elastic plates, on the surface of water of finite 
depth, creates interesting mathematical problems drawing 
attention of various types for obtaining their useful solutions, 
see Newman (1965), Evans (1985), Blamforth and Craster 
(1999), Chakrabarti (2000), Sahoo et al. (2001). 

Various approaches have been developed in the literature 
to deal with the interaction of water waves with elastic 
plates. It is well known that the method of eigenfunction 
expansions was often used in analyzing engineering 
problems. This method originates from the method of 
separation of variables, the pivotal step of which is to 
determine the unknown expansion coefficients. In the 
present paper, we have explained certain algebraic 
approaches (viz. the least squares and singular value 
decomposition methods) to determine the unknown 
expansion coefficients in such expansion procedures. Two 
special water waves scattering problems have been analyzed 
in the light of the algebraic approaches explained in the 
present work. It is emphasized that the energy balance 
relation for any water waves scattering problem is of great 
use in checking the correctness of the analytical as well as 
numerical results determining the reflection and 
transmission coefficients. Therefore, our main aim is to 
check the energy balance relations for the water waves 
scattering problems involving floating elastic plates by 
applying the present approach of solutions. 

2 The algebraic approaches  

All the problems of expansion are reduced to the 
over-determined system Ax b and the two basic 
approaches are as follows: 

2.1 The least squares method 
Consider an over-determined system of linear algebraic 

equations as given by 
 Ax b   (1) 
where A is an ( )m n m n   real or complex matrix, 

nRx  or ,nC  and mRb  or .mC   

The algebraic least squares solution to the system denoted 
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by nRy  or ,nC  is the solution to the associated normal 

system: 

 * *A Ay A b   (2) 

where *A  denotes the conjugate transpose of A. Further, if 
A has linearly independent columns, then there is a unique 
Least Squares solution (Miller, 1973), as given by 

   1y A A b   (3) 

2.2 Singular Value Decomposition method 
We often resort to singular value decomposition (SVD) of 

the matrix A as a tool to solve the over-determined system 
of Eq. (1). It is well known (Strang, 1998) that SVD is the 
factorization of a matrix into a product of three matrices that 
reveal the structure of the original matrix. 

Now the SVD of an m n  real or complex matrix A is a 
factorization of the form: 

  *A USV   (4) 

where U and *V  (the conjugate transpose of V) are real or 
complex unitary matrices of order m m  and n n  
respectively, and S is an m n  diagonal matrix with 
non-negative real numbers on the diagonal entries. The 

columns of U and V are the eigenvectors of AA  and 
A A  respectively, and the diagonal entries of S are the 

square roots of the non-zero eigenvalues of A A or AA , 
which are known as the singular values of A.  

Replacing A in the system Ax b  by using Eq. (4), we 
get 

 *USV x b   (5) 

 * *SV x U b   (6) 
Then setting 
 x Vy   (7) 

we get 

  *Sy U b   (8) 

and the solution of the system (1) can finally be determined 
by using the relations (7) and (8).  

Having introduced the two methods for solving an 
over-determined system Ax b , as described above, it 
must be noted that for the case of determinate system, we 
may use other known methods of solution involving the 

determination of the inverse matrix 1A , whenever it 
exists. 

It is emphasized that in order to be able to utilize the 
algebraic approaches described above successfully, 
occurrence of ill-conditioned matrices must be avoided. For 
the problems chosen in the present work which will be taken 
up in the next sections we have avoided such problems by 
choosing appropriate points of discretization. 

In the next two sections, we present the solutions of two 
special water waves scattering problems, namely, scattering 
of water waves by a semi-infinite elastic plate and a pair of 
semi-infinite elastic plates, separated by a gap of finite 
width, floating horizontally on water of finite depth. 

Moreover, we check the energy balance relation for both the 
scattering problems for checking the correctness of the 
analytical as well as numerical results determining the 
reflection and transmission coefficients.  

3 Water wave scattering by a semi-infinite 
elastic plate 

In this section, we consider the problem of scattering of 
water waves involving an ocean of finite depth having a flat 
rigid bottom surface, whereas the upper surface of the ocean 
is bounded above by a thin uniform semi-infinite elastic 
plate modelled as a thin elastic ice-cover (Ursell, 1947; 
Stoker, 1957; Weitz and Keller, 1950; Newman, 1965; 
Evans, 1985; Evans and Linton, 1994; Blamforth and 
Craster, 1999; Chakrabarti, 2000; Chung and Fox, 2002; 
Sahoo et al., 2001). In this case, different boundary 
conditions on the upper surface are satisfied on different 
sides of the line of discontinuity, constituting the edge of a 
thin semi-infinite elastic plate floating on the surface. 
Time-harmonic waves of a particular frequency are assumed 
to propagate normally to the edge of the floating plate. 
Using the algebraic approaches involving the least squares 
and singular value decomposition methods, we have 
determined the reflection and transmission coefficients 
approximately. 

We consider the irrotational motion of an inviscid 
incompressible fluid of relatively small amplitude under the 
action of gravity and is covered by a thin uniform 
semi-infinite elastic plate modelled as a thin ice sheet. The 
fluid is of infinite horizontal extent in x -direction while the 
depth is along y -direction which is considered vertically 

upward with 0y   as the mean position of the top surface 

and y h   as the bottom surface. We assume that a 

floating plate occupies the region 0, 0,y x  whereas the 

region 0, 0,y x   is free to the upper atmosphere. We 

further assume that all motions are time harmonic with 
angular frequency .  Under these assumptions, the 
velocity potential of the flow can be written as 

  iRe , e ,tx y      
where Re  stands for the real part, and 

the potential function  ,x y  satisfies Laplace's equation: 

 
2 2

2 2
0

x y

  
 

 
  in , 0x h y         (9) 

with the linearized boundary conditions on the top surface 
and bottom surface being given by: 

 0K
y

 
 


  on  0, 0y x       (10) 

 

4

4
1 0,D K K

x y

 
  

      
 on 0, 0y x      (11) 

3 4

2 3
0, 0,

x y x y

  
 

   
 as 0 , 0x y      (12) 
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0
y





  on  ,y h x              (14) 

where 2 ;K g  g  the acceleration due to gravity, 

 ;D L g  L  is the flexural rigidity of the elastic plate, 

 0 0;h    0  is the density of the plate,   is the 

density of fluid, 0h  is the very small thickness of the 

elastic plate, R  and T  are the unknown complex 
constants which are related with the reflection and 

transmission coefficients respectively, 0k  and 0p  are 

positive real numbers satisfying, respectively, the dispersion 
relations: 
 tanh 0K u uh    (15) 

and 

    4 1 tanh 0Dv K v vh K           (16) 

Now it may be noted here that Eqs. (15) and (16), 
respectively, represent the dispersion relations for the open 

region  0, 0x h y   
 

and the plate covered region 

 0, 0 .x h y     In equation (15), there are two 

non-zero real roots 0k  that indicate the propagating 

modes and a countable infinity of purely imaginary roots 

 1,2,...niu n   that relate to a set of evanescent modes, 

where ,
nu s  are real and positive satisfying the equation 

 tan 0.n nK u u h    (17) 

Similarly, in equation (16), there are two non-zero real roots  

0p that indicate the propagating modes; two complex 

conjugate pair of roots  i    with , 0,    
corresponding to the damped propagating modes; and a 
countable infinity of purely imaginary roots 

 i 1,2,...nv n   that relate to a set of evanescent modes, 

where ,
nv s  are real and positive satisfying the equation 

  4 1 tan 0n n nDv K v v h K      (18) 

3.1 Method of solution 
The entire fluid domain is divided into two regions: the 

open region  0, 0x h y     and plate covered region 

 0, 0 .x h y     The velocity potential in the fluid 

region is expressed as 
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where 
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with 2 ip     ,  1 i , 0p        . Here  , , 1,2,...mR T A m
 

and  2, 1,1,2,...nB n    are unknown constants to be 

determined to obtain the velocity potentials completely. 

Using the conditions of continuity of   and x   

across the line 0,x   we get two different relations for the 

above unknown coefficients, which are of the form: 

          0 0
1 2

0

1 m m n n
m n

n

R y A y T f y B f y 
 

 


      (22) 

     
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      (23) 

Truncating m  and n  in Eqs. (22)–(23) after N  terms, 

we obtain two relations involving  2 4N   unknowns. 

Therefore, we get a system of over-determined linear 
algebraic equations 

 Ax b   (24) 
where the entries of A are the coefficients of  

1 2 1 1, ,..., , , , , ,...,N NR A A T B B B B   
on each discretized points 

in the interval  ,0h along the y -axis, 

 T1 2 1 1, ,..., , , , , ,...,N NR A A T B B B Bx    

        T

0 1 0 0 1 0 2 0 0 2, i , , i ,...y k y y k yb             

with 1 2, ,...,y y  being infinite numbers of equally spaced 

discrete points in the interval  ,0 .h  In order to be able to 

utilize the method of least squares as well as the singular 
value decomposition method successfully, occurrence of 
ill-conditioned matrices must be avoided. 

There are  2 4N   unknowns in the above system 

which can be determined algebraically by the method of 
least squares and singular value decomposition. 

3.2 Numerical results  
We consider the numerical computation of the reflection 

and transmission coefficients due to the interaction of 
surface water waves with a semi-infinite thin elastic plate 
modelled as a thin ice-cover, which are calculated from the 
system of Eqs. (22)–(23), by using the method of least 
squares (LS) and singular value decomposition (SVD). In 
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the following table, we present the variation of R  and 

T  for various values of N (number of terms in the 

evanescent wave modes for  ) and M (number of equally 

spaced discrete points of y ). In this case, we fix the elastic 

parameters as 4 0.1; 0.1D h h  , the non-dimensional 

depth of fluid as 5  and the value of Kh  as 0.03.  It is 
known (Chakrabarti and Martha, 2009) that the 
energy-balance relation or the energy identity for the class of 
surface water wave problems involving a semi-infinite 
floating elastic plate on the surface of water of finite depth 
satisfies the following relation: 

 2 2 1r d tK K K    (25) 

where 

0 0

0 0

4 4
0 0 0 0

0 0

sinh 2

sinh 2

2 ( 1 ) (5 1 )sinh 2

2 sinh 2

d

k k h
K

p p h

p h Dp K Dp K p h

k h k h

 

 

     
  

  

0 0

0 0

tanh
, .

tanhr t

T p p h
K R K

k k h
   

Table 1 Numerical values of R  and T  for various 

values of M and N 

LS solution SVD solution 

M N 
R  T  

2

2

r

d t

K

K K


 R  T

2

2

r

d t

K

K K



10 2 7.7494e-04 0.9994 1.0001 7.7494e-04 0.9994 1.0001

10 3 7.7546e-04 0.9994 1.0001 7.7546e-04 0.9994 1.0001

13 2 7.7396e-04 0.9994 1.0001 7.7396e-04 0.9994 1.0001

13 3 7.7396e-04 0.9994 1.0001 7.7396e-04 0.9994 1.0001

17 4 7.7413e-04 0.9994 1.0001 7.7413e-04 0.9994 1.0001

25 5 7.7428e-04 0.9994 1.0001 7.7428e-04 0.9994 1.0001

 

In Table 1, the numerical values for ,R T  and 

2 2 ,r d tK K K
 

are given against different values of M and 

N  for the numerical values of the roots 

0 1 2 00.0795, 3.1397, 6.2822, ..., 0.0796,k k k p    1 3.1414,p   

2 26.2832,..., 1.2489 1.2565ip p   and 1 1.2489 1.2565ip   . 

By using the method of least squares and singular value 
decomposition, we are able to successfully achieve the 
satisfaction of the energy identity (25) almost accurately. 

Figs. 1 and 2 show the plots of reflection and transmission 
coefficients for different values of the elastic parameter 

4 .D h  In both the figures, we fixed the non-dimensional 

depth of the fluid as 5;  the number of terms in the 

evanescent wave modes for both plate covered and free 
surface regions N  as 7;  and the other elastic parameter 

h  as 0.1.  From these figures, it is observed that when 

the values of elastic parameter increase, the reflection 
coefficient decreases while the transmission coefficient 
increases. That means as the values of the elastic parameter 
increase, the plate becomes rigid and most of the wave 
energy which concentrates near the covered region is 
transmitted below the plate and less amount of wave energy 
is reflected back by the plate. 

 

 
Fig. 1 Reflection coefficient R  plotted against Kh for 

ε h = 0.1  and N=7 

 

 
Fig. 2 Transmission coefficient T  plotted against Kh for 

ε h = 0.1  and N=7 

 
For long waves corresponding to a small incident wave 

number 0k h  (i.e., for a small incident wave frequency Kh   

of surface waves), the fluid flow is uniform along the 
horizontal direction. As a result, there is little wave 
reflection by the horizontal plate for long waves. The plate 
appears to be transparent to the incident wave and the wave 
reflection disappears. In such a case, the reflection 

coefficient R  tends to zero and the transmission 

coefficient T  approaches to one, as the wave number of 

the open region 0k h  vanishes (i.e., the incident wave 

frequency Kh  of surface waves converges to zero), which 
means that a major part of the wave energy for long waves is 

transmitted into the covered region  0 .x    On the 
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other hand, when the wave number of the open region 
increases, that is, for the case of short waves corresponding 

to large wave number 0 ,k h  the reflection and transmission 

coefficients increase. This is due to the fact that for short 
waves, which correspond to large wave numbers, most of 
the wave energy is concentrated near the plate covered 
region. Thus, a large proportion of the wave energy is 
transmitted into the covered region and less amount of wave 
energy is reflected back by the plate. Thus, the incident 
waves of smaller wavelength penetrate farther into the 
plate-covered region. 

4 Water wave scattering by a pair of 
semi-infinite elastic plates 

In this section, we have considered the problem of 
scattering of surface water waves involving an ocean of 
finite depth having a flat rigid bottom, whereas on the upper 
surface of the ocean there exist a pair of thin uniform elastic 
plates (modelled as thin ice-plates) with a finite gap in 
between. In this case, different boundary conditions on the 
upper surface are satisfied on different sides of the finite free 
surface (gap), composed of two thin elastic plates floating 
on the surface. Time-harmonic waves of a particular 
frequency are assumed to propagate normally to the edges of 
the floating plates. Using the algebraic approaches involving 
the least squares and singular value decomposition methods, 
we have determined the reflection and transmission 
coefficients of the presently considered scattering problem, 
approximately. 

We assume irrotational motion of an inviscid 
incompressible fluid (water) of finite depth under the action 
of gravity which is covered by two thin uniform 
semi-infinite elastic plates modelled as thin ice sheets, 
separated by a gap of finite width. The fluid is of infinite 
horizontal extent in x -direction while the depth is along 
y -direction which is considered vertically upwards with 

0y   as the mean position of the top surface and y h   

as the bottom surface. We further assume that all the 
motions are time harmonic with angular frequency .  
Under these assumptions, the velocity potential in the fluid 

can be written as   iRe , e ,tx y      where Re  stands for 

the real part, and the potential function  ,x y  satisfies 

Laplace's equation: 
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where the linearized boundary conditions on the top surface 
and bottom surface are: 
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
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
  on  ,y h x             (32) 

where 2 ;K g g the acceleration due to gravity. In the 

region    1 1, 0 , ;x a h y D L g         1L  is the 

flexural rigidity of the elastic plate,   1
1 0 0;h     1

0  

is the density of the floating plate in this region and in the 

region  , 0 ,a x h y        2 2 ;D L g 2L  is the 

flexural rigidity of the elastic plate,   2
2 0 0;h     2

0  

is the density of the floating plate in this region,   is the 

density of water, 0h  is the very small thickness of both the 

elastic plates. The unknown complex constants 1 1, ,R R T  

and 2T  are related with the reflection and transmission 

coefficients;  1
0 0,k p and  2

0p  are positive real numbers 

satisfying, respectively, the dispersion relations:
 

    tanh 0K u uh                (33) 

  
 4

1 11 tanh 0D v K v vh K   
         

(34) 

and 

  4
2 21 tanh 0D K h K              (35) 

Now it may be noted here that the Eqs. (33), (34) and (35), 
respectively, represent the dispersion relations for the open 

region  , 0a x a h y       and the covered regions 

 , 0x a h y        and  , 0 .a x h y       In 

Eq. (33), there are two non-zero real roots 0k  and a 

countable infinity of purely imaginary roots miu  

 1,2,... .m   Similarly, in Eqs. (34) and (35), respectively, 

there are two non-zero real roots  1
0p  and  2

0 ,p  two 

complex conjugate pair of roots     1 1i  
 

and 
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    2 2i  
 

with    , 0j j    1,2 ,j 
 

and a 

countable infinity of purely imaginary roots i nv  and 

 1,2,... .ni n   

4.1 Method of solution 
The entire fluid domain is divided into three regions: the 

plate-covered region  , 0 ,x a h y        the open 

region  , 0a x a h y       and the plate-covered 

region  , 0 .a x h y       The velocity potential in 

the fluid region is expressed as 

( )
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  (36) 

where 

 

 

 

0

0

cosh
, for 0

cosh

cos
, for 1,2,...

cos

m

m

m

k h y
m

k h
y

k h y
m

k h



 


 
 

       (37) 

 

   

   
 

   
 

0

0

cosh
, for 1,2, 0

cosh

cos
, for 1,2, 2, 1,1,2,...

cos

j

j
j

n j
n

j
n

p h y
j n

p h
f y

p h y
j n

p h

 
 

 
    



(38)

 
with       2 i ,j j jp                1 i 0j j j j jp         . 

Here  1 1 2, , , , , 2, 1,1,2,...n nR R T T A B n   and ,m mE F  1,2,...m  

are unknown constants to be determined to obtain the 
velocity potential completely. 

Using the conditions of continuity of   and x   

across the line x a   and x a , we get four different 
relations for the above unknown coefficients. Then 
truncating m  and n  after N terms, we obtain four 

relations involving  4 8N   unknowns. 

Therefore, we get a system of over-determined linear 
algebraic equations of the form 

 Ax b   (39) 
where the entries of A are the coefficients of  

1 1 2 2 1 1 2 1 1 1, , , , , , ,..., , , , ,..., , ,..., ,N N NR R T T A A A A B B B B E E    1,..., NF F
 

on each discretized points in the interval  ,0h  along the 

y -axis,  

 1 1 2 2 1 1 2 1 1 1 1

T
, , , , , , , ..., , , , , ..., , , ..., , ,...,

N N N N
R R T T A A A A B B B B E E F Fx

   
 , 

            T1 1

0 01 1 2 2, 0, i , 0, , 0, i , 0,...G y p G y G y p G yb     , 

       
1

0 1i
0e p aG y f y  , and 1 2, ,...,y y  are infinite 

numbers of discrete points in the interval  ,0 .h   

There are  4 8N   unknowns in the above system 

which can be determined algebraically by the method of 
least squares and singular value decomposition. 

4.2 Numerical results  
We consider the numerical computation of the reflection 

and transmission coefficients due to the interaction of 
surface water waves with a pair of thin elastic plates 
separated by a gap of finite width, which are calculated from 
Eq. (39). In the following tables, we present the variation of 

1, ,R R 1T  and 2T  for various values of N (number of 

terms in the evanescent wave modes for   and 

M (number of equally spaced discrete points of y ). In this 

case, we fix the elastic parameters as 4
1 0.1D h  ; 

1 0.1h  , 4
2 0.3D h  ; 2 0.1h  , the non-dimensional 

depth of fluid as 5  and the value of Kh  as 0.03.  It is 
known (Chakrabarti and Martha, 2009) that the 
energy-balance relation or the energy identity for the class 
of surface water wave problems involving a pair of floating 
elastic plates with a finite gap in between on the surface of 
water of finite depth satisfies the following relation: 

 
2 2 1r d tK K K                (40) 

where 
   

   

       

       

1 1
0 0

2 2
0 0

2 2 2 2
0 2 0 2 2 0 2 0

1 1 1 1
0 1 0 1 1 0 1 0

4 4

4 4

sinh2

sinh2

2 ( 1 ) (5 1 )sinh2

2 ( 1 ) (5 1 )sinh2

d

p p h
K

p p h

p h D p K D p K p h

p h D p K D p K p h

 

 

 

     
 
      

(41) 

 
   

   

2 2
2 0 0

1 1
0 0

tanh
,

tanh
r t

T p p h
K R K

p p h
   (42) 

Table 2 Numerical values of R , R1  and T 1  and T 2  

for various values of M and N (LS solution) 

M N R
 

1R
 

1T
 

2T
 

2

2

r

d t

K

K K



8 2 2.6478733e-04 7.7457002e-04 1.0006008 1.0000058 1.0000252

8 3 1.8633604e-05 7.9385284e-04 1.0005842 1.0000063 1.0000261

10 2 3.2165429e-04 7.7280847e-04 1.0006098 1.0000061 1.0000258

10 3 2.3796480e-04 7.7292724e-04 1.0006117 1.0000064 1.0000264

15 4 2.8489279e-04 7.7419402e-04 1.0006034 1.0000061 1.0000258

22 4 2.8808999e-04 7.7393991e-04 1.0006052 1.0000063 1.0000261
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Table 3 Numerical values of R , R1  and T 1  and T 2  

for various values of M and N (SVD solution) 

M N R  1R  1T  2T  
2

2

r

d t

K

K K



8 2 2.6478728e-04 7.7457003e-04 1.0006008 1.0000058 1.0000252

8 3 1.8103194e-05 7.9353593e-04 1.0005842 1.0000066 1.0000268

10 2 3.2165430e-04 7.7280848e-04 1.0006098 1.0000061 1.0000258

10 3 2.3797612e-04 7.7289804e-04 1.0006117 1.0000065 1.0000265

15 4 4.2955657e-04 6.0005575e-04 1.0007728 1.0003533 1.0007205

22 4 4.0613051e-04 7.6772135e-04 1.0006195 1.0000312 1.0000760

 
In the Tables 2 and 3, the numerical values for 

1, ,R R 1 2,T T  and 2 2
r d tK K K  are given against 

different values of M and N  for the numerical values of 

the roots 0 0.0795k  , 1 3.1397k  , 2 6.2822k  , ... , 

 1
0 0.0795757p  ,  1

1 3.14141p  ,  1
2 6.28317p  , ... , 

 1
2 1.24891 1.25655ip   ,  1

1 1.24891 1.25655ip   , 

 2
0 0.0795753p  ,  2

1 3.141529p  ,  2
2 6.28318p  , ... , 

 2
2 0.947129 0.954802ip   and  2

1 0.947129 0.954802ip   . 

By using the method of least squares and singular value 
decomposition, we have been able to successfully achieve 
the satisfaction of the energy identity (40) almost accurately. 

Figs. 3–6 show the plots of reflection and transmission 
coefficients due to a pair of floating semi-infinite elastic 
plates separated by a gap of finite width for different values 

of the elastic parameters 4
1D h  and 4

2 .D h  In all the 

figures, we fixed the non-dimensional depth of the fluid as 
5,  the number of terms in the evanescent wave modes for 

both the plate covered and open regions N  as 4,  and the 

value of the elastic parameters 1 h  and 2 h  as 0.1.  

 

 
Fig. 3 Reflection coefficient R  plotted against Kh for 

ε h = ε h =1 2 0.1  and N=4 
 

 
Fig. 4 Reflection coefficient R1  plotted against Kh for 

ε h = ε h =1 2 0.1  and N=4 

 

 
Fig. 5 Transmission coefficient T1  plotted against Kh for 

ε h = ε h =1 2 0.1  and N=4 

 

 
Fig. 6 Transmission coefficient T2  plotted against Kh for 

ε h = ε h =1 2 0.1  and N=4 
 

Figs. 3 and 6, respectively, show the reflection 
coefficients due to an incident wave in the plate covered 

region  x a     and the transmission coefficient due 

to an incident wave in the plate covered region 
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 ,a x    whereas Figs. 4 and 5, respectively, show the 

reflection and transmission coefficients due to an incident 

wave in the open region  .a x a    From all these 

figures it is observed that as the value of elastic parameters 
increases, the plates become rigid and the peak values of 
reflection and transmission coefficients decrease. As in the 
case of wave scattering by a semi-infinite elastic plate, here 
also when the value of elastic parameters increases, most of 
the wave energy which concentrates near the covered region 
is transmitted below the plates and less amount of wave 
energy is reflected back by the plates. The values obtained 

for the reflection coefficient R  in the covered region 

 x a     are greater than those for the reflection 

coefficient 1R in the open region  .a x a   Moreover, 

the rate of change of the value of reflected energy is more 

for both the covered  x a     and open 

 a x a    regions. 

It is observed from Figs. 5 and 6 that when the values of 

elastic parameters 4
1D h  and 4

2D h  increase, the rate of 

change of the values of the transmitted energy is very 

negligible for both open  a x a    and covered 

 a x  
 

regions for certain values of Kh  (i.e., for 

long waves corresponding to a small incident wave number 

0k h ). In such a situation, the value of the transmitted energy 

decreases from one in the open region and approaches to 

one in the covered region  .a x    This shows that 

these transmitted energies are somewhat insensitive to the 
changes in the elastic parameters of the plates and do not 
change appreciably when the elastic plates are approximated 
by a rigid lid.  

5 Conclusions 

A class of mixed boundary value problems arising in the 
problem of scattering of surface water waves involving an 
ocean of finite depth having a flat rigid bottom, with the 
upper surface of the ocean being bounded by a thin 
semi-infinite elastic plate and a pair of thin semi-infinite 
elastic plates, separated by a gap of finite width, are 
considered. In such a situation different waves can exist at 
different wave numbers for any given frequency. There are 
three kinds of waves acting below the plates: (i) an 
undamped progressive wave, (ii) evanescent wave modes 
and (iii) a decaying progressive wave, and two kinds of 
waves acting on the open region: (i) an undamped 
progressive wave and (ii) evanescent wave modes. By 
assuming two-dimensional linear water wave theory, the 
series solutions have been obtained in the respective regions 
by using the method of eigenfunction expansions. In both 
the problems, the numerical values of the reflection and 
transmission coefficients are obtained by solving an 

over-determined system of linear algebraic equations with 
the help of least squares and singular value decomposition 
method and depicted graphically against different values of 
wave numbers for different elastic parameters of the floating 
plates. Our main aim is to check the energy balance relations 
for the water waves scattering problems involving floating 
elastic plates by applying the present approach of solutions. 
The main advantage of the present approach of solutions 
that follows is that by using both the methods, the values of 
reflection and transmission coefficients are found here to 
satisfy the energy-balance relation associated with the 
corresponding scattering problem under consideration. It 
eliminates the need to use large and cumbersome analytical 
methods for the solutions of such type of problems. The 
present approach is much simpler than the method involving 
the Wiener-Hopf technique utilized by Tkacheva (2001) to 
solve these types of mixed boundary value problems in 
water wave theory. 

Acknowledgements 

We thank NASI (National Academy of Sciences, India) 
for providing financial support, in the forms of a Senior 
Scientist Platinum Jubilee Fellow to A.C. and a Research 
Associate to S.M.  

Appendix 

Locating the roots of the dispersion equations 
The dispersion equation for the ice-covered sea, given in 

Eq. (34), is 

   4 1 tanh 0v Dv K v vh K     
    

(A.1) 

We can determine easily the real and pure imaginary roots 
by slight rearrangement of the equation (A.1). Any real root 
v  must satisfy 

    4
tanh

1

K
vh

Dv K v


 
         (A.2) 

When  1 0,K   the polynomial term of right side of 

Eq. (A.2) is always positive and when  1 0,K   the 

polynomial term is negative for  40 1 .v K D    In 

either case, the polynomial term and the hyperbolic tangent 
term intersect exactly once for 0,v   and since each 

function is odd in v  there are two real roots occurring 

given by 0,k  with 

 

 
   0

4

0, if 1 0

1 , if 1 0

K
k

K D K



 

   
  

   

   (A.3) 

The lower bound given can be used as the starting point for 
a numerical root finding procedure. 

When v  is pure imaginary, i.e., nv iv  for some real 

,nv  the root satisfies  
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 4
tan

1
n

n n

K
v h

Dv K v



 

          (A.4) 

For the case  1 0,K   the polynomial term is always 

negative. It is clear that each branch of the tan function, 
except the branch that passes through the origin, intersects 
the polynomial term exactly once and hence the n th 

positive root satisfies  1 2 π πnn v h n    

 1,2,... ,n  with πnv h n  as .n   Again, since the 

functions are odd, roots also occur at  1,2,... .nv n   For 

the case  1 0,K  the polynomial term is positive for 

 4 1nv h K D   and we have the more general bound 

 

 4

1
1 π π,

2

1 π
if   1

2

nn v h n

K D n
h



     
 

    
 

         (A.5) 

 4

1
π π,

2

1 π
i f   1

2

nn v h n

K D n
h



    
 

    
 

         (A.6) 

These bounds provide an initial bracket suitable for 
initializing a numerical procedure to evaluate each purely 
imaginary root.  

Now we describe the four remaining complex roots. Since 

 z  is even and has real coefficients it follows that if z  

is a root, then so do ,z z  and .z  Note that z  cannot 

be zero except possibly when 0.K   So we may take z  
to have positive real and imaginary parts. 

Now we consider the function 

 
   4 1 tanf z Dz K z zh K            (A.7) 

Since zeros of  f z  given in Eq. (A.7) are  i  times 

the zeros of  z  given in equation (A.1), we find that 

   Im Re .z z
 

These can be computed using fixed-point 

iteration schemes. 
The dispersion equation for the open sea may also be 

analyzed in this way with the primary difference being that 
the fourth-order term in v  that appears in Eq. (34) does not 
appear in Eq. (33) for .u  Thus, the open sea dispersion 
equation has the same structure of real and pure imaginary 
roots as (34), but does not have the four extra complex roots. 
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