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Abstract: In this paper, various aspects of the 2D and 3D nonlinear 
liquid sloshing problems in vertically excited containers have been 
studied numerically along with the help of a modified 
 -transformation. Based on this new numerical algorithm, a 
numerical study on a regularly and randomly excited container in 
vertical direction was conducted utilizing four different cases: The 
first case was performed utilizing a 2D container with regular 
excitations. The next case examined a regularly excited 3D 
container with two different initial conditions for the liquid free 
surface, and finally, 3D container with random excitation in the 
vertical direction. A grid independence study was performed along 
with a series of validation tests. An iteration error estimation 
method was used to stop the iterative solver (used for solving the 
discretized governing equations in the computational domain) upon 
reaching steady state of results at each time step. In the present case, 
this method was found to produce quite accurate results and to be 
more time efficient as compared to other conventional stopping 
procedures for iterative solvers. The results were validated with 
benchmark results. The wave elevation time history, phase plane 
diagram and surface plots represent the wave nonlinearity during its 
motion. 
Keywords: 3D container; free surface; σ-transformation; sloshing 
wave; finite difference method; Numerical Simulation 
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1 Introduction1 

Liquid sloshing is one of the most severe problems in 
transportation. Sloshing has been defined as the free surface 
oscillations of liquid in a partially filled container. When a 
partially filled liquid container gets accelerated in one or 
more directions due to external forces, waves will occur on 
the liquid free surface. This type of sloshing is called 
externally induced sloshing. Sometimes, self induced 
sloshing also arises while transferring the liquid from one 
container to another. Most of the researchers have 
concentrated their efforts on externally induced sloshing 
because of its practical significance. The knowledge of 
liquid free surface natural frequencies is important in the 
design of liquid containers subjected to different types of 
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excitation (Maleki and Ziyaeifar, 2008; Ibrahim, 2005). The 
dynamic behavior of a free liquid surface or the severity of 
the sloshing depends on the type of excitation and the 
frequency content, type of fluid, container shape, liquid fill 
level, excitation amplitude, and direction of the container 
motion. Civil engineers and seismologists have been 
studying liquid sloshing effects on large dams, oil containers 
and elevated water towers under ground motion for years.  

Sloshing can be broadly classified into two types; namely 
self-induced sloshing and externally induced sloshing, based 
on how sloshing is generated inside its container. The main 
difference is that, in self-induced sloshing, the container is 
motionless whereas, in externally induced sloshing, the 
container will move owing to external disturbances. In the 
case of externally induced sloshing, external force such as 
an earthquake or a sudden brake on a moving container 
vehicle acts as the excitation source for sloshing (Eswaran et 
al., 2011). Many theoretical and experimental research 
studies have been carried out in the area of liquid sloshing in 
fixed and moving containers. In the past, Jacobson and Ayre 
(1951), and Graham and Rodriguez (1952) performed some 
basic studies relevant to this topic. Housner (1957, 1963) 
developed an analytical method for the determination of 
hydrodynamic wall pressures under the assumption that the 
container is a rigid structure fixed at the base. Faltinsen 
(1974), Faltinsen and Timokha (2002), and Frandsen and 
Borthwick (2003) presented approximate theoretical forms 
for inviscid sloshing motion in fixed and moving containers. 
Extensive numerical analyses of liquid slosh dynamics have 
been undertaken by using numerical methods such as the 
finite difference method, boundary element method, finite 
volume method, etc. Techniques, such as marker and cell 
(MAC), volume of fluid (VOF) are available to handle the 
free surface of the moving fluid (Popov et al., 1993; 
Akyildiz and Unal, 2006; Cho et al., 2005; Arafa, 2007; Hirt 
and Nichols, 1981; Eswaran et al., 2009). Since these 
methods require complex computer programming to treat 
the time varying free surface boundary and computational 
mesh needs to be updated at every time step, use of 
σ-transformation for treating the liquid free surface has 
gained widespread popularity in recent years. The 
σ-transformation technique is simple, easy to implement and 
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eliminates the need for remeshing of the computational 
domain at each time step. This technique was applied and 
found to produce good quality results by Chern et al. (1999), 
Turnbull et al. (2003), Chen and Nokes (2005), Dai and Xu 
(2006), Eswaran and Saha (2009a, 2009b, 2010). Originally, 
 - transformation was proposed for meteorological weather 
forecasting by Phillips (1957), however, later, Blumberg and 
Mellor (1980) and Mellor and Blumberg (1985) applied it in 
the context of oceanic and coastal flows. Recently, Frandsen 
(2004) investigated numerically steep free surface sloshing 
in 2D fixed and base-excited rectangular containers, with a 
focus on moving liquid free surface using σ-transformation 
and compared the results with third-order single modal 
solutions and theoretical results (multidimensional modal 
analysis) of Faltinsen et al. (2000). Thus, it was revealed 
that all the investigations as reported above have used sigma 
transformation technique for 2D containers only. Studies 
addressing 3D containers have not been reported so far in 
literature reviews. In view of this, the current investigation, 
attempted to make simulated the 3D sloshing waves in a 
regularly and randomly excited container using 
σ-transformation technique. In order to achieve this, few 
modifications have also been performed in the existing 
σ-transformation technique. 

The main objective of this paper was to develop a new 
computational algorithm for capturing the liquid free surface 
for idealized 2D and 3D sloshing waves of inviscid fluid in a 
rectangular liquid container. In order to accomplish this, a 
modified σ-transformation technique was used to map the 
asymmetric physical domain onto a square computational 
domain, such that the moving free surface in the physical 
plane becomes a fixed plane surface in the computational 
domain. The finite difference scheme was used to solve the 
discretized governing equations in the transformed 
computational domain to obtain the free surface elevation 
time histories, phase plane diagram, spectrum analysis and 
free surface profiles in the physical domain. The free surface 
elevations are captured in the regularly and randomly 
excited container in vertical direction at different locations 
of the 2D and 3D domains while varying the modes of 
oscillation (n=1, 2 and 3). Two initial wave profiles for the 
liquid free surface (i.e., initial profile 1, and initial profile 1 
and 2, which is the result of linear superposition of two 
sinusoidal wave profiles) are used for the 3D fluid domain 
to observe the variation in the free surface elevation time 
histories at different locations of the container. Section 2 is 
focused on the mathematical formulation of the present 
work. Section 3 presents the mapping procedure which maps 
the physical domain onto the computational domain for 2D 
domain and 3D domain. In section 4, the finite difference 
discretizations of the governing equation and boundary 
conditions in the computational domain have been given. 
The free surface elevation of liquid, phase plane diagram, 
spectrum analysis and free surface profiles are discussed for 
vertically excited container in section 5. 

2 Mathematical formulation 

A rectangular Cartesian coordinate system was initially 
employed with origin on the mean free-surface at the left 
wall of the container. Primarily, a 2D nonlinear wave 
problem was considered, as depicted in Fig. 1, where   is 

the free-surface elevation above still water level, b is the 
length of the container, and hs is the still water depth. The 
fluid in the container was assumed to be inviscid and 
irrotational. Taking the assumption that the fluid was 
governed by potential flow theory, the velocity potential   

satisfies the Laplace equation. The velocity components 
normal to the fixed boundaries were zero by definition. The 
left, right and bottom boundaries were indicated by L, R, 
and B, respectively (Fig. 1). The free surface occurs at the 
interface between two fluids. Such an interface requires two 
boundary conditions to be applied, viz., (i) a kinematic 
condition that relates the motion of the free interface to the 
fluid velocities at the free surface (i.e., T1) and (ii) a 
dynamic condition which is concerned with the force 
balance at the free surface (i.e., T2). Liquid velocity 
components normal to the walls and bottom of the container 
were zero. Zero pressure at the free surface of the fluid was 
also assumed for the analysis. In view of the fact mentioned 
above, kinematic and dynamic conditions must be satisfied 
on the free surface. Therefore, the governing equations in 
the physical domain were presented as, 
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Fig. 1 Sketch of a standing wave in 2D container 
 

Here, tY  is the acceleration of the container in the 

vertical direction which can be neglected from the free 
surface dynamic boundary condition for fixed container 
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analysis. The following quantities were introduced for 
generating dimensionless governing equations for the 
present study, 

b
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where g is the acceleration due to gravity, A the wave 

amplitude, tY  the acceleration of the container and t the 

time. Here x¢ , y ,   , Y  , t  and   represent the 

dimensionless quantities. Using Eq. (5) (hereafter, primes 
are omitted for simplification), the non-dimensional 
governing equation and boundary conditions can be written 
as following, 
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where Eb=A/b is the amplitude-length ratio. The Eqs. (6) 
through (11) form an initial boundary value problem which 
is the Laplace equation with non-linear boundary conditions 
imposed on the free surface. Here, the non-linearity was 
significant for two reasons. Primarily, the elevation of the 
moving free surface was not known at priori or at any given 
time instant and, the boundary conditions on the free surface 
(i.e., Eqs. (10) and (11)) contain second order differential 
terms or products of unknown parameters. 

3 Mapping procedure  

The time-varying liquid free surface can be mapped onto 
a fixed plane surface by the proper coordinate 
transformations, called the  -transformation, which 
prevents the need for free surface smoothing for the cases 
considered herein. In this paper,  - transformation applied 
in the horizontal direction which stretches between the left 
and the right wall and in the vertical direction which 
stretches between the moving liquid free surface and the 
bottom of the liquid container to convert the moving 
free-surface physical domain onto a fixed square 
computational domain. The following section discusses the 
transformation technique in 2D and 3D containers in detail. 
During the transformation, the corresponding governing 
equation and boundary conditions will change appropriately. 

3.1 Transformation of 2D container  
Initially, formulations were developed for the fixed 

container condition, so the horizontal and vertical excitation 
terms were neglected from the Eq. (4) in the following 
formulation part.  

Step 1: First coordinate transformation 
The first transformation adopted the  -transformation 

technique to map the liquid domain onto a rectangle, such 
that the moving free surface in the physical plane (Fig. 2) 
becomes a fixed horizontal line in the  -transformed 
domain (Fig. 3). The mapping function ),( tx was defined 

as  

sy h

h
 
                  (12) 

where 
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Fig. 2 The 2D physical domain 
 

Fig. 3 The 2D intermediate domain after first transformation
 
Here, ),( tx is the stretching factor, which varies from 0 

to 1. The value of   at the bottom of the container is 0, 
while at the free surface is 1. The first-order derivatives of 
  can be calculated as follows: 
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The potential function ( , , )x y t   in the physical domain 

was transformed to the potential function ( , , )X T   in 

the  -transformed domain. 
Xx  ,  12  xX  

Yy  ,  12  Y            (15) 

Tt  ,  T=t 
Using the chain rule, the first set of derivatives of   

with respect to x, y and t gets transformed as  
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The second set of derivatives of   with respect to x and 

y gets transformed as,   
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Hence, by using the  -transformation, we can derive the 
new governing equation and boundary conditions specified 
on the rectangular  -transformed domain. The governing 
equation after the first coordinate transformation was 
provided as: 
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Boundary conditions after the first coordinate 

transformation are given as: 
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Fig. 4 The 2D computational domain after second 
transformation 

Step 2: Second coordinate transformation 
After the first coordinate transformation, the liquid 

domain becomes a rectangle defined by 1 1X    , 
1 1Y    . The time-varying curved free surface was, 

hence, replaced by the fixed straight line. Any numerical 
method can be employed to solve the governing equations in 
the computational domain. Now the second transformation 
was performed for the clustering of grid points near liquid 
free surface. The second coordinate transformation was 
applied by the following equations 
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T ,  T  

where  is the grid vertical stretching factor and  is a 
parameter that controls the range of η. The above 
transformation produces clustering of the grids near the free 
surface depending on the value of  selected. The clustering 
of grids near the free surface improved accuracy and eased 
convergence of the computational algorithm. As  
approaches unity, the mesh gets increasingly refined along 
the free surface of the liquid. Another parameter in the 
transformation  adjusts the position of the bottom in the 
transformed coordinates. Here the value of  has been taken 
as −1 so that the computational domain after the second 
transformation is a rectangle defined by 11    and 

11    with grid stretching near free surface as shown 

in Fig. 4. The mapping was performed from the 
 -transformed ( , , )X Y T  domain to the computational 

domain ),,(  . ),( TXh , the height of the liquid 

surface was transformed to ),(* h , the height of the 

liquid surface in the transformed computational domain. 

cdh  was the difference between the nodal indices along Y 

axis of the grid after the first coordinate transformation. 
The derivatives of the function ( , , )X Y T  with respect 

to X, Y and T were transformed into derivatives of 
),,(  with respect to  , η and τ. The first set of 

derivatives of ( , , )X Y T  gets transformed as: 
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The second set of derivatives gets transformed as follows: 
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After the second coordinate transformation the governing 
equation (Eq. 12) becomes, 
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Boundary conditions after the second transformation were 
given as: 
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The governing equation and the boundary conditions in 
the computational domain were provided by Eqs. (33)–(40) 
and any numerical method can be used to solve them. One 
more feature of this  -transformation technique was that it 
could easily be extended to 3D coordinates in a similar way.  

3.2 Extension to 3D rectangular container 
The 3D rectangular domain was bounded by 5 regular 

surfaces and 1 free surface. The velocity components normal 
to the fixed surfaces were zero. The left, right, front and 
back and the bottom boundary conditions were indicated by 
LB, RB, FB, BB and BMB, respectively in Eqs. (42)–(44). 
As usual, the top surface had two boundary conditions, viz. 
the kinematic condition (TB1) and dynamic condition (TB2). 
When the container was subjected to vertical acceleration, 
the non-dimensional governing equations based on the 
potential flow theory are as follows: 

0
2

2

2

2

2

2













zyx


            (41) 

LB and RB:  0



x


   on     x = 0, b  (42) 
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TB2: 0)1(.
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1



 

tb YE
t
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where w is width of the rectangular container. The derivation 
of the governing equations can be performed in the same 
way as the two-dimensional case by the following two 
transformations. The first transformation was performed for 
conversion from physical domains (Figs. 5 and 6) to 
 -transformed domain (Fig. 7) and the second 
transformation was for  -transformed domain to 
computational domain (Fig. 8). 
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Fig. 5 The 3D physical domain with initial wave profile 1 
 

Fig. 6 The 3D physical domain with initial wave profile 1 
and 2 

 
The mapping relations for first transformation were 

provided as, 
12  xX ; 12  Y ; 12  zZ ;  tT     (47) 

Hence the transformed governing equation becomes: 
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The boundary conditions are given as: 
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0
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Fig. 7 The 3D intermediate domain after first transformation 
 

Fig. 8 The 3D intermediate domain after second 
transformation 

 
On the free surface,  
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The mapping relations for second transformation were 
given as, 
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The mapping was performed from the  -transformed 
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( , , , )X Y Z TF  domain to the computational 

domain ),,,(  . The height of the liquid, ),,( TZXh  

surface was transformed to the height of the liquid in the 

transformed computational domain, ),,(* h . The cdh  

is the difference between the nodal indices along Y axis of 
the grid after the first coordinate transformation. The 
derivatives of the function ( , , , )X Y Z TF  with respect to X, 

Y, Z and T are transformed into derivatives 
of ),,,(  with respect to  ,,  and τ. After the 

second coordinate transformation the governing equation in 
the fluid domain becomes, 
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Boundary conditions after the second transformation are 
given as: 
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(64) 

Since sloshing is a highly nonlinear phenomenon, the 
amplitude of excitation, frequency of excitation and 
container dimensions play a vital role in determining the 
shape of the nonlinear free surface. An 
amplitude–frequency relationship for the fluid response in 
a two-dimensional rectangular container was presented by 
Faltinsen et al. (2000). Obviously, the stretched grid 
system exactly matches the time-dependent free-surface 
wave profile due to the  -transformation. Here, we 
should note that the mean water level in the container 
remains constant, so that the sum of the wave height along 
the x direction is kept at zero to maintain the volume 
conservation. 

4 Finite difference discretization in the 
computational domain 

In the current study, a finite difference scheme is used for 
the numerical study of the liquid sloshing. The 
computational domain is rectangular in shape for 2D 
numerical simulations and cuboidal for 3D numerical 
simulations. The governing equation and boundary 
conditions in the computational domain (Eqs. (33) to (40)) 
are discretized using finite difference method. 
Adams-Bashforth scheme is utilized for the computation of 
nonlinear solutions. As Adams-Bashforth scheme requires 
results from previous time steps to calculate the current time 
step result, hence the semi-implicit scheme is used to 
generate results for the initial time steps.  
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4.1 Semi-implicit scheme at top boundary (free surface) 
The semi implicit scheme is applied at the top boundary 

of the computational domain. As discussed, the top 
boundary consists of two conditions, viz. kinematic 
condition and dynamic condition. In computational domain, 
the kinematic condition (Eq. (38)) was discretized by a 
forward scheme at 1  as follows 
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At 1 , the dynamic condition (Eq. (39)) was 
discretized as: 
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The value of 1n  was computed using Eq. (66) and 

was substituted in Eq. (67). Then, the new 1n  was found 

at the top boundary of the computational domain using Eq. 
(68). The first and second order derivatives in above 
equations were discretized by means of second order central 
difference scheme within the liquid domain, and second 
order forward and backward differences were employed at 
the boundaries. 

4.2 Adams-Bashforth scheme  
The semi-implicit scheme was used to provide 

information at the first and second time steps, since the 
Adams-Bashforth was a multistep method. Euler and 
Runge-Kutta methods are single step methods, because they 
use only the information from the previous step. Adams 
methods are known as explicit schemes because current and 
previous time step values are used to obtain the values for 
future time steps. Here, three Point Adams-Bashforth 
schemes as mentioned in Eqs. (69) and (70) have been used. 
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The governing equation (Eq. (33)) was discretized by the 
standard fourth order central difference approximation and 
is given by 
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where ),( ji  denotes ),( ji  ; 2,    and 2,    

are the first and second order central difference operators 

along   and  directions respectively, and   is the 

mixed second order central difference operator.  

4.3 Convergence criteria used for the iterative solver 
It can be seen that the numerical algorithm requires 

solving a linear equation BA   in the fluid domain at 

every time step. To solve this equation various methods are 
available, but the iterative methods have been chosen for 
this work to find the solution to the velocity potential   at 

every time step since these are known to have the 
advantages of lesser discretization error and better speed of 
computation as compared to other direct methods. 
Successive over relaxation method has been chosen to solve 
the linear equation. Using an iterative solver it is very 
important to stop the iterations at the right time, i.e., when 
the iteration error has decreased by an acceptable amount. 
Iteration errors (Ferziger and Peric, 2002) can be calculated 
as,  

   111
1 )1(  annnn     (73) 

where n  is the difference between solutions at iterations 

n+1 and n, and 1  is the spectral radius or the largest 

eigenvalue of the iteration matrix. It can be estimated from 
Eq. (74).  

11 


n

n




        (74) 

where a  represents the norm (here, chosen as root mean 

square) of a. After obtaining an estimate of the largest 

eigenvalue ( 1 ), the iteration error can be approximated 

from Eq. (75). 

11 






n

nn      (75) 

Hence a good estimate of iteration error is available. The 
above given procedure produces pretty accurate results. The 
volume errors for all the cases studied were found to be 

within the range of [ 6 610 ,10- -- ] as shown in Fig. 9. This 

procedure is better than the difference procedure used to 
stop the iterative solver (where the iterations are stopped 
when the difference between two successive iterations falls 
below a predefined tolerance limit) since the difference 
between two successive iterations falling below a particular 
limit does not ensure that the iteration error has also fallen 
down by the same order. Another widely used criterion for 
stopping is the residual stopping criterion, where the 
iterative solver is stopped when the residual norm falls 
below a preset fraction (tolerance limit) of its initial value. 
The residual and iteration error are related as, 
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nnA            (76) 

where A represents the iteration matrix, n  the iteration 

error norm and n  the residual norm at any particular 

iteration n. As we can notice from Eq. (67), that the residual 
is A times the iteration error, thus the reduction of the 
residual norm below the tolerance limit does not ensure that 
the error norm has also fallen below the same tolerance limit. 
Hence, it is essential for the iteration to have proper 
evaluation of error to ensure the accuracy of solutions. In the 
case of two dimensional vertical regular excitations in a 
rectangular container, a comparison was done for the various 
iterative solver stopping criteria as shown in Fig. 10. For 
iterations at the first time step, the variation of norm of the 
exact iteration error, estimated iteration error with the above 
procedure, residual and difference between two successive 
iterations was plotted against the iterations. It can be noted 
that the difference norm falls well below 0.1×10−5 by 50 
iterations whereas the exact iteration error is still above 
0.2×10−5, hence this stopping criterion is not suited for the 
present case. 

Looking at the residual norm we can see that it has a quite 
higher value than the exact iteration error for all iterations. 
Estimated iteration error was noticed to be nearly the same 
as the exact iteration error in this case (except for the initial 
iterations where it shows slight oscillations). Using residual 
stopping criterion ensures that the exact iteration error has 
fallen well below the tolerance limit but it results in higher 
computational time for the solver without achieving higher 
accuracy than the estimated iteration error stopping criterion. 
Comparisons made for later time steps also showed a similar 
behavior of the norms of the stopping criteria with iterations. 
Hence, the error estimation stopping criteria for the SOR 
solver is most suited for the current problem.  
 

Fig. 9 Volume error for the 2D numerical simulation (for 

n=1, vΩ = vω
ω

=1.253, Kv=0.4, Eb= 0.003 3 and 

Kx=0.015) versus non-dimensional time (t×ω) 

Fig. 10 Comparison of error norms for 2D container with 
41×81 grid 

5 Results and discussion 

In the present study, the initial value of velocity potential 

( ) is set to zero prescribed as, 0
0


t
 , over the entire 

2D liquid domain and the initial value of free surface 

elevation ( ) is taken as )cos(00
xKA nt




 . For 3D 

domain, initial value of free surface elevation (  ) is 

considered in two cases say, initial profile 1 

( )cos(00
xKA nt




 ) and initial profile 1 and 2 

( )cos()cos(00
zKAxKA zvnt




 ). Here, A and Av 

are the respective amplitudes of the initial wave profiles on 
the liquid free surface along the X and Z axes (Fig. 6), Kn 

( )πn b= , Kz ( )πn w=  are the respective wave numbers of 

the initial wave profiles on the liquid free surface along the 
X and Z axes for nth mode of oscillation (n = 0, 1, 2,…), and 
x and z are distances along the X and Z axes of the fluid 
container. The initial wave steepness defined for fixed 
container studies is as given below: 

           gAK nx /2                 (77) 

where A is the amplitude of the initial wave profile on the 

liquid free surface, n  the natural sloshing frequency of 

oscillations and g the acceleration due to gravity usually 
considered as 9.81 m/s2. Here, the ratio of hs to b is 
considered as 1︰2. The linear natural sloshing frequencies 

in the two dimensional rectangular container is expressed as:  

,)tanh( snnn hKgK
 
 n=1, 2, 3,…    (78) 

Now the term tY  in the dynamic boundary condition (Eq. 

(4)) was switched off for fixed container condition. Two 
quantities were of prime importance in the sloshing studies: 
the amplitude of the initial wave profile on the liquid free 
surface and the excitation frequency. Amplitude of the wave 
was determined from the wave steepness using Eq. (77). 
Here, numerical simulations are conducted for case A, case B, 
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case C, and case D. Case A represents 2D numerical 
simulation of regularly excited liquid container in vertical 
direction and case B represents 3D numerical simulation of 
regularly excited liquid container in vertical direction with 
initial profile 1 for liquid free surface. Case C represents 3D 
numerical simulation of regularly excited liquid container in 
vertical direction with initial profile 1 and 2 for fluid free 
surface and Case D represents the 3D numerical simulation 
of the randomly excited liquid container in vertical direction. 

5.1 Grid independence and validation test 
The wave characteristics include a crest at the top and a 

trough at the bottom. The difference in elevation between the 
crests and trough is the wave height. The distance between 
the adjacent crests or troughs of wave is termed as the 
wavelength. The ratio of wave height to wavelength is the 
wave's steepness. While increasing the wave steepness the 
nonlinearity of the wave increases. Before proceeding with 
the solution of the governing equations on the computational 
domain, grid independence study to choose a suitably refined 
grid for the solution is very important. Grid was successively 
refined along the three dimensional axes and the free surface 
plots along the container length for all the grids at time 7.5 
seconds and Z=0 were compared. As shown in Fig. 11, 
initially the grid was refined in the horizontal and axial 
directions of container. Since the container was bounded by 
fixed vertical walls in the horizontal and axial directions, free 
surface plots do not seem to be affected by refining along 
these directions. But attention is required in the vertical 
direction, because of the moving free surface on the top. The 
grid points along the vertical direction were increased from 
21 to 41 and then to 61 mesh points and we found that the 
free surface plot for the 41 61 41 grid nearly overlaps with 
the free surface plot for the 41  41  41 grid. Hence 
41 61 41 grid is a suitable grid for the current study. 

Faltinsen et al. (2000) did comprehensive analysis of 
sloshing through theoretical and experimental techniques to 
provide results considered as benchmark results for the 
sloshing problems. Fig. 12 shows the comparison of present 
numerical work with theoretical result of Faltinsen et al. 

(2000) for the test case: h = 1.283; Ah = 0.029 m and Kh = 

0.069. The wave peaks and troughs match well with present 
work. Therefore, the numerical solution was in reasonable 
agreement with the work of Faltinsen et al. (2000) for this 
particular test case. The specific test case was previously 
solved by Hill (2003) and Frandsen (2004) and similar 
results were obtained. Frandsen (2004) has compared his 
results with Faltinsen et al. (2000).  

5.2 Vertically excited container: regular motion 
The initial condition of the liquid free surface used to 

simulate sloshing in a vertically excited container is the 
same as for the sloshing motion simulation in a fixed 
container. It is difficult to simulate sloshing with a vertical 
excitation only. In order to have an initial perturbation in the 
free surface inside the container, horizontal motions need to 
be excited before the vertical excitation. To avoid this 

situation, the initial standing wave profile was assumed for 
this work. Initial wave impulse at the fluid free surface was 
required for vertically excited condition and it is considered 
in two ways, initial profile 1 and initial profile 1 and 2 (as 
discussed in section 5). The vertical acceleration of the 

container is given by ))cos(( tAY vvvt  , where Av is 

the vertical forcing amplitude, t is the time, vw  is the 

angular frequency of forced vertical motion. The initial 
velocity potential in the fluid domain is considered as 

0),(
0


 . 

5.3 Effect of mode number on regular waves oscillation 
The waves generated by the vertical excitation are called 

Faraday waves as explored by Faraday (1831) through his 
experiments. Faraday waves are the resonant waves when 
the excitation frequency is twice the natural frequency for 
some initial perturbation in the container. This resonance 
condition is called parametric resonance. 

 

Fig. 11 Free surface plots along the container length for 
four different grids (21  21  21, 41  21  41, 
41 41 41 and 41 61 41) for Kx=0.033 at time 
7.5 s and Z=0 

 

Fig. 12 Solution of Faltinsen et al. (2000) and the present 
work showing the free-surface elevation at the left 
wall in horizontally excited container; hω =1.283, 

Ah = 0.029 m and Kh = 0.069 
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Fig. 13 Free surface profile diagram along container length 
at t=1.5 s 

 

Fig. 14 Free surface profile diagram along container length 
at t=3 s 

 

Fig. 15 Vertically excited container free surface wave 

elevation at left wall for n =1, vΩ = vω
ω

=1.253, Kv 

=0.4, Eb = 0.003 3 and Kx= 0.015 

Fig. 16 Vertically excited container free surface wave 

elevation at left wall for n =2, vΩ = vω
ω

=1.253, 

Kv=0.4, Eb = 0.002 4 and Kx =0.015 
 

Fig. 17 Vertically excited container free surface wave 

elevation at left wall for n =3, vΩ = vω
ω

=1.253, 

Kv=0.4, Eb =0.001 6 and Kx =0.015 
 
The study dealing with vertical excitation of liquid in a 

container was referred to as parametric sloshing. For the 

vertically excited container, the parameter gAK vvv /2  

is a measure of the importance of the vertical forcing motion 
and Kx (the wave steepness) is a measure of nonlinearity. 
Frandsen (2004) plotted the instability map between 

v n vΩ =ω / ω  and vK  and discussed results from stability 

and instability regions. If any of the pairs of the parameters 
lies in the instability region, then the corresponding mode 
grows exponentially with time. In this section, the profiles 
were given inside the stability region ( vW =1.253 and 

Kv=0.4).  
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Fig. 18 Free surface elevation for case A at different 
locations (left wall (L), center (C) and right wall 

(R)) for n=1, vΩ = vω
ω

=1.253, Kv=0.4, Eb=0.003 3 

and Kx=0.015 
 

Fig. 19 Free surface elevation for case B with initial profile 
1 at different locations (left front (LF), center front 
(CF), right front (RF), left back (LB), center back 
(CB) and right back (RB)) for n=1, 

vΩ = vω
ω

=1.253, Kv=0.4, Eb=0.003 3 and Kx =0.015 

 
Figs. 13 and 14 show liquid free surface elevation along 

the container length for n=1, 2 and 3 at time 1.5 and 3 
seconds, respectively. The mode number defines the shape 
of the free surface during the numerical simulations. The 
first few mode natural frequencies of system are dangerous 
for the structural integrity of the container during violent 
motions.  

Figs. 15 through 17 show the free surface elevations of 
the liquid near left wall (L2D and LF3D) for n=1, vΩ =1.253; 

Eb=0.003 3 and Kv=0.4. The case A and case B show almost 
similar elevation histories. But, case C shows large wave 
oscillations. 

Fig. 20 Free surface elevation for case C at different 
locations (left front (LF), center front (CF), right 
front (RF), left back (LB), center back (CB) and 

right back (RB)) for n=1, vΩ = vω
ω

=1.253, 

Eb=0.003 3, Kv=0.4; Kx=0.015 

(a) Case B 

(b) Case C 

Fig. 21 Vertically excited container phase-plane diagram at 

LT3D for n=1, vΩ = vω
ω

=1.253, Eb=0.003 3, Kv=0.4, 

and Kx =0.015  
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5.4 Free surface elevation on different locations 
Due to the wall effect, one can find the maximum wave 

amplitude near the wall, while the wave amplitude reduces 
as we move towards the centre. Here, three points were 
considered for case A (L2D, C2D and R2D), and six points 
were considered for the case B and case C (LF3D, CF3D, 
RF3D, LB3D, CB3D and RB3D). These points were shown in 
Figs. 5 and 6. Fig. 18 shows free surface wave elevation 
time history in the vertically excited 2D container for case A 
at three different locations. The free surface wave elevation 
time history for case B and case C were shown in Figs. 19 
and 20. In all cases, one can observe that the free surface 
elevation time histories of case A and case B are similar. 
Since the assumed initial profiles are the same in both cases 
(refer Fig. 2 and 3), the free surface wave elevation time 
histories are almost similar as well. But case C (3D with 
initial profile 1 and 2) shows dissimilar behavior and the 
difference between the crests and troughs also drastically 
varies from case B due to high nonlinearity. Fig. 21 (a) and 
(b) show the phase plane diagram at LT3D for vW = 1.253, Eb 

= 0.0033 and Kv = 0.4. In Fig. 21 (a), the phase plane 
diagram shows the uniform repeating pattern, but Fig. 21(b) 
shows the non-uniform repeating pattern behavior. 

5.5 Vertically excitedcontainer: random motion 
In most practical situations, the excitation or the time 

variation of the system parameters were random in nature 
(Ibrahim, 2005). The behavior of such systems under 
deterministic or regular wave parametric excitation was an 
idealization and an oversimplification of the real behavior. 
The random excitation originates from many natural and 
artificial sources. Recently, the 2D sloshing waves generated 
by the random excitations were studied by Wang and Khoo 
(2005), and Sriram et al. (2006). The random vertical 
oscillation of the container was considered in this section. 
As we know, a random input wave can be generated by the 
linear superposition of a number of monochromatic waves. 
The total supplied energy to the system was kept constant. 
Bretschneider spectrum was selected to serve as the input 
excitation spectrum to generate the random input wave. The 
relation for the Bretschneider spectrum was as given in Eq. 
(79) and the spectrum and the corresponding displacement 
time history generated by the spectrum were shown in Figs. 
22 and 23. 
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where Hs is the significant wave height, and pω  is the 

modal or peak frequency of the wave. The random input 
excitation wave is described by, 

 ii
N

i
i tA
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 


sin
1

    (80) 

where t is time, i  the frequency of ith linear wave, and 

Nw the number of the linear monochromatic waves. Ai and 

i
 

are the wave amplitude and phase of each linear wave, 

respectively. i  and i  are a set of random variables 

within a pre-selected range. 
 

Fig. 22 Bretschneider excitation spectrum with Hs = 0.01hs 
and pω = ω1  

 

Fig. 23 Displacement generated from the spectrum 
  

5.5.1 Selection of the linear angular frequencies ( i ) 

Nw denotes the number of linear waves superposed to 
create the random wave. In the present case, Nw is chosen to 
be 512 since such a high number ensures that a lot of 
frequencies within a given range contribute towards the 
generation of the random wave. The range of the angular 
frequencies is set as [0, 5 pω ] as the frequencies above 

5 pω do not have a significant contribution towards the 

generation of the random wave. In the present case, pω  
is 

taken equal to the first natural frequency of the system ω 
which is 3.759 371 rad/s.  

From Fig. 22, it is evident that in the energy spectrum, the 

wave energy ( S ) has the highest values around the modal 

or peak frequency ( pω ), hence a large number of angular 

frequencies were chosen in the narrow band around the 
value p . Around 150 values of angular frequencies were 
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selected randomly in the range of [2.5, 5.0] which was a 
very narrow band around the peak frequency marked as A in 
Fig. 22 and B represents the range [0.0, 2.5] and 62 values 
of angular frequencies are selected randomly in this range. 
As can be seen from Fig. 22, the energies in this range were 
near to zero and hence have negligible contribution in the 
energy of the final generated random wave. Band C, D and 
E represent the ranges [5.0, 10.0], [10.0, 15.0] and [15.0, 
5 p ] and 100 values of angular frequencies were selected 

randomly in each of these ranges. The selection of linear 
angular frequencies within a range was done by using a 
floating random number generating algorithm that makes 
use of a fixed seed number and a custom built function 
rand( ) (that gives the same set of random numbers every 
time for a fixed seed number). It is to be noted that the 
energy spectrum for angular frequencies above 10.0 rad/s 

falls well below 61001.0   J, hence less number of 
angular frequencies were selected in this range. After the 
selection of angular frequencies, the amplitudes of the linear 
waves can be calculated by the following equation 

           SAi 2               (81) 

where   is nothing but, the difference between adjacent 

angular frequencies ( ii   1 ). 

5.5.2 Selection of the phase angle ( i ) 

Using the same algorithm as used for selecting linear 
angular frequencies, Nw random values of phase angles were 
selected within the range [0, 2π]. By substitution of the 

selected random values of angular frequencies ( i ), 

amplitudes (Ai) and phase angles ( i ) in Eq. (80), we can 

get the resultant random input wave. From Eq. (80), the 
vertically excited container displacements were obtained 
from this spectrum. The time history of surface elevation at 
LF3D and RB3D of the container due to random vertical 
excitation is shown in Fig. 24. Spectra of free surface 
sloshing waves at LF3D of the wall due to vertical random 
excitation for an initial steepness of 0.288 and 1pω = ω . In 

the case of random excitation in vertical direction, the 
dominating peak appears only at the first mode (Fig. 25). 
The magnitude of the peak was almost the same irrespective 
of the excitation peak frequency and initial perturbation, 
contrary to the regular excitation. Sriram et al. (2006) found 
the magnitude was large only if the excitation frequency was 

equal to twice the first mode (parametric resonance) 
irrespective of initial perturbation. Fig. 26 shows the surface 
plots for three conditions, say case C at n=1, n=3 and case D 
at n=3 from 32 to 35 non-dimensional time units with 
non-dimensional time step Δt = 0.6 units. The surface plots 
show a half cycle of wave’s movement. The frames were 
shown for a wave steepness Kx = 0.040 16.  

 

Fig. 24 Random vertically excited container free surface 
oscillation at LF3D and RB3D, for an initial 
steepness of 0.288;

 pω = ω1
 

 

Fig. 25 Spectra of free surface sloshing waves at LF3D of the 
wall due to vertical random excitation for an initial 
steepness of 0.288 and pω = ω1  
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(a) Case C and n=1 (b) Case C and n=3 (c) Case D and n=3 

Fig. 26 Surface plot for different cases from the 32 to 35 non-dimensional time units with Δt = 0.6 time step 
 

6 Conclusions 

The proposed numerical model was found to be easy to 
implement, computationally accurate and efficient. In the 
cases presented herein, it eliminated the need for free 
surface smoothing and remeshing. The model provides a 
simple way of simulating steep non-breaking waves. The 
 -transformation technique can be applied to 

non-overturning and non-breaking waves. Present results 
were compared with the benchmark solutions of Faltinsen et 
al. (2000) (third order analytical solutions by multi modal 
technique). Non-linear effects of standing wave motion of 
liquid in 2D and 3D fixed and forced vertically regularly 
and randomly excited containers were studied numerically. 
The present study was carried out for regularly and 
randomly excited rectangular container in vertical direction 
for four different cases: 2D container with regular 
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excitations, the regularly excited 3D container with two 
different initial conditions for liquid free surface and finally, 
3D container with random excitation in the vertical direction. 
A fully non-linear inviscid numerical model was developed 
based on potential flow theory with the mapped governing 
equations and corresponding boundary conditions solved 
using finite difference method. Results of liquid sloshing 
induced by harmonic base excitations were presented for 
small to steep non-breaking waves. The present numerical 
model was validated for use of any water depth, with the 
exception of shallow and deep water sloshing. An error 
estimation method was used to estimate the error for all 
iterations to serve as a basis for stopping the iterative solver 
when the steady state results are reached. The model was 
validated for different wave length and steepness. Good 
agreement was found between present and previously 
published theoretical solutions for the same type of test 
cases. The grid independence test showed that the grid size 
41 61 41 was efficient to solve the 3D sloshing problem 
in the given liquid container. Sloshing motion in vertically 
excited containers were carried out for the stable region 
conditions. Sloshing effects in a vertically excited container 
in stable regions display similar characteristics as free 
sloshing motions in a fixed container when the forcing 
parameter (Kv) is low. The phase plane diagrams showed the 
nonlinearity of the free surface waves with respect to time.  

Initially, the wave elevation time history were observed for 
first few modes of sloshing on the free surface at the left wall 
for 2D regular (case A) and 3D regularly excited container 
with two initial profiles (case B and C) in vertical direction. 
The wave elevation time histories were plotted at different 
locations of the free surface. The wave elevation time history 
at a particular point on the free surface in the domain was then 
compared for cases A, B and C. Near the container wall the 
wave elevations were more due to the wall effect while the 
center of the container had low wave elevation profiles. The 
2D and 3D container with initial profile 1 had similar wave 
elevation time history. If nonlinearity in the axial direction is 
increased by using profile 1 and 2 i.e. a linear superposition of 
two sinusoidal wave profiles, the 3D container will show a 
different wave elevation time history. The free surface 
elevation got the intricate shapes for the case C. Sloshing in 
randomly excited container in vertical direction was also 
studied. Bretschneider spectrum is selected to serve as the 
input excitation spectrum to generate the random input wave. 
The ratio of the excitation frequency and the natural 

frequency of the system ( vW ) was kept as 1.253 in the study. 

Hence, the results reported were from the stable regions only. 

Nomenclature  

A Wave amplitude 
Ai Wave amplitude of ith linear wave 
Ax Transverse excitation amplitude 
b Length of the container 
TD   Transverse acceleration of the container 

Eb Amplitude-length ratio (=A/b)  
EV Volume error 
g Acceleration due to gravity 
h Instant water height from container bottom 
hs Still water depth 
Hs Significant wave height   

Kn, Kz Wave numbers along the X and Z directions 
Kv Forcing parameter for vertical acceleration  
Kx Wave steepness 
n Mode number of oscillation 

Nw Number of linear monochromatic waves 
t Time 
w Axial width of the container 

Greek symbols 

n ,ω Natural angular frequency of sloshing 

v  Angular frequency of vertical excitations 

tY  
Acceleration of the container in vertical 
direction 

i  Phase angle of ith linear wave 

i  Frequency of ith linear wave 

pω  Modal or peak frequency of the wave 
spectrum 

S  Wave energy due to Bretschneider spectrum 

n  Iteration error at nth iteration 

  Free-surface elevation 
  Grid Stretching Factor 

),,( tyx  
Velocity potential function in physical domain 

),,( tyx  

( , , )X TF s
Velocity potential function in computational 
domain ),,( TX   

2,  
First and second order central difference 
operators 

1  
Spectral radius or the largest eigen value of 
the iteration matrix 

tY  Container displacement 

  Mixed second order central difference 
operator  

vW  
Frequency ratio = v ; ω is the natural 

sloshing frequency and ωv is the angular 
frequency of vertical excitations.  
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