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Abstract: In this paper a 3D numerical model was developed to 
study the complicated interaction between waves and a set of 
tandem fixed cylinders. The fluid was considered to be inviscid and 
irrotational. Therefore, the Helmholtz equation was used as a 
governing equation. The boundary element method (BEM) was 
adopted to discretize the relevant equations. Open boundaries were 
used in far fields of the study domain. Linear waves were generated 
and propagated towards tandem fixed cylinders to estimate the 
forces applied on them. Special attention was paid to consideration 
of the effect on varying non-dimensional cylinder radius and 
distance between cylinders, ka and kd on forces and trapped modes. 
The middle cylinder wave forces and trapped modes in a set of nine 
tandem cylinders were validated utilizing analytical data. The 
comparisons confirm the accuracy of the model. The results of the 
inline wave force estimation on n tandem cylinders show that the 
critical cylinder in the row is the middle one for odd numbers of 
cylinders. Furthermore the results show that the critical trapped 
mode effect occurs for normalized cylinder radiuses close to 0.5 
and 1.0. Finally the force estimation for n tandem cylinders 
confirms that force amplitude of the middle cylinder versus 
normalized separation distance fluctuates about that of a single 
cylinder.  
Keywords: tandem cylinders; boundary element method (BEM); 
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1 Introduction1 

  Estimation of wave forces on large structures, such as 
floating airports, fixed and floating bridges, artificial islands 
and offshore wind turbines is a very important subject for 
marine engineers. Two main ideas were applied for solving 
this type of problem: 

1) A floating plane which is directly encountered with free 
surface. 

2) A plane which is supported by a series of piercing free 
surface floating or fixed cylinders. 

  The second form needs special considerations in 
hydrodynamics analyzing for wave-structure interaction 
associated with multi-scattering effects of wave from 
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cylinders. Therefore, the trapped mode problem and 
resonance phenomenon in special frequencies (trapped 
frequencies) possibly will occur. This fluid-structure 
behavior depends on the number of repeated tandem units, 
the distance between them and the frequency bound of 
encounter waves. The main purpose of this article is to study 
the diffracted wave force due to fluid interaction with 
tandem cylinders, especially in resonance mode of trapped 
frequency. In general, wave-structure interaction is a 3D 
phenomenon leading to a full nonlinear problem. If the body 
dimension is large enough with respect to the wave length 
and amplitude, the separation effect of fluid due to viscosity 
can be neglected and diffraction effect is dominated. In this 
study linear wave theory was used, and it was assumed that 
the fluid was incompressible and irrotational and surface 
tension was neglected. Therefore, scalar velocity potential 
which satisfies Laplace equation was applied. 
  Havelock (1940) developed an analytical solution for 
regular wave diffraction by single cylinder in infinite water. 
McCamy and Fuchs (1954) studied this phenomenon for 
finite water depth. When waves encounter tandem bodies, 
the effect of one body on encountering a wave, generates a 
scattered wave, which become scattered again by adjacent 
bodies. In order to obtain velocity potential, consideration 
must be given to the scattered encounter wave by each body 
and the multi-scattered waves by other bodies. An analytical 
solution of this problem was prepared for tandem piles and 
double hull ships. It is generally restricted to a first order 
force evaluation (Kagemoto and Yue, 1986). 
  Another possible solution to this problem was 
consideration of the tandem bodies as a unit body. The more 
the number of tandem bodies, the more computational 
difficulties. Twersky (1952) presented a successful iterative 
method for reflecting waves between cylinders. This method 
cannot be applied for a large number of cylinders. Another 
applicable method based on multi-scattering is the direct 
matrix method presented by Spring and Monkmever (1974). 
Approximating the scattering waves from each body as plan 
waves for other bodies, Simon (1982) presented a direct 
matrix solution to asymmetrical bodies with the same 
distance from each other. This assumption can be used only 
for large spacing’s and is known as plan-wave or 
space-width approximation.  
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  Kim and Cao (2008) calculated the wave loads on fixed 
tandem cylinders located in a unit axis using panel-Galerkin 
method. They noticed that as the number of cylinders 
become large the finite and critical spacing between them 
become a portion of wave length, and quasi-resonance 
modes associated with canal trapped waves between 
adjacent cylinders occur. Evans and Porter (1997), Han and 
Ohkusu (1995), and recently Mainer and Newman (1997), 
studied these trapped modes. Their results showed that 
forces on 4, 5 and 6 tandem cylinders were increased by 
decreasing the spacing between cylinders. Furthermore, 
maximum force occurred when standing wave trapped 
modes happened. Kagemoto et al. (2002) experimentally 
studied the trapped mode for tandem cylinders. They 
mentioned that for regular waves in trapped mode frequency, 
the forces were substantially lower than that of linear wave 
theory because of dissipating effect on cylinder hull 
boundary layer. There are other reasons for resonance effect 
reduction even in an ideal fluid: 

1) Irregular array of tandem cylinders (because of either 
spacing or diameter).  

2) Ignoring the monochromatic waves. 

  The first case was studied by Duclos and Clement (2004). 
They mentioned that a little change in the cylinder’s 
regularity (less than 0.5% in their spacing) was enough to 
decrease large forces in the resonance mode. The second 
case was studied by Walker and Taylor (2005).  
  Kim et al. (2007) used the direct boundary element 
method to calculate forces on single fixed cylinder and two 
arrays of cylinders with constant diameter. Chen et al. 
(2011a, 2011b) used null field integral equation to study 
spacing irregularity between cylinders. 
  In this research, a model was developed using the direct 
boundary element method to analyze the interaction between 
waves of encountering angle β with n tandem cylinders. The 
model was able to find trapped modes and resonance 
frequencies and relevant forces for different numbers of 
tandem cylinders. Finally, the effect of changing diameter 
and separation distance of cylinders was specified.  

2 Governing equation  

  In this section the relevant relations and formulas were 
presented. 

2.1 Formulation of problem 
  Assuming that the fluid is irrotational and incompressible, 
the interaction of linear waves with n bottom-fixed vertical 
cylinders was investigated. The geometry of this problem is 
displayed in Fig. 1.  
  The global Cartesian coordinate system (x, y, z) was 
defined with the origin located at the center of the geometry 
and on the still-water level where z axis directed vertically. 
The structure is subjected to a train of regular surface waves 
of height H, the angular frequency ω and an encounter angle 
β propagating to the positive x axis. n vertical circular 

cylinders with radius a, and separation distance D were 
situated in the water of uniform depth h. Therefore, 
2d=D+2a was the center to center separation distance 
between cylinders. The velocity potential can be defined as: 

 i( , , ) Re( ( , , )e )tx y z x y z               (1) 

where Re denotes the real part of complex expression. 
 

 
Fig. 1 Definition of n vertical circular cylinders 

 
From the linear feature of potential flow, the total velocity 

potential as in Eq. (1) is a sum of incident and scattered 
(reflected plus diffracted) waves and is defined as follows: 
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where I  and D  are incident and scattered wave 

velocity potentials, respectively. H is the wave height, g is 
the acceleration due to gravity, and k is the wave number 
which is the positive real root of the dispersion relation: 

2 tanh( )kg kh                 (6) 

Boundary value problems solved by the formulation of 

scattered wave velocity potential D  for Laplace equation, 

free surface, cylinder surface, and bed and radiation 
boundary conditions are given as respectively: 
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where   is the fluid region, F  is the free surface, 

Hm , m= 1, 2, 3, … is the body surface of the mth cylinder, 

B  is the sea bed, i is the imaginary part i 1  , R  is 

the vertical boundary at infinity and 2 2R x y  . Due to 

the constant cross section of the cylinders with respect to z, 
the incident and scattered wave velocity potentials are 
defined as follows: 
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  If Eq. (12) is substituted into Eq. (7), the boundary value 

with ( , )D x y is obtained as follows: 

2 2 0 inD Dk             (15) 

Substituting Eq. (12) into Eq. (8) and using Eq. (6), free 
surface boundary condition is automatically satisfied and the 
remaining conditions are cylinder surface boundary 
condition and radiation condition. Finally by analyzing the 
boundary value problems, the scattered wave velocity 
potential is determined, and wave and wave forces acting on 
cylinders are calculated. 

2.2 Formulation of boundary element method 
The fundamental solution G of the Helmholtz equation is 

defined by: 
2 2 ( , ) 0G k G x y               (16) 

where  is the Dirac Delta function and G is the 
fundamental solution for Helmholtz equation: 

(1)
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in which 2 2( ) ( )r x y     and ( , )  and ( , )x y are 

the coordinate of the source point and observation point 

respectively. (1)
0 0 0( ) ( ) i ( )H kr J kr y kr 

 
is the Henkel 

function of the first kind of order zero.  

  If one approximate. Eq. (17) for r  , on S  then: 
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Using this approximation, radiation boundary condition (Eq. 
(11)) will be satisfied. Also due to Eq. (12), the sea bed 

boundary condition Eq. (10) will be satisfied too. The 
boundary integral problem can be solved only for cylinder 
surface body using Eq. (20), (see Fig. 2). Finally, the 
boundary integral equation for n tandem cylinders when the 
observation point located on cylinder surface boundary S is 
obtained as follows: 

1 ...

( , : , )1
( , ) ( , ) d

2 H HN

i i j j
D i i D j jS S

G x y x y
x y x y s

n
 

 




  (20) 

where Sm (m=1, 2,…, N) is cylinder’s boundary, and 

( , )j jx y  and ( , )i ix y denote the observation and source 

points, respectively. 
 

 
Fig. 2 Configuration of numerical model 

 
2.3 Formulation of wave force 

  The wave force acting on the vertical circular cylinders is 
defined as follows: 

 i( , , , ) Re ( , , )e tP x y z t p x y z           (21) 

The Bernoulli equation was used to get the pressure as: 

p
t

  


                 (22) 

where   is the water density. 

The wave force in j direction acting on the cylinder 
number m is defined as follows: 

 iRe em m t
j jF f                (23) 

  The wave force in this direction can be presented using 

I  and D  as follows: 

cosh ( )
d d ( ) d
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m
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Finally, by integrating Eq. (24) in the z direction, the wave 
force on the cylinder is defined as follows: 
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2.4 Singular boundary integral 
In Eq. (20), when observation point ( , )j jx y  get together 

with the source point ( , )i ix y , we have i=j and it leads to 

R=0. Therefore, Eq. (17) will be singular. In order to solve 
Eq. (20) using Eq. (17), it is required to overcome this 
problem. One can use an approximation formula for Eq. (17), 
when 0r   as follows: 

(1)
0

2i
lim ( ) 1 [ln( ) ln 2]

πR
H r r 


         (26) 

Substituting Eq. (26) for Eq. (17), in singular condition of 
Eq. (20), and using the well-known Gauss-Legendre method, 
this singularity will vanish.  

3 Model validation  

First of all the model results were validated. This can be 
completed either by using analytical methods, or numerical 
methods based on Galerkin-BEM (Newman, 2005) or earlier 
researches performed based on null-field BEM (Chen et al., 
2011a, 2011b). In this section, validation of the wave force 
and trapped modes on middle cylinder of nine tandem 
cylinders was performed using the analytical method of 
Walker and Taylor (2005). The incident waves propagate in 
a direction parallel to the array. Direction of the wave β 
angle is relevant to X axis (see Fig. 1) Therefore, if 0  , 

then the force on the 1st cylinder is related to SH1 and the 
force on the 2nd cylinder is related to SH2, and so on (Fig. 2). 
All the results in this research were for 0  . It was also 

important to emphasize that vertical axis presents the 

normalized force as 2/ ( / 2)xF g H a . So depth of water 

was not concluded in the normalized process. Moreover, the 
cylinder’s radius and separation distance on horizontal axis 
was normalized with the wave number. Fig. 3 shows this 
comparison. For this setup, the existence of trapped modes 
close to ka=0.5 and 1.0 was evident. This figure also shows 
very good agreement between two methods for magnitude 
of the wave load acting on the middle cylinder. 

Fig. 3 Comparison between wave forces versus ka on 5th 
cylinders in a row of 9 tandem cylinders, 2d/a=6, 
h=10 m for present model and analytical model 
(Walker and Taylor, 2005) 

For better validation of trapped mode effects of present 
day work, the model normalized amplitude ( / A  in which 

A is incident wave amplitude) of the free surface elevation 
on the upstream face of middle cylinders in an array of nine 
cylinders and consequent trapped modes were compared 
with analytical model of Walker and Taylor (2005). Fig. 4 
demonstrates this result. It is evident in this figure that the 
first and second trapped modes’ effects were more critical. 
This is why the wave elevation in the 1st trapped mode is 
maximum. Normalized amplitude of the free surface 
elevation on the upstream face of single isolated cylinder is 
also represented for better comparison of trapped mode 
effects and validation. This figure shows very good 
agreement between results showing the accuracy of the 
model for estimation of trapped modes. 
 

Fig. 4 Comparison of model and analytical results for 
normalized amplitude and trapped modes of the 
free surface elevation on the upstream face of 
middle cylinders in an array of nine cylinders, 
2d/a=4, β=0 

4 Numerical analysis and remarks 

In the next stage of the research, forces on a single 
cylinder and two tandem cylinders were estimated 
respectively by the model. The results were then compared 
in Fig. 5 with those of analytical models for a water depth of 
50 meter and D/a=3. Based on this figure the model results 
have good agreement with those computed by Han and 
Ohkusu (1995) and McCamy and Fuchs (1954). It should be 
noted that due to shielding effects for two adjacent tandem 
cylinders, the force on the second cylinder was lower than 
that of the first one. However, the first cylinder was in a 
trapped mode due to existence of the second one. In general 
this phenomenon depends on the number of cylinders and 
their arrangement. For example, for three tandem cylinders, 
the second cylinder also has critical situation. This is evident 
as its force is approximately equal to that of the first one. In 
this setup, wave energy was trapped between the 1st–2nd 
and 2nd–3rd cylinders while them 3rd cylinder was in 
shielding effect. The first cylinder was more affected by 
scattered waves rather than trapped mode, but the second 
one was affected by both of the trapped modes and scattered 
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waves rigorously. Fig. 6 shows the differences between 

these three forces for parameters, 
2

6
d

a
  and water depth 

h=6, where, 2d is the distance between center to center of 
cylinders (2d=D+2a, see Fig. 1). 
 

 
Fig. 5 Comparison between model results and analytical 

results for wave forces on each cylinders of sets of 
single and two, D/a=3 

 

 
Fig. 6 Wave forces on each cylinder for 3 tandem cylinders, 

2d/a=6, h=10 m 
 

Fig. 5 also illustrates that all force diagrams have a 
maximum about ka=0.5. To investigate more about this case, 
wave forces on the 1st and 5th cylinders in a row of 9 and 
on the 1st and 13th cylinders in a row of 21 cylinders were 

calculated. The results were presented in Fig. 7, for 
2

6
d

a
  

and water depth of h=10 m. It is evident in this figure that 
by increasing the number of tandem cylinders, the maximum 
wave forces on cylinders belongs to the middle one. 
Occurrence of trapped wave energy phenomenon can be 
justified due to the presence of standing waves in this region. 
As the number of tandem cylinders increases, critical 
frequencies occur in a narrower bound. The most critical 
frequencies occur when d is / 2π  and / 4π , 
respectively. So we can say that the bound limit was lower 
than π / 2kd n (Maniar and Newman, 1997, Newman, 
2005). Considering Eq. (4), it was noted that critical 
frequency in linear wave theory was approximately lower 
than: 

π π
tanh

2 2n

n n
g g

d d
    

 
             

(27) 

                        

 

 
Fig. 7 Wave forces on 1st and 5th cylinders in a row of 9 and 

on 1st and 13th cylinders in a row of 21 cylinders, 
2d/a=6, h=10 m  

 
With regard to the above discussion and Newman studies 

(Maniar and Newman, 1997, Newman, 2005), there are two 
direct expressions for trapped mode phenomenon: 

1) A single body in a canal with vertical wall. 
2) Array of cylinders and considering imaginary vertical 

wall in the middle distance between two tandem cylinders 
for reflection of the encountering wave. 

Both expressions are applicable in engineering such as 
deck and pile wharf and bridge design. In Eq. (19), odd 
numbers n=1, 3, 5,… have zero normal velocity 

 / 0Φ x    at vertical plan   3y d d=  ¼， ，  and they 

are 180 degree in phase with adjacent cylinders. This is 
similar to the condition that the wall of canal is located in 
the mentioned region. If n is even, n=2, 4, 6,… then at 
vertical plan   3y d d   ， ，  the potential is zero, 0Φ  , 

and they are in phase with adjacent cylinders. If n is odd, 
then the physical condition is called Newman and if even, it 
is called Diricle. It is obvious that the Diricle condition is 
more critical as the generated standing waves for this 
condition is complete (e.g. for n=1, 2d   and n=2, 
2d  ). Therefore, trapped energy in Diricle condition was 
bigger. Furthermore, changing in cylinders radius and 
distance between cylinders can affect the forces. For 
example, for 3 tandem cylinders, wave force versus ka on 
the 2nd cylinder will be decreased as the radius of cylinder 
increases as seen in Fig. 8. In this figure the distance 
between center to center of cylinders is constant and water 
depth is 10 m. For this condition, reflected wave from the 
first cylinder is complete, so that the trapped mode for 2nd 
cylinder decreases. 

Fig. 9 shows the effect of cylinder’s radius on wave force 
on the 2nd cylinder for various kd in 3 tandem cylinders. 
This figure shows that wave force on 2nd cylinder fluctuates 
around that of single cylinder. It means that by increasing 
the distance between cylinders, the trapped mode will vanish 
and behave similar to the single cylinder. Furthermore, in 
this situation wave force on 2nd cylinder will be decreased. 
The maximum wave force on a cylinder with a=4 m is 
approximately 1/4 wave force on cylinder with a=1 m, for 
the same wave encountering and three tandem cylinders. 
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Vos et al. (2007), showed that, after encountering the 
incident wave with the structure, fluid behavior is not 
similar to the ideal flow. It leads to a wave run-up lower 
than those of the experimental results. Therefore nonlinear 
analysis is required. However, based on Newman studies, 
linear analysis of diffracted wave force is in good agreement 
with experimental results. 

 

 
Fig. 8 Wave force on 2nd cylinder versus ka in 3 tandem 

cylinders for different cylinder’s radius and constant 
depth of h=10 m 

 

 
Fig. 9 Wave force on 2nd cylinder versus kd in 3 tandem 

cylinders for different cylinder’s radius and constant 
depth of h=10 m. 

5 Conclusions  

Wave-structure interaction for finite tandem cylinders was 
studied using linear diffraction theory. Trapped mode was 
considered in various conditions. Finally, the sensitivity of 
wave force versus ka and kd, for varying cylinder’s radius a, 
was studied. The results of the inline wave force estimation 
on n tandem cylinders show that the critical cylinder in the 
row is the middle one for odd numbers of cylinders. 
Furthermore, the critical trapped mode effect occurs for 
normalized cylinder radius (ka) close to 0.5 and 1.0. The 
force estimation on the cylinders confirmed that for constant 
ka, force amplitude versus normalized separation distance 
(kd) fluctuates about single cylinder force amplitude. This 
tends to single cylinder force amplitude as kd tends to 
infinity.  

For more accurate results, a nonlinear model for free 
surface boundary conditions was required, especially for 
wave run up analysis. 
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Symbols 

a Cylinders radius 

d Center to center separation distance 
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D Distance between two cylinders 

K Wave number 

mHΓ  mth boundary of cylinders 

BΓ  Sea bed boundary 

RΓ  Far field boundary 

FΓ  Free surface boundary 

G Green function 
  Dirac Delta function 
Ka Normalized cylinder radius 

kd 
Normalized center to center separation  
distance of cylinders 

SHm mth cylinder’s surface 

  Wave frequency 
p  Wave pressure 

m
jf  Wave force on mth cylinder in jth direction 

D  Diffraction wave potential 

I  Incident wave potential 

h Water depth 
(1)
0 ( )H r  Hankel function of the first kind of order zero
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