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Abstract: This paper presents a design of boundary controllers
implemented at the top end for global stabilization of a marine riser
in a three dimensional space under environmental loadings. Based
on the energy approach, nonlinear partial differential equations of
motion, including bending-bending and longitudinal-bending
couplings for the risers are derived. The couplings cause mutual
effects between the three independent directions in the riser's
motions, and make it difficult to minimize its vibrations. The
Lyapunov direct method is employed to design the boundary
controller. It is shown that the proposed boundary controllers can
effectively reduce the riser's vibration. Stability analysis of the
closed-loop system is performed using the Lyapunov direct method.
Numerical simulations illustrate the results.
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1 Introduction

In offshore petroleum production, marine risers are
crucial in transporting petroleum products from wellheads to
floating rigs, containing drill strings and carrying mud in
drilling operations. The marine riser is subjected to
environmental loading (waves, wind, and ocean currents),
vortex induced vibrations and rig drifts, tension from the rig
heave motion. In some cases these phenomena can reduce
risers' lifespan and lead to an interruption of offshore
operations. Furthermore, due to the high length to diameter
ratio the riser's slender body makes its controlling and
maintaining a challenging engineering task.

For the dynamic analysis purpose, the marine riser is
considered as a distributed system which is modeled by a set
of partial differential equations (PDE) and boundary
conditions (Niedzwecki and Liagre, 2003). Dynamical
systems governed by PDEs are difficult to control and have
received a lot of attention. The most classical control
strategy to the distributed systems was based on modal
analysis (Balas 1978; Cavallo and De Maria, 1999; Fung
and Liao, 1995). The modal analysis was used to derive a
truncated model of the given system. Only some critical
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modes of the infinite dimensional and distributed parameter
systems were observed and controlled. However, the control
quality is substantially affected by observation and control
spill-over due to residual (uncontrolled) modes. In addition,
the requirement of arranging distributed actuators and
sensors poses many difficulties in bringing the modal
analysis-based control into practice. It might be problematic
to deploy distributed devices in some cases, such as when
controlling a deep-water riser.

In order to overcome aforementioned drawbacks of the
modal analysis approach, a number of control methods have
been developed to deal with the original PDE systems of the
infinite dimensional systems instead of their truncated models.
In Ge et al. (2001), the variable structure control was
employed to regulate a flexible beam. The control design
process was directly based on the PDE equations of motion.
However, it is difficult to generalize the design procedure to
other flexible systems. An elegant boundary control design
can be found in Krstic et al. (2006a, 2006b, 2007). The
authors successfully established an integral transformation to
convert a beam system into a target system, with known
dynamical responses. The main aim of the transformation was
to find a proper gain kernel, then perform an inverse
transformation, which has a tendency to be a very
complicated task due to the systems complexities. Based on
Lyapunov's direct method, various boundary controllers have
been proposed for flexible string-like and beam-like systems.
Boundary control of different string models was developed by
Shahruz and Narasimha (1997), Shahruz and Kurmaji (1997),
Shahruz and Krishna (1996), Kim and Jung (2011). It is
shown that with simple boundary feedbacks, exponential
stability can be achieved. In Fard and Sagatun (2001) and
Queiroz et al. (2000), boundary control was used for
stabilizing string and beam systems. Tanaka and Iwanmoto
(2007) developed an active boundary control that could add
two additional boundary conditions to four already
well-known boundary conditions. The aim of this research
was to produce a vibration-free state for an Euler-Bernoulli
beam system. Although the proposed control method was
named an active boundary control, the approach presented in
the paper was actually searching for a distributed control law
acting on any designated area of the system. Consequently,
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this should be considered as a branch of the modal control and
it would be affected by spill-over instability. Due to the
systematic approach and the ease of implementation in
practice, applications of boundary control in marine riser
vibration suppression have received increased attention. In Do
and Pan (2008), How et al. (2009), Ge et al. (2010), He et al.
(2011), boundary controllers were proposed for controlling
vibration of marine risers based on the Lyapunov direct
method. In Do and Pan (2008), a riser-actuator dynamics were
taken into account, whereas, in He et al. (2011) a marine riser
with vessel dynamics was considered. An interesting work on
controlling marine risers was presented in Do and Pan (2009)
where a boundary controller for a coupled system consisting
of a three-dimensional riser and boundary actuators. The riser
model was suitable for a class of flexible risers since the riser
is modeled as a rod-type system and not a beam-type system.
In the aforementioned references, coupled dynamics such as
bending-bending and longitudinal-bending effects were not
entirely considered, the riser motions were restricted in one
plane. The ignorance of coupling can directly deteriorate the
performance of the controlled system. Therefore, it is
necessary to include the couplings in the riser dynamics in the
control design process.

In this paper, a global stabilization problem for three
dimensional flexible marine risers under environmental
disturbances is investigated. Equations of motion of the riser
is described by a set of PDEs and boundary conditions
derived by the energy approach. The riser dynamics possess
some high nonlinearities due to the system couplings. The
couplings show the direct effects between motions in three
directions, and lead to a complex control design process.
Based on Lyapunov's direct method, a boundary controller at
the top end of the riser is designed. The proof of existence,
uniqueness, and convergence of the solutions of the
closed-loop system is provided. The proposed boundary
controller in this paper guarantees that when there are no
environmental  disturbances, the riser is globally
exponentially stabilized at its equilibrium position and that
when the disturbances are presented, the riser is stabilized in
the neighborhood of its equilibrium position.

2 Mathematical model

In deriving equations of motion of the riser, we assume that:

Assumption

1) The riser can be modeled as a beam because of its high
length-to-diameter ratio.

2) Plane sections remain plane after deformation, i.e.,
warping is neglected.

3) The riser is locally stiff, i.e. cross-sections do not
deform and the Poisson effect is neglected.

4) The riser material is homogeneous,
linearly elastic, i.e., it obeys Hookes's law.

5) Torsional and distributed moments induced by
environmental disturbances are neglected.

6) The riser deforms in three dimensions.

isotropic and
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7) Ball joints are placed at the both ends of the riser, i.e.,
there is no bending at the both ends.
8) Environmental disturbances are bounded.

Remark Items 1-4 imply that the riser will be modeled as a
Bernoulli beam rather than a Timoshenko beam, and that the
riser's extension is small. Bernoulli-Euler models are
adequate for modeling the low frequency responses of
beams. Item 5 indicates that fluid/gas transportation risers,
rather than drilling risers, are considered and that moments
induced by asymmetrically relative flow due to vortex
shedding are ignored. Items 7 and 8 always hold in practice.

Ball joint
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Fig. 1 Riser coordinates

The kinetic energy of the riser is given by

_ﬂr (6u(z,t)J2+(6v(Z,t)j2+(5W(Z,t)j2 dz (1)
= > ot ot ot

where u(z, ) and v(z, ) are transverse displacements in the X
and Y directions, respectively, and w(z, ) is longitudinal
displacement in the Z direction. L is the length of the riser,
mgy = pA is the oscillating mass of the riser per unit length, 4
is the riser cross section area, and p is the mass density of
the riser. It is assumed that the riser under consideration is
subject to a positive constant tension P,. The potential
energy of the riser can be expressed as follows:
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where E is the Young’s modulus, / is the second moment of
the riser's cross section area. The first part in the potential
energy expression quantifies bending, the second part is due
to tension force and the third term is strain energy of the
riser.
The work done by environmental disturbances acting on
the riser is given by
L L
W, = j f.(z.0u(z,t)dz + j f.@ vz, dz +
/ 0 0 3
) 3)
[ 10w ndz

where f,(z, t), f(z, t) and f,(z, ¢) are the hydrodynamics
forces acting on the riser in the X, Y, and Z directions,
respectively. The hydrodynamic forces can be given as Do
and Pan (2008):
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where f.p, fip, fup and fir, fur, fur represent the distributed
damping and external forces, c;, ¢, and c¢; are the linear
viscous damping coefficients, p,, is the water density, Cy, is
the acceleration drag coefficient, Cp is the velocity drag
coefficient, C; is the lift force coefficient, D is the riser
diameter, 0,(z, f) and 0,(z, t) are the root-mean-square of the
water particle velocities, and u;/(z, ) and u,(z, ) are the
water particle accelerations in the X and Y directions,
respectively. It is noted that in (4), the quadratic term due to
the relative water velocities u/z, t)—u;(z, ) and vz, £)—u,(z, ?)
are approximated by a linear expression involving the root
mean square of the relative velocities, and the relative
velocities are approximated by the water velocities u(z, f)
and uy(z, ?).
The work done by active boundary actuators is

W, =U,(LOu(L.t)+U, (LWL +U, (LOWLL) (5

where U,(L, 1), U(L, t) and U,(L, t) are the boundary control
forces. The total work done on the system is presented as

W= J.oLf;, (z.0u(z,t)dz +J.0Lf;(2,t)v(z,t)dz +
IOL fw(Z,t)W(Z,t)dZZ + Uu (L,Hyu(L,t)+ (6)
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The extended Hamilton's principle is given by
j S(T—P+W)dt =0 )

From this point onward, the argument (z, ¢) is omitted
whenever it is not confusing. Using integration by parts, the
variation in the kinetic energy can be written as
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where 0, =0, =0,, = 0 at ¢t = t,, t, have been used. In addition,
the variation in the potential energy is given as
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Substituting (1), (2) and (6) into (7) and using (8) and (9)
results in
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Since du, dv, and ow are arbitrary over the domain 0 <z <L,
Eq. (10) holds provided that
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For the riser under consideration, ball joints placed at both
ends imply that there is no bending at both ends, see Fig. 1.
In addition, the lower end is fixed. Substituting the
hydrodynamics forces in (4) results in the following riser
dynamics
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where the following notations % =(),, g ( ) —==(9),, £
z 2 2
GO CRC oo Yip [t ALY [[uide (9)
7= = () =(®), 7 =(%),
0z 0z ot L, , L,
have been used. Y,p, .[0 vidz<4L'Y,p, J.O v.dz (30)
L L
3 Boundary control design Yip, [ wdz <4LY,p, [ widz 31)

Control objectives Subject to Assumption 1, design the

Now, (26), (27), and (28) can be modified as
boundary control forces U,(f), Uf(?), and U#) from

information at the top end of the riser for the riser system 4L2Y1P1j uldz - pl_[ u;dz <P1I uu,dz <
(24) to stabilize the riser at the equilibrium position, and: (32)
1) In the case where disturbances f,, f,, and f,, are ignored, 417, p]J' uldz +2L P j u’dz

juGz0), P, e[ wodz [ v, ods. [ w.z0dz,

P
[Fu,codz, [vendz, [wodz, [udz and ['v.dz LY e - zj Vil v <

(33)
exponentially converge to zero Vz €[0,L] and Vi >1,. 4L2Y2pzj vidz +E2 P j vidz
2) In the case where disturbances f,, f,, and f,, are present, . o i .
2 2 Ps 2
juGz.0), P, weo]. [ wodz [ v. @ ods. [ u,e0d, ALY [ wide - T, Jy wide<p,f wwdz < .
jLw (z,0)dz, ij(z,t)dz, J.Lw(z t)dz, J.Lu dz, and J.Lv dz 41°Y Jszdz+&J.Lw2dz
0 z 0 t 0 t 4 0 zz 4 0 zz 3p3 0 z Y 0 1
exponentially converge to positive constants Vz € [O,L] and A calculation shows that
Vit>t
. . . . V> %_& J.Lu2d2+ %_& J-vadz+
Consider the following Lyapunov candidate function T2y 2 Y, )
_n 2 2, .2
> (ut+v +w, )dz+ .[ (uz+v;)d2+ my,  py J. 2dz+ 4Py p ILuzdz+
2 2.0, ) 2 )0
EAq (L u’ v2 }
— [wz+— jdz+— (u + Vv )dz+ 4
2 % 2 ( —41Y,p Jj 2dz+(——4L2 e Jj widz +
L L L 2 2 (35)
12 JO uutdz+pzj.0 vv,dz+,03j0 ww,dz + (25) Elct, , .
—j wal +wy? dz-i-?j0 (uz +vz)dz+
S s (e e T
0 0 -, (u2 +vi)dz +E(k1 +2—p1]u2(L,t)+
kp. J My
ks +=522 W (Ly1)
( Tom, 1(1{ +k4p2J (L t)+[k5+—k6p3jw2(L )
Since V¢>0 we can write 2 m, m,
Y]p]_[ u’dz - p‘j u’dz Sp]_[:uu,dzs and
. » IL (26) Vﬁ[%+%]jo fdz+[n;0+§2]jo vidz +
2 1 2
YlpIJ.Ou dz+?]_“0 u; dz ! 2
L
[ p3j.[ wzdz+( +4L2Y1p1j.[0 uldz +
X, [ vidz 22 j vidz <p, [ v dz < 2 2
2
27 L £4 L
Ca @7 (70+4L2Y2p2jj0 vfdz+(7+4L2Y3p3jI0 widz +
YZPZJ‘ v dZ+—J. v, dz (36)
0 YZ 0 EA

(wu +wv dz+2.|.:(uj+vf)dz+
Y3p3j wdz — ’03_[ wzdz_pJ ww,dz < 4

EI kp ) »
28 dzt=| k + 222
(28) - 0( ) + [k " ju (L,0)+

0

Y3p3jo wzdz+%j0 widz
3

k4p2 2 k6p3 2
where Y,, Y,,and Y, are positive constants. Since (0, ) [k A m, VLT kst m, wi(Lh)
=v(0, £) = w(0, £) = 0, an application of (A1) shows that the



Journal of Marine Science and Application (2013) 12: 72-88

The selection of py, p2, p3, Y,, Y,,and Y, such that:
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substituting the result into (38) and using boundary

conditions give
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(40), (41), (43), (44), and (45). Since

2
_'qDID] J‘Luu,dzé4L QD:D]Y4 J.L ZdZ+QD10]J. dZ (47)
0 Y, m, 70

n, m,

2
—@DpZIvat&S4L@Dp2YI 2dz+-(zzop2.[ de (48)
Yim,

m, *° m,
2
_QDP3 J.LWWtdZ < 4L QDP3Y6 J.L Wde+ QDP} J.L Wtde (49)
my 70 m, 0 Ym0
and recall that

—Elu__(L,t)+Pu,(Lt)+ E—zAuj (L.t)+

Edw, (L), (L,t)+E—;uz(L,t)vf(L,t) U,



78 T. L. Nguyen, et al. Boundary Control of Coupled Nonlinear Three Dimensional Marine Risers
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IO vzdz_m_o(pl +7)J‘0 uzwzdz_

2m,
A o p) jjufvfdz—ﬂ(pz 2 e
m,
JLLErs J.Luu,dz+ﬂj uf,dz - pz“(%DJ‘ w,dz +
m, 70 m,
L
%L vf.dz —'%m—(%DIO ww,dz + J.o v fidz+
0 0
L L p3 L
[Jufodz+ ws,dz +m—oj0 wf, dz

From (53), the designed parameters are selected such that

y% 1%

QD_pl_?D 1=C7’ -(%D_pz_%:cs

4MMy Ysm,

P, 4L Y
'(%D _p3 _ '(‘%Dp3 =C9, pl 0 _ ‘QDpl 4 :clo (54)
Ysm, ny m,
ph _ 4L2.pr2Y5 _ ph _ 4L2'(‘%Dp3Y6 —c
my m, v ny m, "

where ¢;, for i=7,...,12, are strictly positive constants. Using

the upper bound of ¥V specified in (36), (53) can be
expressed as

" k
V< —’;1—’;% (L.t)—ku (L,t)—;—’jzvz(L,;)_

kv (L,t) —%WZ (L.t) —kgw! (L.t)—cV +
0

(55)
P (L P25 (L L L
m_OJ‘O uf;dZ'i‘m—O‘[O Vf‘vdZ +j0 V’f;’dZ+J‘0 u,f‘;dZ +

[Fwfdz+ ’% [Fwr,dz

where

PEL p,EI

nmy, —m,

(pl +p2):ﬂ1}/
’ (56)
max {20 £ Mo | Lo Ty &,5+4L2Y1p1,

2 07 2 0, "2 Y, 2

EA EI
2 +4L2Y3p3 2 ’ 2 ’IBZ}

c=min{c,,c,C,€,C,1,6py,

pEA p,EI EA

m, m, 2m

> +4L2Y2p2

where
ﬁlz{ﬂ(pl+p3j EA(/)Z p}k Py Py ps}
m, 2 ) m, 2 my, ~m, " m,

ﬂ2= l kl_;,_kzpl ’l k}_}rm )l k5+M
2 m, )2 m, )2 m,

At this point, the main outcome of this paper is stated in the
following theorem.

(57)

Theorem Under Assumption 1, the control inputs U,, U,
and U, given in (50), (51), and (52) solve the control
objective provided that the design constants py, p,, and p; are
chosen such that the conditions specified in (54) hold. In
particular, the solutions of the closed-loop system consisting
of (24), (50), (51), and (52) exist and are unique. Moreover,
when the external distributed disturbances f,, f,, and f,, are

zero, all the terms |u zt|| zt||wzt|.|. zt)dz

_[ ztdsf

Io u_dz, and J.O v_dz exponentially converge to zero

ztdsj ztdzj ztdzj 1)dz,

Vze[0,L] and Vz>t,, and when the external distributed
disturbances f,, f,, and f,, are different from zero but bounded,

all  the |u(z,t)|,|v(z,t)|,|w(z,t)|,I0LuZ(z,t)dz,

f ztdsj

L u_dz, and IO v_dz exponentially converge to some small

terms

(z.1) ds'[ z t)dz,'f:v,(z,t)dz,_[:w,(z,t)dz,

positive constants Vze[0,L] and Vz>1,.
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Table 1 The marine riser system parameters

Nomenclature Value
Length L/m 1000
Diameter D/m 0.2
Densityp/(kg'm ) 8200
Young's modulus E/(kg:m ?) 2x10°
Tension Py/kN 1.1x10*
Drag velocity coefficient Cp 1.2
Drag acceleration coefficient Cy, 1.4
Lift force coefficient C;, 0.6
X-direction damping®,p/(s'm2) 80
Y-direction damping,p/(s'm 2) 80
Z-direction damping2;p/(s'm %) 60

4 Numerical simulations

The effectiveness of the proposed control is illustrated by
several numerical simulations. The parameters of the marine
riser system taken from Do and Pan (2008) are given in
Table 1.

The water particle velocities in the X and Y directions u(z, ¢)
and uy(z, t) are expressed as Niedzwecki and Liagre (2003)

N cosh(k z) .
u]’z(z,t)zZ[Awiwwiﬁsm(wmt+¢m)] (58)

i=l

where the amplitude 4,,, wave number k,,;, frequency w,;,
phase @, of the wave ith are given by

wo=w +Mi,S = 1.25 wj 2 o 20/
wi m Nw Wi 4 fw Sw
(59)
Wmi - WA/II' 2
A,=[25,—~—*%9. Skwitanh(kwi L)=w.,,8,, =2mrand()
n

w

In (59), minimum and maximum wave frequencies are
w,=0.1rand/s and wy~1.5rand/s; the significant wave height
H,,=4m; the modal frequency is w,=2n/T,, with the period
T,=7.8; N,=5; and rand() is a random number between 0
and 1. The control gains are selected to be k1=k,=k3=k;=190.
A simple verification shows that the selected control gains
simultaneously satisfy the conditions given in (37) and (54)
with py, po 3 Y, Yo, Y5, Y,, Y., Y., Y,=10".
The initial conditions at ¢, = 0 are u(z, t)=v(z, £,)=0 and u,(z,
to)=v(z, t,)=0. In this paper, finite difference method is used
for numerical simulation purposes. Simulations are carried
out over 500 seconds without the proposed control
(k\=k,=k;=k,=0) and with the proposed control.

(a) u(z, 1)

79

wim

(@) w(z, 1)
Fig. 2 The riser's displacements without control

(© wiz 1)

Fig. 3 The riser's displacements with control

The transverse displacements in uncontrolled and
controlled cases are plotted in Figs. 2, 3, respectively. Fig. 3
shows that transverse and longitudinal displacements are
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reduced significantly when the proposed control is applied.
The proposed control is able to drive the riser to the vicinity
of its equilibrium position. Fig. 4 indicates that control
forces are in an implementable range in practice.
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Fig. 4 Control forces

5 Conclusions

The equations of motion which indicate strong nonlinear
couplings for a marine riser system in three dimensions were
derived using the extended Hamilton's principle.
Subsequently, the Lyapunov direct method was employed to
design the boundary controller applied at the top end of the
riser. The designed controller's ability to stabilize the riser at
its equilibrium position was proven analytically and
illustrated numerically. The main contributions of this paper
were the introduction of the Lyapunov function candidate
(25) and the riser model in three dimensions with nonlinear
couplings (24). An extension of this work is to include
torsion to the riser dynamics.

Appendix A: Useful inequalities

Two useful inequalities (Do and Pan, 2008) that will be
used extensively in proving Theorem 1. are provided.

Inequality A.1 For any y = [Vi,..., Vi, Vu]' with

yie C'[0,L), for i=1,...,

[ ¥(s)- 9(s)ds <223(0)- »(0)+4L2[) 1. (5)-

0

n, the following inequalities hold:

y,(s)ds (A1)

J.OLy(s)-y(s)ds <2Ly(L.t) y(Lt)+

) (A2)
4L2J.0 y,(s)-p,(s)ds
Inequality A2 For any y = [Vi,..., Vi..., ya]' with
Vi€ CI[O,L], i=1, ..., n, the following inequalities hold:
max(v(s)-»(s)) < (0)-»(0) +
(A3)

2\/Ioly(s)~y(s)ds\/joly K

Appendix B: Integrations by parts results

Integrations by partsof A, A,, A,, A;, Ag,and A,

are provided in the appendix.

A1=I u,(—Elu_,_+Fu, +%uu .+ EAw_u_+

zz22 zz7z

z'z27z QDut+fz‘¢)dZ:

EAwu_ +%u,zvz +EAv.v_u

_E[ut uzz + Elu zluzz 2zt7"zz

Elju u_dz +

Puu Pj u, udz-i——uu (B1)

EA
70 U

% uu vzdz+EAuwu|

dz+ﬁutv,u,|
2

EAj w.uu_dz — qu u dz+j u,f,dz
Az:.[ v(-Elv__+Ryv, +3%vzvﬂ+

EAw_v_+EAw,v_ + EzA szuz +EAuu v

z%zz7z

Qv+ f)dz=—Elvy__

EI.[ v v dz+Pyvy,

zzt " zz

EA 4, EAt
_vtvz 0 z "zt
2 27

2t zz

Pojo v v.dz+ (B2)

— vv uzdz+EAvwv|

27z

EA[ w,v,v.dz — Q[,j v dz+j v, f.dz
A= _[OLw(EAwZZ +EAuu, +EAv,y_ —Q,w, + f,)dz =

EAw,w, |é —EA.[LWZ,wde +%wlu2|é -

(B3)
EA . EA o

0 2 zt"

2dz+— V2

"tz

Q, [ Wi+ [ w f,dz
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A, plj u’dz + le. u(—Elu_

EAw_u_+EAwu_ + %uxvf +EAv.v_u_—

QDut + fu)dZ =
AEL

le.OLutde_pl_EY zzz g+_u:uzz g_
m, m,

plE]j 2dZ+ p1 |é _ i JLM,ZdZ I (B4)

m, my 0 -
pl_EAuqug A I 4dz+pl Auwu |L

m, m, m,
Pl_MjLujwde/’l_MuvfuZ é_pl_EArufvzde_

m, 0 2m, m, 70
pl—“q”ruu,dz+ﬂrfuudz

m, ° my *0

A=pf 2dz+p2jv( Elv_+Pv,+2E42 o
2
0

EAw_ v, + EAw,v, +E7szzuz +EAuu_v, -

Qv+ fr)dz =
EI
J. Vtzdz - pv zzz é + p2 VZVZZ é -
0
plElj V2dz + 5 . |3_p2Po ijjdz+ (B5)
my my °°
PEA *le pA .[ iz + 2220 v
mO mO mO
p,EA J‘L dz + 22 2 |t pEA .[vazufdz
m, *° 2my, 70

L L
A, = p3J.0 widz + %L WEAw_ + EAuu_ + EAv,v_ —
0

‘(%Dwt + fw)dz =
pJL wtzdz+p3—EAww,|é —p3—MIwadz+ (B6)
0 mO - mO 0
pEA wu’|? _pkd jszu.zdz+—p3EA wvl |2 -
2m, 2m, 0 " 2m, )
&J‘ de p3[%DJ.WWdZ+p3J.Wde
2m, m,

Appendix C: Proof of Theorem 1

Proof of the existence and uniqueness of the solutions to
the closed-loop system consisting of (24), (50), and (51),
and then a proof of convergence of the solutions is given.
Proof of the existence and uniqueness follows the same
procedure as in Do and Pan (2008).

C.1 Proof of existence
Define H*(0,L) as the usual Hilbert space. The process of

81

proving existence and uniqueness is based on the Sobolev
spaces:

V=0 H(0,L)] 4,0 (C1)
equipped with the norm |[of, =6, . and
Wy=0¢eVsn H* (O’L)| 0,,(0,0)=0,0, (L ,t)=0 (€2)

0

5888

where "'",,

|2’

equipped with the norm "."W.s =|e.l,

represents the 7 norms. Taking inner products of both sides
of the first three equations of (24) by ¢,, &, @;€ V5,
respectively, and integrating from 0 to L result in

~my j gz EI[ ugdz— B[ ug.dz

o[l -2, [ ugde wvihdz= o
EA jo woug.dz + jo foddz ~[ku(L,0)+kyu, (L,1)]

¢ (L,t)=0

[, v bz EI [ v, dz =R [ V.4, e
-0, [t S vl

EAjOL W g, dz+ j: Fhdz—[kW(L0) + kv, (L))

&, (L,1)=0
—mOJ-LWU¢3dZ + EAJ.LWZ¢3ZdZ - ﬁ L“z2¢3:dz -

EAI ¢3zdz -(%D_[ W¢3dZ+I X
kew, (L, 1)]¢45(L,1) =0

~[kw(L,t)+ (C5)

Galerkin's approximation is used to show that for all ¢,, @,,
&5 € Vg there exist u, ve Wy and w e Vs such that (C3), (C4),

and (C5) hold. Define ¢/, and ¢ as components of

complete orthogonal systems of Wy and Vs, respectively, for
which { (z.1,)(2t, )} € Span {ﬁﬂz} {\{Z,to),v,(z,to)}e
Span {¢21¢22} , and {w(zl )ow (2.1, )} € Span {¢31¢32} . For
each n € N, let Wg,=Span {¢, #,...4"} , Ws,=Span
{($.65,...80F , Vs,=Span {@.,4;, ...4!}, we search for
functions u”(s,t) =Dk (), V(s)=D "k (1)
ZL k{(t)p] that satisfy the following
equations forall @, € Wy, &,€ W, and @5 W,

—my [ wigrdz— EI [ ul gt dz— B[ ulg

and w'

ndZ_

EA L n n L n n n n n
=Lz 2, [ dz—710 w2 g dz —
EA[ wigdz+ || futde =" (Lt)+ o] (L,1)]
#'(L.t)=0

(Co)
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—moj Vigrdz — E1j Vg dz — Pj ¢ dz —

A n n n n n n n
gz -0, [y ¢2dz—7 At vz

(o))
EA[ wivigde + [ fv'dz~[ky" (L) + kv, (L1)]
¢ (L.1)=0
L L EA L
[ widide + BAJ wiglde - == [ g dz -
EALZnndZ Lnndz Lnndz C8
I e -, [ wigide s [ f gz - (C8)

o (L) + koot (165 (L) =0
Estimate 1: Upper bounds of IOL(uf +v7 + w,z)dz , and
jol(uf +v7 +wf)dz+j0L(ufz +vfz)dz

Taking ¢ =u,,¢,=v/, and ¢, =
(C.5), respectively, leads to:

w' in (C.3), (C.4), and

—mo_[ uyu'dz — E[I u’
EA

nudz = B[l dz

3n n 2n n_2n_n
ndz— 'QD.[ dz—— . uzvz uldz—

(C9)
EAJ0 wiulu
u! (L,t) =0

;,dz+j fruldz —Tku” (Lt)+ k! (L,t)]

—mj Vivdz — Ezj Vi dz — Pj u'dz -
EA

311 "dz — QDJ‘ Z"dz——_‘- 2 Vidz— 10)
EAI wiv! v"dz+I fvidz—[

z 'zt

v (L,t) =0

kyv" (L,t) + k! (L,t)]

—my || wiw/dz + EA[ ! ;dz—E—AjoLuj"w;dz—

EAJ-

20 dz — QDJ wz"dz+j Frwidz - (C11)

[ksw" (L.t)+ kgw, (L.t) 1w (L,t)=0
Vn—n;‘).[ (u +V W )dz+%j0(uf”+vf")dz+
2n 21 \?
EIwa”dz+ﬂjL(wj+uL+L] dz +
27 27 2 2

£ (u +v2 )dz+plj u"u,”dz+p2j:v”v,"dz+ (C12)

L n n k n
p3.[0 w'w! dz+{kl +’;—le142 (L.t)+

0

[k + k4p2j (L,z)+(k5 +@Jw2”(L,t)

m, m,

where py, p, and k; for i = 1,...,4, are positive constants. It is

apparent, as in Section 3, ¥V, is a proper function.
Differentiating (C12) along the solution of (C3), (C4), and
(C5), and using the same technique as in Section 2 lead to:

<k Lo (L1) = k2" (Lt) =k, 220" (L,1) -

m, m,
2n k5p3 2n 2n
k" (Lt)—=2w"" (L,t)—kgw," (L.t)— (C13)
m,
cV +A
where
”lj "f"dz+p2j vfdz+p3j W f7dz +
my my (C14)
[Cvifdz s [Furde+ [ wi frde
An upper bound of A_, can be written as
4r’p
A <_ Zrzdz Y anZ it § 2ndZ
e e 0 e
—’;”1 jo fj"dz+Y— jo vf"dz+Y9_[0 f2dz+
41; (C15)
sz‘ anz mpzj‘ f2"d2+ ij2nd2+
my Y, 0 X, 70

L 2n 4L p3 L 2n 12p3 L 2n
YU."O fw dZ+—j0 w, dZ+m—0j0 f;v dz

My ly,

There exists a strictly positive constant ¢ such that the
following inequality holds

A, < g( [Fuzrde+ [ uidz+ [ virdz+ [ virdz+

jw2"dz+j wz”dz) g[Y + spljj fdz+

(Cl16)
Iy Yws _[sz”dz+l LI
& ’ my, 0 é 1 m,
J.L fzndZ
0 Jw
From the lower bound of V, it is shown that
L 2n L 2n L 2n
g(jo wrdz+ [Fuirdz + [P vindz +
(C17)
ijf"dz + jwa"dz + ijz"dz) < §K
0 0 0 é’
where
¢ =min<¢,c,,64,¢,,C5,C— E4 EI 1 k+% ,
27272 m,
(C13)

k+k“p2 —k+M
my ) 207 m,

Substituting (C82) and (C83) into (C79) gives
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V< —kI%uz(L,t) —kzuf”(L,t)—l@%vz”(L,t) -

i : | (C19)
kv (Lot 5B 2 (L)~ w (L.t _[c__JV” +=0,
(L) " (Lt)~kgw" (L.t) 30
where
o -ri2)a. (1 .
mo m0
(C20)
{YII-‘FMJQD!
mO
and

—ntlng £z, 0y, = maXJ. frdz
_maxj frdz 2

=0
If ¢ is selected in such a way that E:c—é is strictly
positive, then:

V<, + éQn (€22)

Multiplying both sides of the above equation with ¢’ and
integrating the resulting equation give

<[ nwto Je s o

From (C23), it can be deduced that there exists a
nonnegative constant M, such that:

(C23)

I (u +v; +w2” dz+j u ”+v22"+wf")dz+
(C24)
I(u +v2")dz<M vie[0,T],neN

Estimate 2: Upper bounds of I "(z.ty)dz LL v."(2.1,)dz

1
(z.t,)dz in the L*norm
Taking ¢ =u;(z.t,), ¢ =v,(z1,) and ¢ =
in (C.3), (C.4), and (C.5), respectively, results in
_mo_[ )u:ztt (Z’to

EA .

7 . u: (z,to)vf" (z,to)uz"” (z,t0

EzAL% (zt) Z,l(zt dz P_[

EA.[0 w! (2.8, )ul (2.8, )ul, (2.1,
L L

Q! (2, )u (0 )de+ [ £ (200 )i (2.8

(" (L,t) + kel (Loty) Jus (L2, ) =0

and .[ (

(z to)

" (z,)dz— I [ . )dz -

)um(zt )dz— (C25)
)dz—

)dz-
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—moj vi"(z,8,)dz - EII
EA n n n
— vz(z,to)uz2 (z,to)vm(z,to
E4
2 Ov (zt) m( z,t,
PJ. ztf
EA.[O w! z,to)v;’ (z.t V2, (2.8,

L L

Q| v (2t Vi (2, )dz+ [ 17 (2)vi (2.0 ) dz =

[k (L,ty) + kyv) (Lot [V (Lty) =0

L L
—mojo wy'(z.t,)dz + EA‘[0 w! (2.8, ), (2.8, )dz —
EA

— 0uz"(zt) m( z,t,

EA4

TLV (2,8 ) W (2.4,
Q[ w2 (20 (2.4
[C 12zt )i (2.0 ) dz -

[k (L,ty) + kgw! (L.t) [wi (L.t,) =0

Integrating (C25), (C26), and (C27) by parts and applying

EA
compatibility conditions —Elu”_(L,t,)+ Pu!(L.t,)+—

2t )V (2,8 ) dz -
)dz -
)dz—
2,8,)dz - (C26)

)dz -

)dz -
)dz - (C27)
)dz +

W (Lot )+ EAW! (Loty)u? (Luty )+%u (Loty V2" (Loty) = k"

(L.ty)—ku! (Lty)

Edw! (L,to)vf(L,t0)+E—;v:(L,t0)uf”(L,to) k" (Lty) -

—Elvz”zz(L,to)+1f)vf(L,t0)+E7Av§"(L,to)+

k! (L.t,) , and EAw:(L,tO)+E7A

o)—k6m”(L

o )+E7Av (La,) =

—ksw" (L.t

result in

.t,) , and the boundary conditions

mJ. (z.t,)dz— Elj b2ty (z.8,)dz+
P()L ul (z.t) )uy (z.t,)dz +

SEA () (0,
EA

TL ul (2,1, )ul (2,8, )v2" (2.8,
EAjO V(28 Ve (28 )l (2.8,
EALLW;(z,tO)uz"(z,to)u;,’(z,to)dz+
EAIOLw:z(z,tO)u:z(z,to)u;(z,to
QD.[OLu,” (z.ty)uy (z,to)dZ+I:ﬁ"(Z’to)”t’;(z’%)dz =0

ul (z.,)dz +
)dz +

(C28)
uy (z.1,)dz+

)dz -
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my [ v (2.0)dz — EL[ Ve (2.1,) Vi (2.0, ) dz +

PO'L v z,to)vu(z,to)dz+
3EA
_ILV::(z,tO) 2 (2t Ve (2.8, )dz +

Ed 1
(C29)

EAJ.OLuZ” (2., )ul(z.8,)wy (2.1,
L
Io EAV! (z,to) ! (Zt ) "(
Q[ W (20 (2.8, )dz+ [} £, (2. Wi (2,8, )dz =0
From (C28), (C29), and (C30), it is shown that

EIV o1
(m=900) [ )= L o

i Gage- ]l

(31) i
2 7

)dz +
(C30)
0)dz—

"(z.8,)dz +

2ot i (2.0 Ju

(z t )dz+

[ETAJ Sl (e (1)
(EA AL [y (W2 (2ot o (2, )+

I z,t,)dz +

j (2,8, (2.0, dz+—j 12,8, )dz =0
(m0—9,u2)j "zt )dz<(i12) JO v (z.8,)dz+
P—OZIOLVZZZ"(Z,IO)dz fj [ (2, +
(32 j zt 2"(Zt)dz+
(%j — | v (2t " (2.t,)dz + (C32)
(E4)

EA) A [ g (22 (2.1 ) e +
(EAI

w2 (2.1, )vzz" (z.t,)dz+
H,

%L w2 (2.1, (Zt dz+—J. fz"

o)dZZO

2
(E;l) L2 (z,)dz +
3

2
(E4) [ (2, pe (0, +

(my = 518) [ w2 (2.1,)dz <

o (C33)
3

‘Qi) Lo Lot 2n _
73-[0 w; (Z,t0ﬁ2+zj.0 f;v (Z,to)dZ—O
where u;, (o, and w3 are strictly positive constants. We have

. L
provided the boundedness of J. uf”+vf”+wf” ,

L
L (uf"+vf"+wf”)dz and I Ul +v7 )dz and since the

v(z,to) s (z,to) , t(z,to) s
v,(z.t,), and w(z,z,) are sufficiently smooth, from (C31),
(C32), and (C33), it can be concluded that:

initial values u(z1z,) ,

L
[ (z,)dz < M, (C34)
[V (z,)dz < (C35)
j ¥ (z,,)dz< M, (C36)

for all t € [0, T], nEN, where M, M;, and M, are
nonnegative constants, provided that x4 and w, are chosen

strictly less than ?" , and y15 is chosen strictly less than o

Estimate 3: Upper bounds of .[ z t dz f dz ,

and I wy"
0

Let's fix ¢, £>0 such that {<T—¢. Taking the difference of
(C3), (C4), and (C5) with t=t+¢ and t=t,, and simultaneously

. ¢ - and g with w'(t+&)-u(t)

(z,t)dz in the L*-norm

replacing ¢,

V' (t+&)—v (¢), and W/ (1+&)—w] (1), respectively, lead to
d 2
”210 " [ ,”(z,t+§)—u,”(z,t)] dz +
El d . (€37)
Sl ez e+ 2=0
where
Q=R[ [u(z1+&)~u(z1)][u "(mg) 7 (z) Jde+
Eq L 3
> 0[14:(21‘4— (zt][ (z1+&)- )]dz+
QD.[OL[M (zt+§)—ut”(z,t)}zdz+
% [ (z48) =i (20 [ (20 + )2 (20)
[ (208~ (20) Je= [ [ (20 48) - £1(=20)] (C39)
[ut”(z,t-i-f) " (2t }dzﬂ-

EAJ.OL[M(ZH'SE) W:(Z;f)}[u"(zm-é‘ ]
[12(z0+8) (2 Jees | (ke (m:) (L )+
(ku (Lit+&)—ku (L, t)ﬂ[u,"(Lt+§ ]
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(24 &)=V (z0) [ dz
[vfz (z. -i-é:)—v;(z,z‘)}zdzﬂ-.()2 =0

m, d
2 dt
Eld
2 di

(C39)

where
Q= PJ.[ (zt+&)—v (Zt)]
[v (zt+§)—v (z t)}dzﬂ-

—j zt+§) v

—v/(z,t) Jdz +
f —v;’(z,t)}
Je+{{ko (L +8) -k (L)

L,t))}[v,”(L,t+§)—V:(L’t)}

EAJ. [ zt+&)—
[vzt(z,t+§)—v:t(z,t

(k) (Lt +&)—kp,

v
—
N
~
~—
| —
1
NS
—
N
~
+
i
~—~—

and

(C41)

2
(Wi (2t + &) =W (2.,) Jdz +
D a8 ()]
(Wl (28 + &) =W, (2,) Jdz +
Q[ ol 2+ ) v ()] -
[Tt+8)-f(z0)][w (z0+8)-
(g (Lo + &)~ kg (L,1)) +
(kow (Lot + &) =g (L,0)) [ ] (Lt + €)=/ (L.1)]

Integrating Q,, €,, and ©Q; and noting that the initial values

(C42)

A (z,t):|dz +

u(zt,) ., u(zt), v(zt), v(zt), wzt), and
w,(z,t,) are sufficiently smooth, then u(0,/)=0 |,
u(0,6)=0 , u_(Lt)=0, u(0.0)=0, u_(0)=0,

u,(Lt)=0,and w, (0,6)=0 forall u(zr), v(z

In addition, u,(z,t), vt(z,t), and the spatial derivatives of

1) EWs.
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u(z.t), v(z,t) up to the fourth order are bounded. Using
inequalities (A1) and (A4), it can be shown that:

l2|< M, OL[ut”(z,t+§)—u,"(z,t)]2dz+

) (C43)
M [u (z.t+&)-u (zt)}dz
@) <My [ [vi (20 +8)=v (z0) [ de+
) (C44)
M., [vzz(zt+§)—v" (z t)] dz
|| <My, [wl” (z.t+&)-w'(z t)]zdz+
M, uz(zt+§)—u;(z t)]2 + (C45)

where M;;, for i = 1,...,7, are nonnegative constants.
Applying (C43), (C44), and (C45) to (C37), (C39), and
(C41), respectively, yields:

4o (1.¢) SMB'(1.6)= B (1.6) <

- (D](to,f)eM‘“(H”)(C46)

day' (1,8)
de

d¢3n (t’g)
dt

M@ (1.8) = @ (1,8) <@, (1,,£)e"™ ™) (C47)

M@ (1,E) = &,(1,E) <@, (1,,E) e ) (C48)

where Mg, M39, and My, are nonnegative constants, and:

@' (1,£)=m, [, [u,"(ZJ+§)—“r"(z”)]zdz+ (C49)
E]J' [ul(zt+&)—ul(zt)] dz

@ (6.6)=my, [/ (z1+)-v! (Z”)}Zd” (C50)
E[J' vi(zt+E)—Vi(zt)] dz

tf mj zl+§) ( ,t)!dz+ (C51)
E]j [ (zt+&)=-v (Z)’)} dz

Dividing both sides of (C46), (C47), and (C48) by & and
taking the limit &0 lead to
m J zt dz+E1f )dZS[mUJ.;u”I’Z(Z,tU)dz+
(C52)
E[.[o MZ(Z:to)dZ}eMsx(f*ro)

moj (zt dz+EII )dz<[mo.[ v (zt )dz+

(C53)
EI j

zzt

)dZ:| eM,w(”’n)
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L n2 L n2
") W, (z.t)dz+EI o Wa

[moj w2 (2,4, dz+E1j

Z,t)dz <
C54
)dZ }eM“’“""' ( )

From Estimates 1 and 2, it can be deduced from the above
inequalities that there exist nonnegative constants Ms, M,
and M, depending on T such that

moj u(z,1) dz+E1j z,t)dz < M, (C55)
moj V2 (z,1) dz+E1j 2(z,0)dz < M, (C56)
moj:w; 21) dz+E1j w2 (z,t)dz < M, (C57)

By using Estimates 1, 2, and 3 and applying the Lions-
Aubin theorem, the nonlinear systems (C6), (C7), and (C8)
can be passed to the limit; hence the existence of global
solutions is concluded.

C.2 Proof of uniqueness
Let's define u, v, w and u R 1_/, w as two different sets
of solutions to the closed-loop system (24). The differences

between the two sets are 6 =u-u , 6,=v—-v, and

0,=w—w, and it can be seen that 6 (z,t,)=6,(z1,)=
0,(z,t,)=0and 6, (z.t,)=6,,(z.t,)=0,,(z.1,)=0, and:

~m,[. 0, 4dz~EI[ 6,_¢.dz~F, jjelmzdz
B[00, [ 0,90~ 210,04
EA[0.0.4.dz+ [ f.4dz~[k0,(L1)+h0,(L1)]
4 (L1)=0

(C58)

mo_[ 0,,9,dz - EI_[ 222¢222dZ_E)I0L922¢22dZ
0. k-0,] 0pi-0] 0,00,

¢2Zdz+j f0.0z = k0, (L.t)+ k0, (L.t)]

(C59)
L
EA[ 0,6
¢, (L.1)=0
EA (L
-], e

%J‘(f 0;.4,.dz~ -(%DIOL 0y p,dz - IOL .4 dz—
[K6,(L)+ k8, (L) ] (L.t) =0

L L
-m, jo 0,9,z + EA_[O 0,.4,.dz

(C60)

Taking ¢, =6,(z.1), ¢, =6,(z.1), ¢ =06,(z1) in(C58),
(C59), and (C60), respectively, and using the same
technique in Estimate 3, it can be shown that

Sl o [ o |sm[[ [ g (con

d L L I L
L[ oe]<m| [l [ oie] o

U 2dz + je;z }<M10|:J‘ 2dz + je;z }(C63)

where Mg, M,, and M, are positive constants. Using
Gronwall's Lemma and the initial conditions indicates
that 6, =6, =6, =0, which implies the uniqueness of the
solutions of the system.

C.3 Proof of convergence

Case 1: Disturbance vectors f,=f, =f,, =0
When there are no disturbances, (55) becomes

V<—cV (C64)
which implies

) 21,0 (C65)

r(n)<v(s)e

The use of (C65) and the bounds of V(¢) given in (35) and
(36) show that

CII: /(2. )d”cz.[ f(z,f)d2+c3j:wf(z,t)dz+

C4J.OL Xz, )dz+c.|. zz(z,t)dz+cﬁ.[:wzz(z,t)dz+
2 2 2

%IL(WZ(ZJH—MZ(U) G (Z’t)] dz +

29 2 2

EI L
2 )

n,

[ (e v

[2 %Jj (zt)dz+( +40°Y ]plj.[ (z,to)dz+(C66)
(%+4L2Y2pZJI:Vf(z,to)dz+
(%+4L2Y3p3jj.:wzz(z,to)dz+

2 2 2
£ L[w (z.t)+ A G + (Z’t")] dz +
2 Jo

(12 (20) 412 (2.)) e +%(kl A juz(L,tO)wL

S e kB2 )

m,

1 k, +k4,02 vz(L,to)+ k, +k6p3 WZ(L,tO) o eli=n)
2 m, m,

Sufficient smoothness and boundedness of the initial values
ut(Zs t()), vt(za t()), Wt(Zs t()), MZ(Z, t()), VZ(Zs t()), WZ(Z’ to)! MZZ(Z, t()),
and v_.(z, t,) for all z € [0, L] imply that the right hand side of
(C66) is bounded and exponentially converges to zero. This
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in turn also guarantees boundedness and exponential
convergence of the left hand side of (C66). Subsequently, it

can be concluded that J.Lu,zdz,J.vadz ,Iwadz ,J.Lufdz,
I vidz j widz , I u’dz and J. vidz are bounded and

exponentially converge to zero. Since u(0, £) = v(0, £) = w(0,
1)=0, an application of inequality (A2) gives:

[0 (z0)dz <4l [ 2 (z.0)de (C67)
[V (20)dz <422 [ V2 (2.0)dz (C68)
[ (z0)dz <4l [ w2 (z.0)dz (C69)

It has already proven that JOLuZ(z,t)dz,Iova(z,t)dz , and
_[: w’(z,t)dz are bounded and exponentially converge to
zero, and the above inequalities state that _[ z t)dz

J.Ova(z,t)dz , and J.

exponentially converge to zero. Further more,
inequality (A3) yields

zt dz are also bounded and

using

max zt <2\/J. zt dz\/j zt dz (C70)

ZE[O L]

zgoa)L( zt <2\/j ztdz\/j ztdz
thz\/_[

. L
Boundedness and exponential convergence of Io udz ,

(C71)

(z6)dz  (C72)

max z t < 2\/_[
z€[0,L]

J.Ovadz , and J:wzdz have been proven, from which it

follows that |u(zt)| , |v(z,t)| , and |w(z,t)| must be

bounded and converge to zero exponentially.
Case 2: Disturbance vectors f,, f,, and f,#0.
Eq. (55) can be written as

<k Lo (Lt) = ki? (Lot) k2202 (L, 1) -

m, m,,
L (C73)
k! (L”)_S_'OBWZ(L,t)—kGW,Z(L,t)—cV+AC
my
where
a =2 ufdz+p2j vfdz+p3j wf.dz+
"o o y (C74)

v L fides [T g

An upper bound of A, can be written as
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2
AL,SLjLutzdz+Y7J.qu2dz+Mruszz+
Y7 0 0 mOYS 0
Yxpl Lo Lot s e
o J.Ofudz+Y—9_‘-o vidz+ Y, [ fldz+
(C75)

2
APy Ivadz+—Y‘°p2J.Lfvzdz+LJ.wadz+
mOYO 0 0 Y 0
4r
Y[ e f*j widz + 12p*jfdz
0 12

There exists a strictly positive constant ¢ such that the
following inequality holds

A, <§(I 2dz+j 2dz+j 2dz+j vidz+
[[widz+ [ wfdz)+é(Y7 +Y;—‘0’1] [[f2az+  (C76)
é[YQ 10pzjj fldz+ g(Yu'* 12p3JJ'

From the lower bound of V, it is shown that

g( [Fuidz+ [ utdz + [ vz +

; ; ; y (C77)
j vfdz+J. w,zdz+j wfdz)sf—
0 0o - 0 é’
where
= mm{c1 €y,C3,C4,Cs,Cy, EA,EI ! k, -|~k2'0l ,
27272 m,
(C78)
1 k3+k4,02 ’l k5+k5p3
2 m, )2 m,
Substituting (C82) and (C83) into (C79) gives
V <k Lo (L6) ki (L 1) - k2 & Z(L 0)-
m
’ i (C79)
k4v,2(L,t)—5—’03w2( (C——JV'F 0
m,
where

Q (Y +Y8p]jQ1 [ IOpZJQZ (Y“'f' IZIDSJQs(Cgo)
m

0

and
L L
0 =max [ fidz, 0, =max [ /7dz,0,=max [\ fldz (C81)
¢

If & is selected in such a way that c=c—= is strictly

positive, then:
|
V<-cV+—=0 (C82)
4
Multiplying both sides of the above equation with ¢’ and

integrating the resulting equation give

V(1) S{V(to)%QJe“““ +éQ (C83)
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Inequality (C83) implies that V(t) exponentially

. 1
converges to the nonnegative constant —Q . It can be

deduced that all terms [ uidz , ['vidz , [ wide [ uldz,

Ly Lo, Loy Lo
_[0 v.dz, _[0 w.dz, _[O u_dz , and _[0 v_dz are bounded and
exponentially con- verge to some nonnegative constants less

than éQ. Proof of the boundedness and convergence of

[ (z0)dz, [V (z0)de, [ wi(z0)dz fu(z )] o(=0)]

and |w(z,t)| can be carried out in the same way as in the

case, in which there are no disturbances.
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