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Abstract: The examination of an unstructured finite volume method for structural dynamics is assessed for 
simulations of systematic impact dynamics. A robust display dual-time stepping method is utilized to obtain 
time accurate solutions. The study of impact dynamics is a complex problem that should consider strength 
models and state equations to describe the mechanical behavior of materials. The current method has several 
features. 1) Discrete equations of unstructured finite volume method naturally follow the conservation law. 2) 
Display dual-time stepping method is suitable for the analysis of impact dynamic problems of time accurate 
solutions. 3) The method did not produce grid distortion when large deformation appeared. The method is 
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The results validate the finite element numerical data. 
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1 Introduction1 

Computational structural mechanics (CSM) has been 
dominated by the finite element method (FEM) and 
computational fluid dynamics (CFD) have been based on 
finite volume method (FVM) for the past three decades. The 
two methods solve the integral governing equations by 
means of weighted residual methods where they differ in the 
selected weighting functions. However, their dissimilar 
properties and applications have resulted in numerical 
software tools for CFD and CSD that are unlike in almost 
every aspect. The FVM may be considered as a particular 
case of the FEM with non-Gale kin weighting (Onate, 1994). 
Nonetheless, the essential difference between FEM and 
FVM prudence of second order accurate, partial differential 
equation is modest and for many applications, the two 
techniques are equivalent (Idelsohn and Onate, 1994). 
 
In recent years, there have been a series of research efforts 
to develop FVM to a variety of aspects of CSM. For 
example, the bending deformation of thick and thin plates 
has been analyzed using FVM by Wheel (1997). The 
analyses of stress wave propagation in elastic media have 
been performed employing FVM by Tielin et al. (2004). 
 
The prediction stresses and displacements in 
thermo-elasto-plastic material have been reported by 
Demirtzic et al. (Demirtzic and Martionvic, 1993; Demirtzic 
et al., 1994; Demirtzic et al., 1997).  The analysis of 
dynamic solid mechanics (Slone et al., 2003) and the 
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application to FSI by Slone et al. (2004) has also been 
reported. A control volume procedure for solving the elastic 
stress-strain equations for two dimensional arbitrarily 
complex geometries has been shown by Fryer et al. (1991). 
The research illustrates the FVM is competitive with the 
FEM in terms of numerical accuracy and computational 
efficiency for CSD problems. Wheel (1996) proved the 
FVM achieves greater accuracy than the FEM for a 
NAFEMS (National Agency for FE Methods and Standards) 
still an elliptic membrane benchmark. The solutions of 
different CSD problems in addition have been performed by 
Bailey and Cross (1995), Taylor et al. (1995) , Hattel and 
Hansen (1995). A finite volume method for solid mechanics 
incorporating rotational degrees of freedom has been 
reported by Wenke and Wheel (2003). 
 
A cell vertex and cell centered forms of FVM for the 
analysis of transversely loaded plates has been developed by 
Fallah (2004). The completion of FVM for CSD computations 
can be ranged into two classifications: the cell-vertex 
method and the cell-centered method. In the cell-vertex 
method, the stress and displacement variables are stored at 
the vertices of the mesh which themselves enclosed by 
control volumes. In the cell-centered method, the variables 
are stored at centroid of cells, which are also used as control 
volumes themselves. Therefore, the cell-vertex method 
doesn’t need more computational effort and memory for a 
given mesh. And it is better suited to compute stresses, 
especially when the meshes become highly distortive. This 
is the reason why the cell-vertex method is used in this work. 
With the completion of FVM for structural dynamics, the 
numerical solutions satisfy both local and global 
conservations. Furthermore, the cell-vertex method applied 
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in this work does not use shape functions for spatial 
discretizations and it is matrix-free, thus reducing the 
computational efforts and memory requirements. 
 
An unstructured finite volume method for structural impact 
dynamics is introduced, and the results have been compared  
between the FVM and FEM. Structural impact dynamics are 
very complex problems; it involved nonlinearity and large 
deformation. Therefore, strength models and state equations 
should be added to the structural impact dynamic problems. 
The display dual-time stepping method, which is suitable 
for the analysis of impact dynamic problem, was applied to 
the FVM. 
 

2 Finite volume methods for structural 
impact dynamics 

2.1 Governing equation 
As we all known, the governing equations for impact 
dynamic problems are conservation of mass, conservation 
of momentum and conservation of energy. 
 
1) Conservation of mass 

0 0V m

V V

    

where  is the density; m  the mass andV  the volume. If 

it is a two-dimensional problem, the volumeV is replaced 

by area S , and 

0 0S m

S S

  
 

2) Conservation of momentum 
In this paper, two-dimensional problem is considered. So 
the equations are as follows: 

xyxxx
x y




 
 

  

                 

xy yyy
x y

 


 
 

 


      
        (1) 

where x and y are the coordinate components 

in x and y directions respectively. 

 
3) Conservation of energy 

 1
2xx xx yy yy xy xye      


      

where xx 、 yy and xy are the strain rate. 

 
4) Constitutive model 
Impact dynamic problems are fairly complex, it involves in 
material non-linearity, geometrical non-linearity and 
boundary condition non-linearity. Therefore, it is important 

to choose appropriate constitutive model to describe the 
mechanics behavior of materials. Elastoplasticity 
constitutive model is used in this study. 
 
5) Stress tensor 
The stress tensor is separated into a hydrostatic 
component p and a deviatoric component 

 xx xxp q s      

 yy yyp q s      

xy xys   

where q is the pseudo-viscous force. The negative sign for 

the hydrostatic pressure p follows from the usual notation 

that stresses are positive in tension and negative in 
compression. 
 
6) Strain tensor 
The strain tensor ij is determined from the relation between 

the strain rates and the velocities  ,x y   

xx

x

x
 



  

yy

y

y
 



  

1

2xy

x y

y x


  
    

   

And these strain rates are related to the rate of change of 
volume by 

xx yy

V

V
  


 

               
(2) 

7) Deviatoric stress rate 
For elastic behavior of a material we may derive from 
equation (2) and Hooke’s Law relations between the 
deviatoric stress rates and the strain rates 

1
2

3xx xx

V
s G

V

 

  
 


  

1
2

3yy yy

V
s G

V

 

  
 


  

2xy xys G   

8) Equation of state 

The pressure p is related to the density  and specific 

internal energy e through an equation of state 

 ,p f e  
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2.2 Special discretization 
Eq.(1) is discretized on an unstructured triangular grid and a 
cell-vertex scheme is adopted to construct control volumes 
(Xia et al., 2007). The spatial discretization is performed by 
using the integral form of the conservation equations over 
the control volume surrounding node k shown in Fig. 1. 

d dxyxx

S S
x S S

x y


 

    
   

d dxy yy

S S
y S S

x y

 


  
    

           (3) 

The right-hand side of the Eq. (3) is converted to a line 
integral via the divergence theorem of Gauss, and it is given 
as 

d dji
ji iS l

j

S n l
x







   

And the Eq. (3) then are approximated by 

d d d dxx xyS l
x x y y x       

d d d dxy yyS l
y x y y x                (4) 

 
Fig. 1 Construction of the control volume for node k. 

where l is the control volume boundary. And the right-hand 
side of the Eq.(4) is approximated by 

3 3

1 1

d d d d
k k

kn kn

n n

xx xy xx xyl l l
n n

y x y x   
 

       

3 3

1 1

d d d d
k k

kn kn

n n

xy yy xy yyl l l
n n

y x y x   
 

          (5) 

where 3kn is the total number of triangular cells associated 

with node k . knl is the part of control volume boundary in 

the n triangular cell associated with node k . Based on the 
constant stresses assumption, the integrals in each triangular 

cell in Eq. (5) simply reduce to        xx k xy kn n nn
a b   

and        xy k yy kn nn n
a b  . 

 

For a typical control volume including node k inside the 
medium, by applying the mass model to the discrete system, 

the left-hand side of the Eq. (3) k xkM u and k ykM u  

respectively. Here kM is the mass of the control volume 

including node k . xku and yku are the acceleration 

components of node k in x and y directions respectively. 

Finally, the following equations are obtained: 

       
3 3

1 1

k kn n

k xk xx k xy kn n nn
n n

M u a b 
 

    

       
       

3 3

1 1

k kn n

k xk xx k xy kn n nn
n n

M u a b 
 

         (6) 

where  k n
a and  k n

b are respectively the coefficients for the 

node k of the n th triangular cell around node k . 

Here   / 2k l ma y y    / 2l m ka y y    / 2m k la y y 

  / 2k m lb x x    / 2l k mb x x    / 2m l kb x x  . 

And  ,k kx y ,  ,l lx y and  ,m mx y are coordinates of 

node k , l and m respectively.  xx n
 , 

 xy n
 and  yy n

 are the stresses of the n triangular cell 

around node k . 
 
For a typical control volume including node m on the 
surface of the medium, also by applying the mass model to 
the discrete system, the left-hand side of the Eq. (4) 

are m xmM u and m ymM u respectively. Here mM is the mass of 

the control volume including node m . xmu  and ymu are the 

acceleration components of node m in x and y directions 

respectively. The right-hand side of the Eq. (4) is 

3 3

1 1

d d d d d
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 

       
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n n

y x y x Y l   
 

 

         

where mnl  is the part of control volume boundary in the n th 

triangular cell associated with node m . 3mn  is the total 

number of triangular cells associated with node m . X and 

Y are the densities of external force on the surface 
in x and y directions respectively. 

 
Finally, the following equations are obtained: 

       
3 3

1 1

d
m mn n

m xm xx m xy mn n nn a m b
n n
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 

 

      

       
3 3

1 1

d
m mn n

m ym xy m yy mn nn n a m b
n n

M u a b Y l 
 

 

    
  

(7) 

where the coefficients  m n
a and  m n

b for the surface 

node m are similar to the coefficients for the node k .  xx n
 , 

 xy n
 and  yy n

 have the same characteristics. 

 
On the left-hand side of Eq.(6) and Eq.(7), the calculation of 
mass control volume needs to be implemented in within the 
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method. First, the mass of a triangular cell must be 
calculated, and then the mass of this cell is assigned to the 
cell nodes (one-third of the mass for each node of triangular 
cell). Through circulating all the cells and making a mass 
assignment as mentioned above, the mass of each control 
volume for the left-hand side of Eq. (6) can be calculated in 
the form of 

3
3

1 3

qn
qn

q
n

m
M



  

where q can be any node of the elastic medium; for 

example q k is the inner node and q m is the surface node 

of the medium. 3qnm is the mass of the n th triangular cell 

around node q . 3qn is the total number of triangular cells 

associated with node q . 

 

The stresses xx , xy and yy of all the triangular cells are 

used at time t . Based on summation of these forces at each 
node by circulating all the cells, the values of the right-hand 

side of Eq. (6) for any inner node k have been obtained, thus 

the quantities xku and yku are given at time t . The velocity 

components of node k at time / 2t t  can be obtained by 
using time integration 

   / 2 / 2xk xk xku t t u t t u t          

          / 2 / 2yk yk yku t t u t t u t        
     

(8) 

Initial velocities and accelerations are zeros within a control 
volume due to the preliminary condition and initial impact 
load being generally zero at time 0. This tells us that the 
velocities at times / 2t are zero from Taylor’s expansion. 
 

Then the displacement components xku and yku of node k at 

time t t   can be obtained by using time integration 

     / 2xk xk xku t t u t u t t t        , 

         / 2yk yk yku t t u t u t t t              (9) 

The error in Taylor expansions of accelerations xku and yku is 

of order  2
t from Eq. (8), and from Eq. (9), the error in 

Taylor expansions of velocities xku and yku  is also of 

order  2
t . So the accuracy of this method is second-order 

accurate in time domain discretization. Finally, the stresses 

xx , xy and yy of all the triangular cells at time t t  can 

be obtained according to the constitutive equations. As for 
any control volume on the surface, the little difference is 
that external forces exerting on the control volume at 
time t should be added in the summation of forces for each 
node on the surface. Therefore, the whole stress field and 
the whole displacement field are obtained at time t t  . 

The whole stress field is updated from time t to time t t  , 
the whole velocity field is updated from time / 2t t  to 
time / 2t t  , and the whole displacement field is updated 
from time t to time t t  . 
 
2.3 Stress update 
Cauchy stress tensor can be broken down into deviatoric 
stress tensor ijs and hydrostatic pressure p : 

ij ij ijs p    

The deviatoric stress tensor ijs is updated according to the 

constitutive model, and the hydrostatic pressure p is by the 

state equation. 
 
2.3.1 Deviatoric stress update 
Elastoplasticity constitutive model is used in this study. 

Jaumann stress rate ij   is used in constitutive model due to 

it is free from rotations of rigid bodies. 
 
In the elastic stage, the relationship between deviatoric 
stress Jaumann rate and deviatoric strain rate is: 

'2ij ijs G    

where the deviatoric stress Jaumann rate is 

ij ij ip jp jp ips s s Ω s Ω     

First, assume that the material is in the elastic stage, the 

tentative value of the deviatoric stress tensor at time 1nt  is: 

* 1 1/ 2 1/ 2 ' 1/ 22
nn n n n R n

ij ij ij ij ijs s s t s G                           

where, 

1/ 2 1/ 2nR n n n n n
ij ij ip jp jp ips s s Ω s Ω     

' 1/2 ' 1/2 1/2n n n
ij ij t       

The tentative value of effective stress is 

              

1

2
* 1 * 1 * 13

2
n n n

ij ijs s s     
 

             (10)             

If the tentative value of effective stress * 1ns  is greater than 

the yield stress 1n
y  , based on Mises yield conditions it is 

known that 

23
0

2 ij ij yF s s                                 

Now it does not meet the Mises yield conditions; tentative 

stress point * 1ns  falls on the outside of the yield surface. 

Scaling down the tentative stress * 1ns  by the radial return 
method: 
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1 * 1n n
ij ijs m s                   (11)                                                                

1

* 1

n
y

n
m

s

 

                   (12) 

Plastic strain increment p
ij is 

 ' 11

2

np n R
ij ij ij ijs s

G
                (13) 

where  

* 1
'

2

nn R
ij ij

ij

s s

G


 
               (14) 

Substituting Eq. (14) into Eq. (13), then 

* 1 1

2

n n
ij ijp

ij

s s

G


 
              (15)                                               

Substituting Eq. (11) into Eq. (15) 

* 1 11

2
p n n

ij ij ij

m
s s

G
      

 
            (16)                                      

where 

1

2

m

Gm
 
  

According to Eq. (10), Eq. (12) and Eq. (16), the effective 
plastic strain increment is 

2

11
2 * 1 122

* 12 2 1 2

3 3 2 3 3

n n
yp p p n

ij ij

sm
s

G G


  

 


              
     

 

                        (17) 

For the isotropic strengthen problem: 

1n n p p
y y E                      (18) 

where pE is plastic hardening modulus. 

p t

t

EE
E

E E



 

where tE (= /d d  ) is tangent modulus, E is modulus of 

elasticity. 
 
Substituting Eq. (18) into Eq. (17), the following equation is 
obtained: 

* 1

3

n n p p
yp s E

G

 


   
                  

Then, 

* 1

3

n n
yp

p

s

G E




 
 


                                                 

In conclusion, the deviatoric stress updating algorithm can 
be described as follows: 
 

If the tentative value of effective stress * 1ns  is greater than 

the yield stress y . Then 

1) Calculating the plastic strain increment 

* 1

3

n n
yp

p

s

G E




 
 


           

2) Updating the plastic strain 

1pn pn p                 

3) Updating the yield stress 

1n n p p
y y E            

4) Calculating the scale factor 

1

* 1

n
y

n
m

s

 

                

5) Making the tentative stress point return to yield surface 
with the radial return method 

1 * 1n n
ij ijs m s            

1 * 1n ns ms            

where 1ns  is effective stress. 
 
2.3.2 Pressure update 
Pressure p is described by state equations 

   , ,p p V E p V T                             

Pressure is a function of volume and internal energy; we 
need to find the integral of the energies equation before 

calculating the pressure p at times 1nt  , the inner energy of 

every element at time 1nt  are 

 1 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2n n n n n n n n n
ij ij kke e V s V p q             

 
(19) 

where, 

 1/2 11

2
n n nV V V                

 1/2 11

2
n n n
ij ij ijs s s  

            
 

Due to 1/ 2 1/ 2 1n n n n
kkV V V V       and 

 1/ 2 1 / 2n n np p p   , the Eq. (19) can be considered as 

1 * 1 11

2
n n ne e Vp                 (20)            

where  
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* 1 1/2 1/2 1/2 1/21

2
n n n n n n n

ij ije e Vp Vq V s                                   

* 1ne  is the estimate of element internal energy at time 1nt  . 
 
The common form of state equations can be obtained as 
follows: 

   1 1 1 1n n n np A V B V E            (21)                       

Where  

1
1

0

n
n e

E
V


                 (22) 

Substituting Eq. (22) and Eq. (20) into Eq. (21), the 

pressure p at time 1nt  is obtained as follows: 

   
 

1 1 1 1 * 1

1

1 1

0

1
1

2

n n n n n

n

n n

A V B V E
p

V
B V

V

    


 







    

* 1 * 1
0/n nE e V  . 

 
2.3.3 Calculation procedure of the FVM for structural 

impact dynamics 
The flow chart of solving the impact dynamics by the FVM 
is given in Fig.2. 
 

 
 

Fig. 2 Flow chart of the FVM 
 
 

3 Stability analyses 

We study the stability analysis according to discussion of 
the dispersion relations of the displacement finite-difference 
equations for the infinite medium as the reference (Tielin et 
al., 2004). For simplicity, the equilateral triangle grids are 
used in the method. 
 
For the equilateral triangle grids, the finite-difference 
equations of the method have been referenced by (Tielin et 
al., 2004) within the research paper. Assuming a plane wave 
with the frequency of an infinite medium, the displacement 
components at any point can be described as follows: 

     T T

0 0 exp ix y x yu u u u t    k r      (23) 

Where k


is the vector of wave number, r is the radius vector, 

and T

0 0x yu u is the displacement vector at the origin of 

the coordinate system at initial time. Substituting Eq. (23) 
into the finite-difference equations given in the reference 
(Tielin et al., 2004), finally we can obtain the dispersion 
relations for the equilateral triangle grids method as follows: 

   
2

2 2 2
2

sin / 2 6 4cos
12 2p s x

t x
t c c k

x
           

 

   2 23
cos 2cos 4

2 y x p sxk xk c c
 

       
 

 

 
2

3
cos cos cos

2 2x y x

x
k xk xk

               
  

2

3
3 sin sin

2 2x y

x
k xk

                 

    

It is required that  20 sin / 2 1.0t   for stability. 

Finally it can be approximately obtained: 

2/ 2 pt x c    

4 Numerical examples 

The calculation model is shown in Fig. 3. This is a plane 
strain problem. There is a thin plate whose right side and 
left side are fixed. The shock wave which spreads from a 
distance works on the slim plate. The side of the thin plate is 
1.0 m×0.02 m (the length of the slender plate is 1.0 m, the 
thickness of the thin plate is 0.02 m). The thin plate is 
meshed 500×10, and the elements are triangle mesh. 
Elastoplasticity constitutive model is used in this example. 
The zoom coefficient of the time step is considered as 0.8. 
The material parameters are given in Tab.1 which comes 
from the material database of LS―DYNA software. 
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Fig. 3 The calculation model 

 

Table 1 Material parameters 

Material 
Density 
/(kg·m-3) 

Modulus 
of 
elasticity 
/Pa 

Tangent 
modulus 
/Pa 

Yield 
stress 
/Pa 

Poisson’s 
ratio 

/Pa 

Steel 7830 2.07×1011 5.0×109 4.0×109 0.3 

 
Enhanced results can also be obtained by FEM in this 
example. The accuracy of the calculation has been approved. 
Therefore it is feasible to validate the accuracy of the FVM 
according to the FEM.  
 

For comparison, the computation modules for FEM and 
FVM are the same, the shapes and the sizes of the grids are 
consistent. The results are given in the Fig. 4 to Fig. 9 
 

 
Fig. 4 the displacement curve at point (0.5m，0.02m) 

 

 
Fig. 5 the displacement curve at point (0.75m，0.02m) 

 
Fig. 6 the displacement curve at point (0.998m，0.02m) 

 

 
Fig. 7 the stress curve at point (1m，0.019m) 

 

 
Fig. 8 the stress curve at point (1m，0.01m) 

 

 
Fig. 9 the stress curve at point (1m，0.01m) 
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According to the results in Fig.4 to Fig.9, the relationships 
between deformation and time, and the relationships 
between effective stress and time in FVM are approved in 
FEM. The accuracy for the two methods is mainly the same. 
Therefore, it is feasible to solve the impact dynamic 
problems with the FVM. In addition, the discrete processes 
of the FVM are relatively simple and are easy to understand. 
The physical meaning of the discrete equations is explicit, 
and the conservation of the discrete equations can be 
obtained. By using display dual-time stepping method, the 
present method is more efficient than the traditional FEM, 
since its greatest strength is not necessary to setup a 
stiffness matrix and to solve the large system of linear 
equations, it does not tend to produce grid distortion when 
large deformation appeared. 
 

5 Conclusions 

An unstructured finite volume method is put forward to 
simulate structural impact dynamics, which consider the 
large deformation. Structural impact dynamics is a very 
complex problem; it involves nonlinearity and large 
deformation issues. Therefore, strength models and state 
equations need to be added to the structural impact dynamic 
problems. The case of the thin plate is used to validate the 
correctness and feasibility of the proposed new method. The 
computation results of the thin plate case are in good accord 
with those of the FEM based on commercial software 
LS-DYNA. 
 
The current methods can be applied for solving the large 
deformation impact dynamics for thin plate structures. By 
means of utilizing a display dual-time stepping method, the 
FVM is more efficient than the traditional FEM, which is 
expensive in setting up a stiffness matrix and solving the 
large system of linear equations. Other large deformation 
problems of complex structures can be researched utilizing 
the new method. 
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