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Abstract: The problem of oblique wave (internal wave) propagation over a small deformation in a channel 
flow consisting of two layers was considered. The upper fluid was assumed to be bounded above by a rigid lid, 
which is an approximation for the free surface, and the lower one was bounded below by an impermeable 
bottom surface having a small deformation; the channel was unbounded in the horizontal directions. Assuming 
irrotational motion, the perturbation technique was employed to calculate the first-order corrections of the 
velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of 
appropriate Green's functions. Those functions help in calculating the reflection and transmission coefficients 
in terms of integrals involving the shape function ( )c x  representing the bottom deformation. 

Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem. 
Two special examples of bottom deformation were considered to validate the results. Consideration of a patch 
of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory 
function of the ratio of twice the x-component of the wave number to the ripple wave number. When this ratio 
approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection 
coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this 
number is large. Similar results were observed for a patch of sinusoidal ripples having different wave numbers. 
It was also observed that for small angles of incidence, the reflected energy is greater compared to other angles 

of incidence up to π / 4 . These theoretical observations are supported by graphical results. 
Keywords: two-layer fluid; oblique waves; wave scattering; reflection coefficient; transmission coefficient; 
linear water wave theory; perturbation technique; Bottom Undulation 
Article ID: 1671-9433(2012)03-0276-10 

 

1 Introduction1 

The problems of channel flow consisting of a two-layer fluid 
over an obstacle or a geometrical disturbance at the bottom 
of the channel hold importance for their possible 
applications in the areas of coastal and marine engineering. 
The problem of reflection of oblique waves by patches of 
bottom deformation has received a reasonable amount of 
attention as its mechanism is important in the development 
of bottom-parallel bars or pipes. Two-layer fluid problems in 
a finite depth are not very difficult to formulate 
mathematically within the framework of linearised theory, 
yet the available literature on this subject is rather sparse. 
 
The linearised theory of small amplitude waves in two 
superposed inviscid fluids, separated by a common interface 
with the total fluid region bounded above and below by rigid 
horizontal walls, is given in the treatise by Lamb (1932). In 
such a two-layer fluid region, only one wave mode can exist 
for a given frequency; time-harmonic gravity waves can 
propagate in either direction at the interface. A train of 
progressive interface waves traveling over the bottom 
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surface of a channel, without any obstacle, experiences no 
reflection when the channel is of uniform finite depth. If the 
bed of the channel has a deformation, the wave train is 
partially reflected by it, and is partially transmitted over it. 
However, there exists a class of mostly naturally occurring 
bottom standing obstacles such as sand ripples. These 
ripples can be assumed to be small in some sense, for which 
some sort of perturbation technique can be employed for 
obtaining the first order corrections to the reflection and 
transmission coefficients. Linton and McIver (1995) 
developed a general theory for two-dimensional wave 
scattering by horizontal cylinders in an infinitely deep 
two-layer fluid, and calculated the amount of energy that 
was converted from one wave number to the other for the 
case of circular cylinders in either of the upper or the lower 
layer by employing the multipole expansion method. The 
motivation for this work arose due to the plan to build an 
underwater pipe bridge across one of the Norwegian fjords, 
which consist of a layer of fresh water on top of a deep layer 
of salt water. Linton and Cadby (2002) extended the work of 
Linton and McIver (1995) to oblique scattering, and later 
Chamberlain and Porter (2005) examined the scattering of 
waves in a two-layer fluid of varying mean depth in a 
three-dimensional context by using linear theory. A 
variational technique was used to construct a particular type 
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of approximation which had the effect of removing the 
vertical coordinate and reducing the problem to two coupled 
partial differential equations in two independent variables. 
 
Kassem (1986) discussed the different types of basic 
singularities that arose in one of the layers and obtained the 
velocity potentials describing the line and point multipoles 
when each layer was of finite constant depth. With the free 
surface approximated by a rigid lid, Sturova (1994) studied 
the radiation of waves by an oscillating cylinder moving 
uniformly in a direction perpendicular to its axis. Later on, 
Sturova (1999) also considered the radiation and scattering 
problem for a cylinder in both two-layer and three-layer 
fluids bounded above and below by rigid horizontal walls. 
Using the method of multipoles, Sturova was able to 
calculate the hydrodynamic characteristics of the cylinder. 
Bhatta and Debnath (2006) analyzed a transient two-layer 
fluid flow over a viscoelastic ocean bed by using the 
Laplace transform and the Fourier transform. Davies (1982) 
solved the refection of normally incident surface waves by a 
patch of sinusoidal deformations on the sea-bed in a finite 
region by using the Fourier transform technique. Miles 
(1981) obtained approximately the reflection and 
transmission coefficients up to the first order in terms of 
integrals involving a small cylindrical deformation of the 
bottom by using small perturbation theory when the wave 
train, propagating in a single-layer fluid, was obliquely 
incident. 
 
Mandal and Basu (1993, 1996) employed perturbation 
analysis while solving the problem of water wave diffraction 
of interface waves by bottom deformation of two laterally 
unbounded superposed fluids. They considered the problem 
for the normal as well as oblique interface waves when the 
upper layer was of infinite depth and then derived the 
reflection and transmission coefficients approximately up to 
the first order in terms of integrals involving the shape 
function representing the bottom elevation. Maity and 
Mandal (2006) employed Green's function technique to 
study the reflection of oblique surface waves over small 
deformations in a two-layer fluid which had a free surface. 
Mohapatra and Bora (2009a) considered the water wave 
interaction with a sphere in a two-layer fluid flowing in a 
channel of finite depth. Using a method of multiple 
expansions, they derived the added-mass, damping 
coefficients, and exciting forces due to heave and sway 
motions. 
 
Mohapatra and Bora (2009b, 2011) considered the scattering 
of normal internal wave propagation over a small 
deformation on the bottom of an ocean for a two-layer fluid. 
A perturbation technique was employed to reduce the 
original boundary value problem to a coupled boundary 
value problem up to the first order, and the velocity potential, 
reflection coefficient, and transmission coefficient up to the 
first order were obtained by using Green's function 

technique and the Fourier transform. The present work is the 
extension of the previous work (Mohapatra and Bora, 2009b) 
to oblique scattering. Two laterally unbounded superposed 
fluids are considered with the fluid domain in the form of a 
long cylinder extending in the lateral direction, in which 
upper fluid is bounded above by a rigid lid and the lower 
one bounded by a bottom surface which has small 
deformation. The free surface, i.e., the surface above the 
upper layer, has been replaced and approximated by a rigid 
lid rendering the flow to a channel flow. Applying 
perturbation technique with a small parameter ε  directly 
to the governing boundary value problem (BVP), the 
original problem is reduced to a simpler BVP for the first 
order correction of the potentials. The solution of this BVP 
is then obtained by an appropriate application of Green's 
integral theorem to the potential functions describing the 
BVP. The reflection and transmission coefficients are 
evaluated approximately up to the first order of ε  in terms 
of integrals involving the shape function when a train of 
progressive waves propagating from negative infinity is 
obliquely incident on the channel bed having small 
deformations. Two different special forms of bottom 
deformation are presented, namely, a patch of sinusoidal 
ripples having the same wave number and a patch of 
sinusoidal ripples having two different wave numbers for 
two consecutive stretches.  
 

2 Mathematical formulation of the problem  

The irrotational motion of a two-layer inviscid incompressible 
fluid flow under a rigid infinite lid through a channel which is 
bounded by a bottom surface with small cylindrical 
deformation is considered. A right-handed Cartesian 
coordinate system is used in which the xz − plane coincides 
with the undisturbed surface between the two fluids. The 
y -axis points vertically downwards with 0y =  as the 

interface and y h′= −  as the position of the rigid lid. Here, 

the bottom of the lower layer with small deformation is 
described by ( )y h c xε= + , where ( )c x  is a smooth 

function with compact support, h  the uniform finite depth 
of the lower layer fluid far to either side of the deformation of 

the bottom so that ( ) 0c x → as x → ∞  and the 

non-dimensional number ( 1)ε <<  a measure of smallness of 

the deformation (Fig. 1). The rigid infinite lid at y h′= −  can 

be considered to be an approximation to the free surface. 
Under the assumptions of linear water wave theory, the time 

harmonic velocity potential in the lower fluid of density 1ρ  

can be described by ( ) i iRe , e ez tx y υ σφ −    and that in the 

upper layer fluid of density 2 1ρ ρ<  by ( ) i iRe , e ez tx y υ σψ −   , 

where the potentials φ  and ψ , respectively, must satisfy 

the modified Helmholtz equation: 

( )2 2
, 0x y υ φ∇ − =  in lower fluid         (1) 
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( )2 2
, 0x y υ ψ∇ − =  in upper fluid         (2) 

 

 
Fig. 1 Domain definition sketch 

 
The linearized boundary conditions at the bottom of the 
channel, on the interface and at the lid are 

0
n

φ∂ =
∂

  on  ( )y h c xε= +            (3) 

y y

φ ψ∂ ∂=
∂ ∂

  on  0y =               (4) 

K K
y y

φ ψφ ρ ψ ∂ ∂+ = + ∂ ∂ 
  on 0y =         (5) 

0
y

ψ∂ =
∂

   on  y h′= −              (6) 

With 2K gσ= , σ  denoting the angular frequency of 

incoming waves, g  the acceleration due to gravity, 

( )2 1 1ρ ρ ρ= <  and n∂ ∂  the derivative normal to the 

bottom at a point ( ),x y . The time dependence of ie tσ−  has 

been suppressed. The boundary conditions (4) and (5), 
respectively, represent the continuity of the normal velocity 
and the pressure at the interface. 
 
Within this framework in a two-layer fluid, a train of 
progressive interface-waves takes the form (up to an arbitrary 

multiplicative constant) ( ) i
0 , e zx y υφ  and ( ) i

0 , e zx y υψ  in 

the lower and upper layer fluids, respectively, where 

( ) ( ) i
0

cosh
, e

sinh
xu h y

x y
uh

μφ
−

=             (7) 

( ) ( ) i
0

cosh
, e

sinh
xu h y

x y
uh

μψ
′ +

= −
′

           (8) 

which is obliquely incident upon the bottom deformation from 
negative infinity. Here cosuμ θ= , sinuυ θ=  with θ  as 

the angle of oblique incidence of progressive interface waves 

and u  satisfying the dispersion relation ( ) 0uΔ = , where 

( ) ( )cosh sinh sinh cosh

1

sinh sinh

K uh uh uh uh
u

u uh uh

ρ
ρ

′ ′+
Δ = −

−
′

    (9) 

 
In the above equation, there is a positive real root k , which 
indicates the propagating modes of the fluid at the interface 
and a countable infinity of purely imaginary roots 

, 1,2,...niu n =  that relate to a set of evanescent modes, 

where nu  are real and positive satisfying 

( )cos sin sin cos

1

sin sin 0

K h h h h

h h

κ κ ρ κ κ
ρ

κ κ κ

′ ′+
+

−
′ =

 

The intensity of the evanescent mode of waves decays 
exponentially with distance from the interface at which they 
are formed. Due to this evanescent mode of waves appearing 
in the fluid region, a part of the incident interfacial wave 
becomes trapped and leads to a standing wave pattern over the 
bottom irregularities, when the incident wave is scattered by 
the bottom undulation. This phenomenon is called “Anderson 
localization”. More precisely, this implies that a periodic 
plane wave of finite wavelength coming on to the part of the 
channel with a random bottom will eventually be totally 
reflected, i.e., the amplitude of the disturbance created by the 
wave will die off exponentially with distance, with a typical 
length which is called the localization length. But these waves 
do not affect the asymptotic behavior of the resultant reflected 
and transmitted waves. In that sense, any sort of localization is 
not considered while formulating and solving the present 
problem. 

 
The negatives of all roots of are also roots, being wave 
numbers of the waves travelling in the opposite direction. As 
Eq.(9) has one nonzero positive simple zero at u k= , for 
example, on the real axis of u , so only one nonzero wave 
number k  can exist and the wave can propagate in either 

direction. Note that if 0k = , then there is no wave in the 
respective regions. 

 

The wave train, given by ( ) i
0 , e zx y υφ  and ( ) i

0 , e zx y υψ , is 

partially reflected by and partially transmitted over the bottom 
deformation so that the far-field behaviors of φ  and ψ  are 

given by 

( )
( )

( ) ( )
0

0 0

,
,

, ,

T x y x
x y

x y R x y x

f
f

f f

ìï ¥ïíï + - -¥ïî
      (10) 

( )
( )

( ) ( )
0

0 0

,
,

, ,

T x y x
x y

x y R x y x

y
y

y y

ìï ¥ïíï + - -¥ïî
      (11) 

where R  and T , respectively, represent the reflection and 
transmission coefficients due to an oblique incident wave, 
defined to be the ratio of amplitudes of the reflected and 
transmitted waves, respectively, to that of the incident wave 
and are to be determined. 

 
Assuming, for small bottom deformation, ε  to be very small 
and neglecting the second order terms, the boundary condition 

0nφ∂ ∂ =  on the bottom surface ( )y h c xε= +  can be 

converted to the following appropriate form: 

( ) ( )2 0c x O
y x x

φ φε ε∂ ∂ ∂ − + = ∂ ∂ ∂ 
  on y h=     (12) 
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The lower layer ( ),y h c x xε= + − ∞ < < ∞ , decreases to the 

uniform strip 0 ,y h x< < − ∞ < < ∞ in the following 

mathematical analysis where a perturbation technique is used. 
 

3 Method of solution  

3.1 Perturbation technique 
Suppose that a train of progressive interface waves is 

obliquely incident at an angle , 0 π 2θ θ≤ <  on the bottom 

deformation. If there is no bottom deformation, then the 
incident wave train will propagate without any hindrance 
and there will be only transmission. This, along with the 
appropriate form of the boundary condition (12), suggests 
that , ,Rφ ψ , and T  can be expressed in terms of the small 

parameter ε  as 

( )
( )

( )
( )

2
0 1

2
0 1

2
1

2
1

1

O

O

T T O

R R O

φ φ εφ ε

ψ ψ εψ ε

ε ε

ε ε

= + +

= + + 


= + + 


= + 

            (13) 

where 0 0,φ ψ  are given by Eqs.(7) and (8), respectively. 

 
It must be noted that such a perturbation expansion ceases to 
be valid at Bragg resonance when the reflection coefficient 
becomes much larger than the undulation parameter ε , as 
pointed out by Mei (1985). Also, this theory is valid only for 
infinitesimal reflection and away from resonance. For large 
reflection, the perturbation series, as defined in (13), needs 
to be refined so that it can deal with the resonant case, which 
is reported in Mei (1985). Because of the fact that the 
obstacles in the form of undulations are small, the work here 
does not concern large reflection and hence will not take 
into account resonance while deriving the results. Using 
Eq.(13) in Eqs.(1), (2), (12), (4), (5), (6), (10), (11) and 
equating the first order terms of ε  in both sides of the 

equations, it is found that the first order potentials 1φ  and 

1ψ  satisfy a coupled boundary value problem described by 

( )2 2
, 1 0x y υ φ∇ − =  in 0 y h≤ ≤            (14) 

( )2 2
, 1 0x y υ ψ∇ − =  in 0h y′− ≤ ≤           (15) 

( )

i 2 i1 1 d
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say    on    =

x xc x c x p x
y kh x

y h

μ μφ μ υ∂   = − ≡  ∂     (16) 

 1 1

y y

φ ψ∂ ∂=
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  on 0y =              (17) 

1 1
1 1K K

y y

φ ψφ ρ ψ ∂ ∂+ = + ∂ ∂ 
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1 0
y
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( )
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1
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T x y x
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( )
( )
( )

1 0

1

1 0

, ,
,

, ,

T x y x
x y

R x y x

y
y

y
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To solve the above coupled boundary value problem 
described by Eqs.(14)–(19), two-dimensional source 
potentials (in terms of Green's function) are needed for the 
modified Helmholtz equation due to a source submerged in 
either of the two-layer fluids where each layer is of finite 
depth. When the source is submerged in the lower fluid at 

( ),ξ η , where 0 hη< < , then ( )1 , ; ,G x y ξ η  and 

( )2 , ; ,G x y ξ η  are considered to be the source potentials in 

terms of Green's function for the lower and the upper layers, 
respectively. Similarly when the source is submerged in the 

upper layer at ( ),ξ η , where 0h η′− < < , then 

( )3 , ; ,G x y ξ η  and ( )4 , ; ,G x y ξ η  are considered to be the 

source potentials in terms of Green's function for the lower 
and the upper layers, respectively. 
 
3.2 Introduction of Green's functions 
Green's function method is introduced for solving the above 
boundary value problem. Two-dimensional source potentials 
are obtained for the Helmholtz equation due to a line source 
submerged in either of the two finite layers of the fluid. 
Suppose the source is submerged in the lower layer fluid. 
Then the source potentials in terms of Green's functions 

( )1 , ; ,G x y ξ η and ( )2 , ; ,G x y ξ η satisfy the following 

boundary value problem: 

( )2 2
, 1 0x y Gυ∇ − =  in 0 y h< < ,  except at ( ),ξ η   (22) 

( )2 2
, 2 0x y Gυ∇ − =  in 0h y′− < <         (23) 

1 0
G

y

∂ =
∂

  on y h=              (24) 

1 2G G

y y

∂ ∂=
∂ ∂

  on 0y =             (25) 

1 2
1 2

G G
KG KG

y y
ρ  ∂ ∂+ = + ∂ ∂ 

  on 0y =       (26) 

2 0
G

y

∂ =
∂

  on y h′= −             (27) 

( )1 0G K ru   as  
1 22 2( ) ( ) 0r x yξ η = − + − →    (28) 

where ( )0K rυ  denotes the modified Bessel function of the 

second kind. Also 1G  and 2G  represent outgoing waves 

as x ξ− → ∞ . Solutions to the above boundary value 

problem are found in the following form:  



Smrutiranjan Mohapatra, et al. Oblique Water Wave Scattering by Bottom Undulation In a Two-layer Fluid Flowing Through a Channel  

 

280 

( )

[ ]

1 0 0 1

1
, ; , ( ) ( )+

1

1
( )cosh ( ) ( )sinh cos ( )d

G x y K r K r

A u u h y B u uy x u
υ

ρξ η υ υ
ρ

μ ξ
μ

∞

−= −
+

− + −
 (29) 

( )

[ ]

2 0

1 1

2
, ; , ( )+

1

1
( )cosh ( ) ( )sinh cos ( )d

G x y K r

A u u h y B u uy x u
υ

ξ η υ
ρ

μ ξ
μ

∞

=
+

′ + + −
(30) 

where { }1 22 2
1 ( ) ( )r x yξ η= − + + . 

 
In order that the boundary conditions (22)–(28) are satisfied 

and for x ξ− → ∞ , the solutions ( )1 , ; ,G x y ξ η and 

( )2 , ; ,G x y ξ η , as x ξ− → ∞ , are given by 

( )1

i

, ; , 2πi

sinh cosh ( )cosh ( )
e

(1 ) ( ) sinh
x

G x y K

kh k h k h y

k kh
μ ξ

ξ η

η
ρ μ

−

= − ×

′ − −
 ′− Δ 

     (31) 

( )2

i

, ; , 2πi

cosh ( )cosh ( )
e

(1 ) ( )
x

G x y K

k h k h y

k
μ ξ

ξ η

η
ρ μ

−

= ×

′ − +
 ′− Δ 

        (32) 

where k is the real positive root of the equation ( ) 0uΔ =  

and ( )k′Δ  denotes the derivative of ( )uΔ  at u k= . 

 

Similarly, when the source term ( ),ξ η , where 0η < , is 

submerged in the upper layer fluid, then the source 

potentials ( )3 , ; ,G x y ξ η  and ( )4 , ; ,G x y ξ η  satisfy the 

same boundary value problem (22)–(27), with 1G  replaced 

by 3G  and 2G  by 4G , and in addition, 4G  satisfies 

( )4 0 1G K ru  as 
1 22 2

1 ( ) ( ) 0r x yξ η = − + + →   and 

3 4,G G also represent outgoing waves as x ξ− → ∞ . Here 

also, solutions of 3G  and 4G  satisfying the boundary 

value problem given by Eqs.(22)–(27) are found in the 
following form:  

( )

[ ]

3 0 1

2
, ; , ( )+

1

1
( )cosh ( ) ( )sinh cos ( )d

G x y K r

C u u h y D u uy x u
υ

ρξ η υ
ρ

μ ξ
μ

∞

=
+

− + −
 (33) 
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[ ]

4 0 1 0

1 1

1
, ; , ( ) ( )+

1

1
( )cosh ( ) ( )sinh cos ( )d

G x y K r K r

C u u h y D u uy x u
υ

ρξ η υ υ
ρ

μ ξ
μ

∞

−= +
+

′ + + −
(34) 

 
In order to satisfy the respective boundary conditions and 

for x ξ− → ∞ , the source potentials in terms of Green's 

function ( )3 , ; ,G x y ξ η  and ( )4 , ; ,G x y ξ η  in this case, as 

x ξ− → ∞ , are obtained as 

( )3

i

, ; , 2πi

cosh ( )cosh ( )
e

(1 ) ( )
x

G x y K

k h k h y

k
μ ξ

ξ η ρ

η
ρ μ

−

= ×

′ − −
 ′− Δ 

        (35) 

( )4

i

, ; , 2πi

sinh cosh ( )cosh ( )
e

(1 ) ( ) sinh
x

G x y K

kh k h k h y

k kh
μ ξ

ξ η ρ

η
ρ μ

−

= − ×

′ ′ − +
 ′ ′− Δ 

    (36) 

 
If the angle of incidence is zero, the representation of the 

Green’s functions when x ξ− → ∞ , given by (31), (32), 

(35), and (36), coincide with the corresponding source 
potentials obtained earlier in Mohapatra and Bora (2009b). 
 

To calculate 1( , )φ ξ η , where ( , ), 0 hξ η η< < , is 

submerged in the lower layer fluid, first Green's integral 

theorem is applied to 1( , )x yφ  and ( )1 , ; ,G x y ξ η  in the 

form 

1 1
1 1 d 0

C

G
G s

n n

φφ ∂ ∂ − = ∂ ∂             (37) 

where C  is a closed contour in the xy -plane consisting of 

the lines 0( )y X x X= − ≤ ≤ , ( )y h X x X= − ≤ ≤ ,  

(0 )x X y h= ± ≤ ≤ , and a small circle of radius δ  with a 

center at ( , )ξ η  and ultimately letting X → ∞ , 0δ → . 

Then there will be no contribution to the integral from the 

line x X= ± , as 1φ , 1 0G →  when X → ±∞ . Thus the 

resultant form of the integral Eq.(37) will be 

1 1

1 1
1 1

0

2π ( , ) ( ) ( , ; , )d +

d 0
y

p x G x h x

G
G x

y y

φ ξ η ξ η

φφ

∞

−∞
∞

−∞ =

− +

 ∂ ∂− = ∂ ∂ 




      (38) 

Again Green's integral theorem is applied to 1( , )x yψ  and 

( )2 , ; ,G x y ξ η  in the form 

2 1
1 2 d 0

C

G
G s

n n

ψψ
′

∂ ∂ − = ∂ ∂             (39) 

where C′  is a closed counter consisting of the lines 
( ),y h X x X′= − − ≤ ≤ 0( ),y X x X= − ≤ ≤  

( 0)x X h y′= ± − ≤ ≤  and ultimately letting X → ∞ . Here, 

it is noted that ( )2 , ; ,G x y ξ η  has no singularity in the upper 

region. Again there will be no contribution to the integral 
from the line y h′= −  due to the same boundary condition 

satisfied by 1ψ  and 2G  there. Thus the resultant integral 

Eq.(39) will be 

2 1
1 2

0

d 0
y

G
G x

y y

ψψ
∞

−∞ =

 ∂ ∂− = ∂ ∂ 
         (40) 

Now solving Eqs.(39) and (40) with the help of interface 
conditions at 0y = , the result is 
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1 1

1
( , ) ( , ; , ) ( )d

2π
G x h p x xφ ξ η ξ η

∞

−∞

=  , 0 hη< <    (41) 

which solves the boundary value problem for 1( , )x yφ . 

 

Similarly, to calculate 1( , )ψ ξ η , where the source term 

( , ),ξ η  0h η′− < < , is submerged in the upper layer fluid, 

the same procedure will be applied as followed previously 
for the case of the lower layer fluid. The final expression for 

1( , )ψ ξ η  is found as 

1 3

1
( , ) ( , ; , ) ( )d

2π
G x h p x xψ ξ η ξ η

ρ

∞

−∞

=         (42) 

which solves the boundary value problem for 1( , )x yψ . 

 

4 Reflection and transmission coefficients  

The first-order reflection and transmission coefficients 1R  

and 1T , respectively, due to the oblique interfacial wave 

propagation, are now obtained by letting ξ → −∞  and 

ξ → ∞ , respectively, in Eq.(41) or (42) and using the 

corresponding infinity condition (20) or (21) by replacing 
( , )x y  with ( , )ξ η . 

 

To find 1R , it is noted from Eqs.(20) and (31), respectively, 

that 

1 1 0( , ) ( , )Rφ ξ η φ ξ η= −   as  ξ → −∞        (43) 

i ( )
1

2πi sinh cosh ( )
( , ; , ) e

(1 ) ( ) sinh

as         

xK kh k h
G x h

k kh
μ ξηξ η

ρ μ
ξ

−′ −= −
′− Δ

→ −∞
  (44) 

Substituting Eq.(43) and (44) into Eq.(41) 1R  is obtained as 

i
1

2i (cos )

i sinh
e ( )d =

(1 ) ( )

i sinh cos2 sec
e ( )d

(1 ) ( )sinh

(using     cos )

x

k x

K kh
R p x x

k

Kk kh
c x x

k kh

k

μ

θ

ρ μ

θ θ
ρ

μ θ

∞

−∞

∞

−∞

′
= −

′− Δ

′
−

′− Δ
=



      (45) 

Similarly, to find 1T , it is also noted from Eq.(20) and (31), 

respectively, that 

1 1 0( , ) ( , )Tφ ξ η φ ξ η=  as  ξ → ∞          (46) 

i ( )
1

2πi sinh cosh ( )
( , ; , ) e

(1 ) ( ) sinh

as    

xK kh k h
G x h

k kh
μ ξηξ η

ρ μ
ξ

− −′ −= −
′− Δ

→ ∞
  (47) 

Substituting Eqs.(46) and (47) in Eq.(41) 1T  is obtained as 

1

i sinh sec
( )d

(1 ) ( )sinh

Kk kh
T c x x

k kh

θ
ρ

∞

−∞

′
=

′− Δ            (48) 

It is also verified that the same expressions for 1R  and 1T  

are obtained by letting ξ → −∞  and ξ → ∞ , respectively, 

in Eqs.(21) and (35), and solving Eq.(42). So the first order 

reflection and transmission coefficients can be evaluated from 
Eqs.(45) and (48), respectively, once the shape function ( )c x  

is known. Here, if 0θ =  is taken (i.e., the case of normal 
incidence), then the above results (45) and (48) coincide with 
the corresponding results as seen in Mohapatra and Bora 
(2009b). 
 
Now the effects of reflection and transmission are examined 
for some special forms of the shape function ( )c x .  

 

5 Special forms of the bottom surfaces  

Here, different special forms of shape function ( )c x  are 

considered for the uneven bottom surface. As mentioned 
earlier, these functional forms of the bottom disturbance 
closely resemble some naturally occurring obstacles formed at 
the bottom due to sedimentation and ripple growth of sands. 
Because of the importance of the bed topographies with 
sinusoidal ripples from the application point of view, 
emphasis is laid upon them. 
 
5.1 Sinusoidal ripple (Example-1) 
A special form of the shape function ( )c x  is considered in 

the form of a patch of sinusoidal bottom ripples on an 
otherwise flat bottom: 

1 2sin( ),
( )

0 otherwise

a lx L x L
c x

δ ′+ ≤ ≤
= 


        (49) 

For continuity of the bed elevation one can take 

1 2,
n m

L L
l l

π δ π δ′ ′− − −= =  

where m  and n  are positive integers and δ ′  is a 
constant phase angle. This patch of sinusoidal ripples on the 

bottom surface with amplitude a  consists of ( ) 2n m+  

ripples having the same wave number l . For this case, the 

reflection and transmission coefficients 1R  and 1T , 

respectively, are obtained as 

1 2

1

2i 2i
2 2

i sinh cos2 sec

(1 ) ( )sinh

( 1) e ( 1) e
(2 )

L Ln m

aKk kh
R

k kh

l

l
μ μ

θ θ
ρ

μ

′
= − ×

′− Δ

 − − − −

       (50) 

1

i sinh sec ( 1) ( 1)

(1 ) ( )sinh

n maKk kh
T

k kh l

θ
ρ

′  − − −=  ′− Δ  
       (51) 

For the specific case when there is an integer number of 

ripples wavelengths in the patch 1 2L x L≤ ≤  such that 

m n=  and 0δ ′ = , the reflection and transmission 
coefficients are found, respectively, as 

1 2

sinh cos2 sec ( 1) (2 )
sin( π )

(1 ) ( )sinh 1 ( )

maK kh k l
R m

k kh

θ θ β
ρ β

′ −= −
′− Δ −

  (52) 

1 0T =                     (53) 

where 2 lβ μ= . 
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Eq.(52) illustrates that for a given number of m  ripples, 

the first order reflection coefficient 1R  is an oscillatory 

function of β  which is the ratio of twice the 

x -component of the interface wave number to the ripple 
wave number. Furthermore, when the bed wave number is 
approximately twice the component of the interface wave 

number along the x -axis, that is, 2 1lμ ≈ , the theory 

predicts a resonant interaction between the bed and the 
interface. Hence, it is found from Eq.(52) that near 
resonance the limiting value of the reflection coefficient 
assumes the value 

2

1

sinh cos2 sec
π

2(1 ) ( )sinh

aK kh
R m

k kh

θ θ
ρ

′
=

′− Δ
        (54) 

Note that when 2 lμ  approaches 1 and m  becomes large, 

the reflection coefficient becomes unbounded contrary to the 

assumption that 1R  is a small quantity, being the first-order 

correction of the infinitesimal reflection. Consequently, only 
the cases excluding these two conditions are considered in 
order to avoid the contradiction arising out of resonant 
cases. 
 

Thus, the reflection coefficient 1R , in this case, becomes a 

constant multiple of m , the number of ripples in the patch. 

Hence, the reflection coefficient 1R  increases linearly with 

m . Although the theory breaks down when 1β = , that is, 

2 lμ = , a large amount of reflection of the incident wave 

energy by this special form of bed surface will be generated 
in the neighborhood of the singularity at 1β = . 

 

As this is a non-dissipative system and since 1 0T =  and 

1R  may be large, it is likely to witness a violation in the 

conservation of energy in the solution for the potentials. 
Actually the solution is required to satisfy a condition with 
respect to wave energy flux, i.e., the incident component of 
wave energy flux on the undulating part is to be balanced 
approximately by the sum of the reflected and transmitted 
components. This requirement may not be fulfilled by the 
expressions for the reflection and transmission coefficients 
derived here. The reason for the imbalance is that the 
linearized analysis does not permit any attenuation of the 
incident interface waves as it travels over the region 

1 2L x L≤ ≤ , which causes the predicted reflected wave in the 

perturbation solution to be overestimated and the transmitted 
wave to be very small or zero. In practice, if the reflection 
wave is non-zero, there must be a progressive attenuation of 

the incident interface waves over the region 1 2L x L≤ ≤ . 

Davies (1982) has suggested a corrective procedure to 
establish a proper energy balance in the solution. 
 
5.2 Sinusoidal ripple with two wave numbers (Example-2) 
Now, another special form is considered for the shape 

function ( )c x  in the form of a patch of sinusoidal ripples 

on the bottom surface 

1 1 3

1 2 4

sin( ), 0

( ) sin( ), 0

0, otherwise

a l x L x

c x a l x x L

≤ ≤
= ≤ ≤



           (55) 

Here also, for continuity of the bed elevation,  

3 4
1 2

π π
,

n m
L L

l l

−= =   

can be taken where m  and n  are positive even integers. 
This is a patch of sinusoidal ripples on the bottom surface 

with amplitude 1a  on an otherwise flat bottom. The patch 

in the region 3 0L x≤ ≤  consists of 2n  number of 

ripples having the wave number 1l  and the patch in the 

region 40 x L≤ ≤  consists of 2m  number of ripples 

having the wave number 2l . 

 
Substituting the value of ( )c x  from Eq.(55) into Eqs.(45) 

and (48), the reflection coefficient 1R  is obtained along 

with transmission coefficient 1T , respectively, as follows: 

3 4

1
1

2i 2i1 2
2 2 2 2

1 2

i sinh cos2 sec

(1 ) ( )sinh

( 1) e 1 1 ( 1) e
(2 ) (2 )

L Ln m

a Kk kh
R

k kh

l l

l l
μ μ

θ θ
ρ

μ μ

′
= − ×

′− Δ

 
   − − + − −   − − 

(56) 

1
1

1 2

( 1) 1 1 ( 1)i sinh sec

(1 ) ( )sinh

n m
a Kk kh

T
k kh l l

θ
ρ

    − − − −′     = + ′− Δ   
  (57) 

In this case, if ,m n= 1a a=  and 1 2l l l= = , in Eqs.(56) 

and (57), respectively, then they are reduced to Eqs.(52) and 
(53) of the previous example, where all the ripples have the 
same wave number l  and amplitude a . 
 
As in Example-1, here also when the bed wave number is 
approximately twice the component of the interface wave 

number along the x -axis, that is, 1 2l μ≈  and 2 2l μ≈ , the 

theory predicts a resonant interaction between the bed and 
the interface. Hence, under this condition, the limiting value 

of reflection coefficient 1R  from Eq.(56) is found as 
2

1
1

sinh cos2 sec
( )π

4(1 ) ( )sinh

a K kh
R m n

k kh

θ θ
ρ

′
= +

′− Δ
       (58) 

As in Example-1, here also it is observed that 1R  is a 

constant multiple of ( ) 2m n+ , the total number of ripples 

in the patch of the deformation. Hence, the reflection 

coefficient 1R increases linearly with m  and n . Although 

the theory breaks down when either 1 2l μ=  or 2 2l μ= , a 

large amount of reflection of the incident wave energy by 
this special form of bed surface will be generated in the 

neighborhood of the singularities at 1 2l μ=  or 2 2l μ= . 
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6 Numerical results and discussions  

In this section, the numerical computation and graphical 
presentation related to the two special forms of bottom 
surfaces mentioned in the previous section are shown for the 
first-order reflection and transmission coefficients. 
 

 
Fig. 2 Reflection coefficient 1R  plotted against Ka for 

la=0.52 and m=2 
 

 
Fig. 3 Reflection coefficient 1R  plotted against Ka for 

la=0.52; m=2; 4θ=π  

 
In Example-1, a patch of sinusoidal bottom undulations on the 
channel bed is considered because of its considerable physical 
significance in the ability of an undulating bed to reflect 
incident wave energy which is important for a channel flow 
consisting of a two-layer fluid. The numerical computations 
are considered for the non-dimensionalized first-order 

reflection coefficient 1R , which is calculated from (52), due 

to an oblique incident wave at an angle θ  on the undulating 
bed of ripple wave number l  having m  number of ripple 

wavelengths in the patch. In Fig. 2, different curves of 1R  

are shown against Ka for 0.95,ρ = 10 ,h a=  10 ,h a′ =  

0.52,la =  2,m =  0;π 10;π 6θ = ; and π 5 . It may be 

noted that for 0θ =  (the case of normal incidence), the 

maximum value of 1R  is 0.485 77, attained at aμ =0.212 

02 (when 0.206Ka = ), that is, when the ripple wave number 
la  of the bottom undulation becomes approximately twice as 

large as the interface wave number aμ . The same can be 

observed when the value of θ  is non-zero (the case of 
oblique incidence). Another common feature in Fig. 2 is the 
oscillating nature of the absolute values of the first-order 
coefficients as functions of the wave number Ka . In Fig. 3, 

1R  is plotted against Ka  for 0.52,la = 2,m =  and 

π 4θ = . For this value of θ , the reflection coefficient 1R  

is much less (almost negligible) compared to the other angles 

of oblique incidence, e.g., π 6θ = , π 5 . As the angle of 

incidence θ  increases, the peak value of 1R  decreases. 

For the case of normal incidence, the peak value of 1R  is 

the largest. 
 

 
Fig. 4 Reflection coefficient 1R  plotted against Ka for θ=0 

and la=0.52 
 

 
Fig. 5 Reflection coefficient 1R  plotted against Ka1 for 

1 1l a =0.52; 2 1l a =0.26; n=3 and m=2 

 
In Fig. 4, different curves correspond to different numbers of 
ripples 1,3,5m =  in the patch of the undulation. In this 

figure, for all curves, 0,θ = 0.95,ρ =  10 ,h a=  10 ,h a′ =  

0.52la =  are considered. The curve which corresponds 

to 1,m = the maximum value of 1R , is 0.38698, attained at 

aμ =0.150 19 (when 0.136Ka = ). Similarly for the curve 

corresponding to 3,m =  the maximum value of 1R  is 

0.612 18attained at aμ =0.235 22 (when Ka =0.231) and 

for the curve corresponding to 5,m =  the maximum value 
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of 1R , is 0.914 14 attained at aμ =0.249 38 (when 

0.246Ka = ). From Fig. 4, it is clear that the peak value of 

1R  is attained when the ripple wave number la  of the 

bottom undulation becomes approximately twice as large as 
the interface wave number aμ . As m , the number of 

ripples increases, and the value of aμ  converges to a 

number in the neighborhood of 0.26 , i.e., for 2la , where 

1R  attains its maximum, and the peak value of 

non-dimensionalized reflection coefficient 1R  also 

increases. Its oscillatory nature against Ka  is more 

noticeable with the number of zeros of 1R  increased but the 

general feature of 1R  remains the same. 

 

 
Fig. 6 Reflection coefficient 1R  plotted against Ka1 for 

1 1l a =0.52; 2 1l a =0.26; n=4 and m=2 

 

 
Fig. 7 Reflection coefficient 1R  plotted against Ka1 for 

θ=0; 1 1l a =0.26 and 2 1l a =0.52 

 
In Example-2, another special patch of sinusoidal bottom 
undulations with ripples having two different wave numbers 

1l  and 2l  is considered instead of a single ripple wave 

number of the previous example. For this example, the 
numerical computations are considered for the 

non-dimensionalized first-order reflection coefficient 1R , 

which is calculated from (56), due to an obliquely incident 

wave on the undulating bed in the lower layer at an angle θ  
to the positive x -axis with the undulation having two 

different ripple wave numbers 1l  and 2l , respectively, and 

m  and n  number of ripple wavelengths in the patch. Here 

0.95,ρ =  110h a=  and 110h a′ =  are again considered. In 

Fig. 5, 1R  is plotted against 1Ka  for 1 1 0.52,l a =  

2 1 0.26,l a = 3,n = 2,m =  and 0,θ = π 10 , π 6 . It may be 

noted that for 0θ =  (the case of normal incidence), the first 

maximum value of 1R  is 0.717 58, attained at 1aμ =0.120 

8 (when 1 0.101Ka = ). The second maximum value of 1R  

that corresponds to the same ( 0θ = ) curve is 0.264 4, 

attained at 1aμ =0.249 38 (when 1 0.246Ka = ). The same 

general feature can be observed for other non-zero values of 
θ  (the case of oblique incidence). Again, as the angle of 

incidence θ  increases, the peak value of 1R  decreases. 

For the case of normal incidence, the peak value of 1R  is 

the largest. In Fig. 6, 1R  is plotted against 

1Ka for 1 1 0.52,l a =  2 1 0.26,l a = 4,n = 2,m =  and 

0,θ = π 10 , π 6 . In this case the number of ripples 

increases from 3,n = 2m =  to 4,n = 2m = . In Fig. 6, for 

0θ = , the first maximum value of 1R  is 0.974 56, attained 

at 1aμ =0.116 63 (when 1Ka =0.096) and second maximum 

value of 1R  is 0.352 62, attained at 1aμ =0.249 38 (when 

1 0.246Ka = ). Therefore, it is observed from this figure that 

for any angle θ , 0 π 2θ≤ < , 1R  has two peak values 

which are attained when the ripple wave numbers 1 1l a  and 

2 1l a  of the bottom undulation become approximately twice 

as large as oblique interface wave number 1aμ , and if the 

angle of incidence increases, the value of 1R  decreases. 

Again, as the numbers of ripples, n  and m , increase, the 

peak value of non-dimensionalized reflection coefficient 1R  

increases, and its oscillatory nature against 1Ka  is more 

noticeable with the number of zeros of 1R  increased, but 

the general feature of 1R  remains the same. 

 

In Fig. 7, 1R  is plotted against 1Ka  for 0,θ =  

1 1 0.26,l a =  2 1 0.52,l a = 2,n = and m =3. In the second 

curve, the number of ripples increases from 2,n =  m =3 to 

2,n =  m =4. From the figure it is observed that even if the 

roles of 1 1l a  and 2 1l a  are reversed, the same conclusion can 

be drawn as was previously with Figs. 5 and 6. 
 

7 Conclusions  

The work described in this paper is an extended work of the 
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problem of water wave scattering by a bottom deformation in 
a two-layer fluid, when a rigid horizontal lid, which forms the 
horizontal upper boundary of a channel, replaces the free 
surface. In such a situation propagating waves can exist at 
only one wave number for any given frequency. By 
developing a suitable perturbation technique, the problem is 
reduced to a coupled boundary value problem to the 
first-order of the potentials and the coefficients which is 
solved by a method based on Green's integral theorem with 
the introduction of appropriate Green's functions. First order 
approximations to the reflection and transmission coefficients 
are obtained in terms of computable integrals and depicted 
graphically by a number of plots. The main advantage of this 
method, demonstrated through the example of a patch of 
sinusoidal ripples, is that a very few ripples may be needed to 
produce a substantial amount of reflected energy. It is also 
observed that for small angles of incidence, the reflected 
energy is more as compared to other angles of incidence up to 

π 4 . Another main result that follows is that for the ripples 

having two different wave numbers, the resonant interaction 
between the bed and the interface attains in the neighborhood 
of the singularity when the ripple wave numbers of the bottom 
undulation become twice the interface wave number. The 
problem and solution method described here differ from the 
previous works on the subject in the sense that the free surface 
has been approximated by a horizontal wall and the bottom 
surface contains deformation. The solution developed here is 
expected to be helpful in considering two-layer fluid problems 
in a channel with an uneven bottom.  
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