Casella G, George E I (1992) Explaining the Gibbs sampler. The American Statistician 46(3):167-174. https://doi.org/10.1080/00031305.1992.10475878
Cho YH (2022) Fast Sparse Bayesian learning-based channel estimation for underwater acoustic OFDM systems. Applied Sciences 12(19):10175. https://doi.org/10.3390/app121910175
Coleri S, Ergen M, Puri A, Bahai, A (2002) Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on broadcasting 48(3):223-229. https://doi.org/10.1109/tbc.2002.804034
Feng X, Wang J, Sun H, Qi J, Qasem Z A, Cui Y (2023) Channel estimation for underwater acoustic OFDM communications via temporal sparse Bayesian learning. Signal Processing 207:108951. https://doi.org/10.1016/j.sigpro.2023.108951
Gelfand AE, Lee TM (1993) Discussion on the meeting on the Gibbs sampler and other Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B 55(1):72-73. https://doi.org/10.1111/j.2517-6161.1993.tb01469.x
Goudie RJB, Mukherjee S (2016) A Gibbs sampler for learning DAGs. Journal of Machine Learning Research 17(2):1-39
Jia S, Zou S, Zhang X, Tian D, Da L (2022) Multi-block Sparse Bayesian learning channel estimation for OFDM underwater acoustic communication based on fractional Fourier transform. Applied Acoustics 192:108721. https://doi.org/10.1016/j.apacoust.2022.108721
Kang SG, Ha YM, Joo EK (2003) A comparative investigation on channel estimation algorithms for OFDM in mobile communications. IEEE Transactions on Broadcasting 49(2):142-149. https://doi.org/10.1109/tbc.2003.810263
Li Y, Wang Y, Jiang T (2016) Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation. Signal processing 128:243-251. https://doi.org/10.1016/j.sigpro.2016.04.003
Martino L, Elvira V, Camps-Valls G (2018) The recycling Gibbs sampler for efficient learning. Digital Signal Processing 74:1-13. https://doi.org/10.1016/j.dsp.2017.11.012
Panayirci E, Altabbaa MT, Uysal M, Poor H V (2019) Sparse channel estimation for OFDM-based underwater acoustic systems in Rician fading with a new OMP-MAP algorithm. IEEE Transactions on Signal Processing 67(6):1550-1565. https://doi.org/10.1109/tsp.2019.2893841
Prasad R, Murthy CR, Rao BD (2014) Joint approximately sparse channel estimation and data detection in OFDM systems using sparse Bayesian learning. IEEE Transactions on Signal Processing 62(14):3591-3603. https://doi.org/10.1109/tsp.2014.2329272
Tipping, Michael E (2001) Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research 1(Jun):211-244
Tsai Y, Zheng L, Wang X (2018) Millimeter-wave beamformed fulldimensional MIMO channel estimation based on atomic norm minimization. IEEE Transactions on Communications 66(12):6150-6163. https://doi.org/10.1109/tcomm.2018.2864737
Wang Y, Dong X (2006) Frequency-domain channel estimation for SC-FDE in UWB communications. IEEE transactions on communications, 54(12):2155-2163. https://doi.org/10.1109/glocom.2005.1578453
Wang Z, Li Y, Wang C, Ouyang D, Huang Y (2021) A-OMP:An adaptive OMP algorithm for underwater acoustic OFDM channel estimation. IEEE Wireless Communications Letters 10(8):1761-1765. https://doi.org/10.1109/lwc.2021.3079225
Wu FY, Zhou YH, Tong F, Kastner R (2013) Simplified p-norm-like constraint LMS algorithm for efficient estimation of underwater acoustic channels. Journal of marine science and application 12(2):228-234. https://doi.org/10.1007/s11804-013-1189-7
Zhang C, Bütepage J, Kjellström H, Mandt S (2018) Advances in variational inference. IEEE transactions on pattern analysis and machine intelligence 41(8):2008-2026. https://doi.org/10.1017/9781009218245.011
Zhang Z, Rao BD (2011) Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE Journal of Selected Topics in Signal Processing 5(5):912-926.https://doi.org/10.1109/jstsp.2011.2159773
Zheng YR, Xiao C, Yang TC, Yang WB (2010) Frequency-domain channel estimation and equalization for shallow-water acoustic communications. Physical Communication 3(1):48-63. https://doi.org/10.1016/j.phycom.2009.08.010