[1] ANSYS (2016) Aqwa user’s manual release 17.0. ANSYS Inc Tech rep, Canonsburg, USA
[2] Arent D, Sullivan P, Heimiller D, Lopez A, Eurek K, Badger J, Jorgensen HE, Kelly M, Clarke L, Luckow P (2012) Improved offshore wind resource assessment in global climate stabilization scenarios. Tech rep, National Renewable Energy Lab. (NREL), Golden, CO, United States
[3] Barreiro A, Crespo A, Dominguez J, Garcia-Feal O, Zabala I, Gomez-Gesteira M (2016) Quasi-static mooring solver implemented in SPH. Journal of Ocean Engineering and Marine Energy 2(3): 381–396. DOI:https://doi.org/10.1007/s40722-016-0061-7
[4] Benitz MA, Schmidt DP, Lackner MA, Stewart GM, Jonkman J, Robertson A (2014) Comparison of hydrodynamic load predictions between reduced order engineering models and computational fluid dynamics for the OC4-DeepCwind semi-submersible. International Conference on Offshore Mechanics and Arctic Engineering 45547: V09BT09A006. DOI: https://doi.org/10.1115/OMAE2014-23985
[5] Benitz MA, Schmidt DP, Lackner MA, Stewart GM, Jonkman J, Robertson A (2015) Validation of hydrodynamic load models using CFD for the OC4-DeepCwind semisubmersible. International Conference on Offshore Mechanics and Arctic Engineering, 56574: V009T09A037. DOI: https://doi.org/10.1115/OMAE2015-41045
[6] Burmester S, Vaz G, Gueydon S, el Moctar O (2020) Investigation of a semi-submersible floating wind turbine in surge decay using CFD. Ship Technology Research 67(1): 2–14. DOI: https://doi.org/10.1080/09377255.2018.1555987
[7] Coulling AJ, Goupee AJ, Robertson AN, Jonkman JM (2013) Importance of second-order difference-frequency wave-diffraction forces in the validation of a fast semi-submersible floating wind turbine model. International Conference on Offshore Mechanics and Arctic Engineering, 55423: V008T09A019. DOI: https://doi.org/10.1115/OMAE2013-10308
[8] Dunbar AJ, Craven BA, Paterson EG (2015) Development and validation of a tightly coupled CFD/6-DOF solver for simulating floating offshore wind turbine platforms. Ocean Engineering 110: 98–105. DOI: https://doi.org/10.1016/j.oceaneng.2015.08.066
[9] Feng X, Bai W (2017) Hydrodynamic analysis of marine multibody systems by a nonlinear coupled model. Journal of Fluids and Structures 70: 72–101. DOI: https://doi.org/10.1016/j.jfluidstructs.2017.01.016
[10] Grilli ST, Guyenne P, Dias F (2001) A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. International Journal for Numerical Methods in Fluids 35(7): 829–867. DOI: https://doi.org/10.1002/1097-0363(20010415)35:7
[11] Guerber E, Benoit M, Grilli ST, Buvat C (2012) A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion. Engineering Analysis with Boundary Elements 36(7): 1151–1163. DOI: https://doi.org/10.1016/j.enganabound.2012.02.005
[12] Gueydon S, Duarte T, Jonkman J (2014) Comparison of second-order loads on a semisubmersible floating wind turbine. International Conference on Offshore Mechanics and Arctic Engineering, 45530: V09AT09A024. DOI: https://doi.org/10.1115/OMAE2014-23398
[13] Hague C, Swan C (2009) A multiple flux boundary element method applied to the description of surface water waves. Journal of Computational Physics 228(14): 5111–5128. DOI: https://doi.org/10.1016/j.jcp.2009.04.012
[14] Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39(1): 201–225. DOI: https://doi.org/10.1016/0021-9991(81)90145-5
[15] Huang Y, Zhuang Y, Wan D (2021) Hydrodynamic study and performance analysis of the OC4-DeepCwind platform by CFD method. International Journal of Computational Methods 18(4): 2050020. DOI: https://doi.org/10.1142/S0219876220500206
[16] IEA (2019) Offshore wind outlook 2019: World energy outlook special report. International Energy Agency. https://iea.blob.core.windows.net/assets/98909c1b-aabc-4797-9926-35307b418cdb/WEO019-free.pdf
[17] Jacobsen NG, Fuhrman DR, Freds?e J (2012) A wave generation toolbox for the open-source CFD library: Openfoam?. International Journal for Numerical Methods in Fluids 70(9): 1073–1088. DOI: https://doi.org/10.1002/fld.2726
[18] James R, Ros MC (2015) Floating offshore wind: market and technology review. The Carbon Trust, Tech rep
[19] Jiang C (2021) Mathematical modelling of wave-induced motions and loads on moored offshore structures. PhD thesis, University of Duisburg-Essen, Duisburg. DOI: https://doi.org/10.17185/duepublico/75232
[20] Jiang C, el Moctar O (2022) Numerical investigation of wave-induced loads on an offshore monopile using a viscous and a potential-flow solver. Journal of Ocean Engineering and Marine Energy 8(3): 381–397. DOI: https://doi.org/10.1007/s40722-022-00237-y
[21] Jiang C, el Moctar O (2023) Extension of a coupled mooring-viscous flow solver to account for mooring-joint-multibody interaction in waves. Journal of Ocean Engineering and Marine Energy 9: 93–111. DOI: https://doi.org/10.1007/s40722-022-00252-z
[22] Jiang C, el Moctar O, Schellin TE (2019) Prediction of hydrodynamic damping of moored offshore structures using CFD. International Conference on Offshore Mechanics and Arctic Engineering, 58776: V002T08A047. DOI: https://doi.org/10.1115/OMAE2019-95935
[23] Jiang C, el Moctar O, Paredes GM, Schellin TE (2020) Validation of a dynamic mooring model coupled with a RANS solver. Marine Structures 72: 102, 783. DOI: https://doi.org/10.1016/j.marstruc.2020.102783
[24] Jiang C, el Moctar O, Schellin TE (2021) Mooring-configurations induced decay motions of a buoy. Journal of Marine Science and Engineering 9(3): 350. DOI: https://doi.org/10.3390/jmse9030350
[25] Jiang C, el Moctar O, Schellin TE (2022) Capability of a potential-flow solver to analyze articulated multibody offshore modules. Ocean Engineering 266: 112754. DOI: https://doi.org/10.1016/j.oceaneng.2022.112754
[26] Jonkman J, Musial W (2010) Offshore code comparison collaboration (OC3) for IEA wind task 23 offshore wind technology and deployment. Tech rep, National Renewable Energy Lab. (NREL), Golden, CO, United States
[27] Jonkman JM (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine. PhD thesis, University of Colorado, Boulder, 237
[28] Jonkman JM, Buhl ML (2005) FAST user’s guide, Volume 365. National Renewable Energy Laboratory, Golden, CO, United States
[29] Kvittem MI, Bachynski EE, Moan T (2012) Effects of hydrodynamic modelling in fully coupled simulations of a semi-submersible wind turbine. Energy Procedia 24: 351–362. DOI: https://doi.org/10.1016/j.egypro.2012.06.118
[30] Larsen TJ, Hansen AM (2007) How 2 HAWC2, the user’s manual technical report. Ris? National Laboratory. ISSN: 0106–2840 Lee CH (1995) WAMIT theory manual. Massachusetts Institute of Technology, Department of Ocean Engineering
[31] Li H, Bachynski-Poli? EE (2021) Analysis of difference-frequency wave loads and quadratic transfer functions on a restrained semi-submersible floating wind turbine. Ocean Engineering 232: 109065. DOI: https://doi.org/10.1016/j.oceaneng.2021.109165
[32] Liu Y, Xiao Q, Incecik A, Peyrard C, Wan D (2017) Establishing a fully coupled cfd analysis tool for floating offshore wind turbines. Renewable Energy 112: 280–301. DOI: https://doi.org/10.1016/j.renene.2017.04.052
[33] Marintek S (2012) Theory manual version 4.6. MARINTEK, Tech rep el
[34] Moctar O, Schellin TE, S?ding H (2021) Numerical methods to compute incompressible potential flows. Numerical Methods for Seakeeping Problems, Springer, 17–33
[35] Ormberg H, Passano E (2012) Riflex theory manual. Tech rep, Marintek, Trondheim
[36] Otter A, Murphy J, Pakrashi V, Robertson A, Desmond C (2022) A review of modelling techniques for floating offshore wind turbines. Wind Energy 25(5): 831–857. DOI: https://doi.org/10.1002/we.2701
[37] Pinguet R (2021) Hydrodynamics of semi-submersible floater for offshore wind turbines in highly nonlinear waves using Computational Fluid Dynamics (CFD), and validation of overset meshing technique in a numerical wave tank. PhD thesis, Ecole Centrale Marseille, Marseille. https://theses.hal.science/tel-03512872
[38] Pinguet R, Kanner S, Benoit M, Molin B (2020) Validation of open-source overset mesh method using free-decay tests of floating offshore wind turbine. The 30th International Ocean and Polar Engineering Conference, ISOPE-I-20-1179
[39] Pinguet R, Kanner S, Benoit M, Molin B (2021) Modeling the dynamics of freely-floating offshore wind turbine subjected to waves with an open-source overset mesh method. International Conference on Offshore Mechanics and Arctic Engineering, 84768: V001T01A008. DOI: https://doi.org/10.1115/IOWTC2021-3536
[40] Rivera-Arreba I, Bruinsma N, Bachynski EE, Viré A, Paulsen BT, Jacobsen NG (2019) Modeling of a semisubmersible floating offshore wind platform in severe waves. Journal of Offshore Mechanics and Arctic Engineering 141(6): 061905. DOI: https://doi.org/10.1115/1.4043942
[41] Robertson AN, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, Luan C (2014) Definition of the semisubmersible floating system for phase II of OC4. Tech rep, National Renewable Energy Lab. (NREL), Golden, CO, United States
[42] Robertson AN, Jonkman J, Wendt F, Goupee A, Dagher H (2016) Definition of the OC5 DeepCwind semisubmersible floating system. Tech rep, National Renewable Energy Lab. (NREL), Golden, CO, United States
[43] Robertson AN, Wendt F, Jonkman JM, Popko W, Dagher H, Gueydon S, Qvist J, Vittori F, Azcona J, Uzunoglu E, Guedes Soares C, Harries R, Yde A, Galinos C, Hermans K, Vaal J, Bozonnet P, Bouy L, Bayati I, Bergua R, Galvan J, Mendikoa I, Sanchez CB, Shin H, Oh S, Molins C, Debruyne Y (2017) OC5 project phase II: validation of global loads of the deepcwind floating semisubmersible wind turbine. Energy Procedia 137: 38–57. DOI:https://doi.org/10.1016/j.egypro.2017.10.333
[44] Robertson AN, Gueydon S, Bachynski E, Wang L, Jonkman J, Alarcón D, Amet E, Beardsell A, Bonnet P, Boudet B, Brun C, Chen Z, Féron M, Forbush D, Galinos C, Galvan J, Gilbert P, Gómez J, Harnois V, Haudin F, Hu Z, Dreff JL, Leimeister M, Lemmer F, Li H, Mckinnon G, Mendikoa I, Moghtadaei A, Netzband S, Oh S, Pegalajar-Jurado A, Nguyen MQ, Ruehl K, Schünemann P, Shi W, Shin H, Si Y, Surmont F, Trubat P, Qwist J, Wohlfahrt-Laymann S (2020) OC6 phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine. Journal of Physics: Conference Series 1618(3): 032033. DOI: https://doi.org/10.1088/1742-6596/1618/3/032033
[45] Rusche H (2003) Computational fluid dynamics of dispersed two-phase flows at high phase fractions. PhD thesis, Imperial College London, University of London, London. http://hdl.handle.net/10044/1/8110
[46] Stern F, Diez M, Sadat-Hosseini H, Yoon H, Quadvlieg F (2017) Statistical approach for computational fluid dynamics state-of-the-art assessment: N-version verification and validation. Journal of Verification, Validation and Uncertainty Quantification 2(3): 031004. DOI: https://doi.org/10.1115/1.4038255
[47] Tran TT, Kim DH (2015) The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine. Journal of Wind Engineering and Industrial Aerodynamics 147: 104–119. DOI: https://doi.org/10.1016/j.jweia.2015.09.016
[48] Tran TT, Kim DH (2016) A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion. Renewable Energy 90: 204–228. DOI: https://doi.org/10.1016/j.renene.2015.12.013
[49] Tran TT, Kim DH (2018) A CFD study of coupled aerodynamic-hydrodynamic loads on a semisubmersible floating offshore wind turbine. Wind Energy 21(1): 70–85. DOI: https://doi.org/10.1002/we.2145
[50] Wang L, Robertson AN, Jonkman J, Yu YH (2020) Uncertainty assessment of CFD investigation of the nonlinear difference-frequency wave loads on a semisubmersible fowt platform. Sustainability 13(1): 64. DOI: https://doi.org/10.3390/su13010064
[51] Wang Y, Chen HC, Vaz G, Burmester S (2019) CFD simulation of semi-submersible floating offshore wind turbine under pitch decay motion. International Conference on Offshore Mechanics and Arctic Engineering, 59353: V001T01A002. DOI: https://doi.org/10.1115/IOWTC2019-7515
[52] Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics 12(6): 620–631. DOI: https://doi.org/10.1063/1.168744
[53] Wendt FF, Robertson AN, Jonkman JM (2019) Fast model calibration and validation of the oc5-deepcwind floating offshore wind system against wave tank test data. International Journal of Offshore and Polar Engineering 29(1): 15–23. DOI: https://doi.org/10.17736/ijope.2019.jc729
[54] Xing T, Stern F (2010) Factors of safety for richardson extrapolation. Journal of Fluids Engineering 132(6): 061403. DOI: https://doi.org/10.1115/1.4001771
[55] Zhou Y, Xiao Q, Liu Y, Incecik A, Peyrard C, Li S, Pan G (2019) Numerical modelling of dynamic responses of a floating offshore wind turbine subject to focused waves. Energies 12(18): 3482. DOI: https://doi.org/10.3390/en12183482