|Table of Contents|

Citation:
 Fengze Xie,Weiwen Zhao,Decheng Wan.Overview of Moving Particle Semi-implicit Techniques for Hydrodynamic Problems in Ocean Engineering[J].Journal of Marine Science and Application,2022,(3):1-22.[doi:10.1007/s11804-022-00284-9]
Click and Copy

Overview of Moving Particle Semi-implicit Techniques for Hydrodynamic Problems in Ocean Engineering

Info

Title:
Overview of Moving Particle Semi-implicit Techniques for Hydrodynamic Problems in Ocean Engineering
Author(s):
Fengze Xie Weiwen Zhao Decheng Wan
Affilations:
Author(s):
Fengze Xie Weiwen Zhao Decheng Wan
Computational Marine Hydrodynamics Lab(CMHL), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Keywords:
MPS technique|Ocean engineering|Coastal engineering|Stability|Accuracy|Boundary conditions|Acceleration techniques|Multiphase flows|Fluid-structure interactions
分类号:
-
DOI:
10.1007/s11804-022-00284-9
Abstract:
With the significant development of computer hardware, many advanced numerical techniques have been proposed to investigate complex hydrodynamic problems. This article aims to provide a detailed review of moving particle semi-implicit (MPS) techniques and their application in ocean and coastal engineering. The achievements of the MPS method in stability and accuracy, boundary conditions, and acceleration techniques are discussed. The applications of the MPS method, which are classified into two main categories, namely, multiphase flows and fluid-structure interactions, are introduced. Finally, the prospects and conclusions are highlighted. The MPS method has the potential to solve practical problems.

References:

Akimoto H (2013) Numerical simulation of the flow around a planing body by MPS method.Ocean Eng.64:72-79.https://doi.org/10.1016/j.oceaneng.2013.02.015
Amaro RA, Mellado-Cusicahua A, Shakibaeinia A, Cheng LY (2021) A fully Lagrangian DEM-MPS mesh-free model for ice-wave dynamics.Cold Reg.Sci.Technol.186:103266.https://doi.org/10.1016/j.coldregions.2021.103266
Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluidstructure interaction by SPH.Comput.Struct.85(11-14):879-890.https://doi.org/10.1016/j.compstruc.2007.01.002
Audiffren C, Marcer R, Molin B, REMY F, Ledoux A, Helland S, Mottaghi M (2012) Experimental and numerical study of liquid sloshing in a rectangular tank with three fluids.Proceedings of the 22nd International Offshore and Polar Engineering Conference(ISOPE’12), Rhodes, Greece 331-340
Bellezi CA, Cheng LY, Nishimoto K (2022) A numerical study on sloshing mitigation by vertical floating rigid baffle.J.Fluids Struct.109:103456.https://doi.org/10.1016/j.jfluidstructs.2021.103456
Brackbill JU, BKothe D, Zemach C (1992) A continuum method for modeling surface tension.J.Comput.Phys.100(2):335-354.https://doi.org/10.1016/0021-9991(92)90240-Y
Chen X, Wan D (2019a) GPU accelerated MPS method for largescale 3-D violent free surface flows.Ocean Eng.171:677-694.https://doi.org/10.1016/j.oceaneng.2018.11.009
Chen X, Wan D (2019b) Numerical simulation of three-dimensional violent free surface flows by GPU-based MPS method.Int.J.Comput.Methods 16(4):1843012.https://doi.org/10.1142/s0219876218430120
Chen X, Xi G, Sun ZG (2014) Improving stability of MPS method by a computational scheme based on conceptual particles.Comput.Methods Appl.Mech.Eng.278:254-271.https://doi.org/10.1016/j.cma.2014.05.023
Chen X, Zhang Y, Wan D (2019) Numerical study of 3-D liquid sloshing in an elastic tank by MPS-FEM coupled method.J.Ship Res.63(3):143-153.https://doi.org/10.5957/josr.09180082
Colagrossi A, Landrini M (2003) Numerical simulation of interfacial flows by smoothed particle hydrodynamics.J.Comput.Phys.191(2):448-475.https://doi.org/10.1016/s0021-9991(03)00324-3
Duan G, Chen B, Koshizuka S, Xiang H (2017a) Stable multiphase moving particle semi-implicit method for incompressible interfacial flow.Comput.Methods Appl.Mech.Eng.318:636-666.https://doi.org/10.1016/j.cma.2017.01.002
Duan G, Chen B, Zhang X, Wang Y (2017b) A multiphase MPS solver for modeling multi-fluid interaction with free surface and its application in oil spill.Comput.Methods Appl.Mech.Eng.320:133-161.https://doi.org/10.1016/j.cma.2017.03.014
Duan G, Koshizuka S, Chen B (2015) A contoured continuum surface force model for particle methods.J.Comput.Phys.298:280-304.https://doi.org/10.1016/j.jcp.2015.06.004
Duan G, Koshizuka S, Yamaji A, Chen B, Li X, Tamai T (2018) An accurate and stable multiphase moving particle semi-implicit method based on a corrective matrix for all particle interaction models.Int.J.Numer.Methods Eng.115(10):1287-1314.https://doi.org/10.1002/nme.5844
Duan G, Matsunaga T, Yamaji A, Koshizuka S, Sakai M (2020) Imposing accurate wall boundary conditions in corrective-matrix-based moving particle semi-implicit method for free surface flow.Int.J.Numer.Methods Fluids 93(1):148-175.https://doi.org/10.1002/fld.4878
Duan G, Yamaji A, Koshizuka S, Chen B (2019) The truncation and stabilization error in multiphase moving particle semi-implicit method based on corrective matrix:Which is dominant? Comput.Fluids 190:254-273.https://doi.org/10.1016/j.compfluid.2019.06.023
Duan G, Yamaji A, Sakai M (2020) An incompressible-compressible Lagrangian particle method for bubble flows with a sharp density jump and boiling phase change.Comput.Methods Appl.Mech.Eng.372:113425.https://doi.org/10.1016/j.cma.2020.113425
Duan G, Yamaji A, Sakai M (2022) A multiphase MPS method coupling fluid-solid interaction/phase-change models with application to debris remelting in reactor lower plenum.Ann.Nucl.Energy 166:108697.https://doi.org/10.1016/j.anucene.2021.108697
Fang XL, Ming FR, Wang PP, Meng ZF, Zhang AM (2022) Application of multiphase Riemann-SPH in analysis of aircushion effect and slamming load in water entry.Ocean Eng.248:110789.https://doi.org/10.1016/j.oceaneng.2022.110789
Feng YQ, Yu AB (2004) Assessment of model formulations in the discrete particle simulation of gas-solid flow.Ind.Eng.Chem.Res.43:8378-8390.https://doi.org/10.1021/ie049387v
Fernandes DT, Cheng LY, Favero EH, Nishimoto K (2015) A domain decomposition strategy for hybrid parallelization of moving particle semi-implicit (MPS) method for computer cluster.Cluster Comput 18:1363-1377.https://doi.org/10.1007/s10586-015-0483-3
Ferrari A, Dumbser M, Toro EF, Armanini A (2009) A new 3D parallel SPH scheme for free surface flows.Comput.Fluids 38(6):1203-1217.https://doi.org/10.1016/j.compfluid.2008.11.012
Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods.Comput.Phys.Commun.217:66-81.https://doi.org/10.1016/j.cpc.2017.04.005
Frandsen JB, Peng W (2006) Experimental sloshing studies in sway and heave base excited square tanks.Sixth International Conference on Civil Engineering in the Oceans, Baltimore, USA 504-512
Fu L, Jin YC (2015) Investigation of non-deformable and deformable landslides using meshfree method.Ocean Eng.109:192-206.https://doi.org/10.1016/j.oceaneng.2015.08.051
Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics:theory and application to non-spherical stars.Mon.Not.R.Astron.Soc.181(3):375-389.https://doi.org/10.1093/mnras/181.3.375
Gotoh H, Khayyer A, Shimizu Y (2021) Entirely Lagrangian meshfree computational methods for hydroelastic fluid-structure interactions in ocean engineering-Reliability, adaptivity and generality.Appl.Ocean Res.115:102822.https://doi.org/10.1016/j.apor.2021.102822
Gou W, Zhang S, Zheng Y (2019) Implementation of the moving particle semi-implicit method for free-surface flows on GPU clusters.Comput.Phys.Commun.244:13-24.https://doi.org/10.1016/j.cpc.2019.07.010
Guo K, Chen R, Qiu S, Tian W, Su G (2018) An improved Multiphase Moving Particle Semi-implicit method in bubble rising simulations with large density ratios.Nucl.Eng.Des.340:370-387.https://doi.org/10.1016/j.nucengdes.2018.10.006
Harada E, Gotoh H, Ikari H, Khayyer A (2019) Numerical simulation for sediment transport using MPS-DEM coupling model.Adv.Water Resour.129:354-364.https://doi.org/10.1016/j.advwatres.2017.08.007
Harada E, Ikari H, Tazaki T, Gotoh H (2021) Numerical simulation for coastal morphodynamics using DEM-MPS method.Appl.Ocean Res.117:102905.https://doi.org/10.1016/j.apor.2021.102905
Harada T, Koshizuka S, Shimazaki K (2008) Improvement of wall boundary calculation model for MPS method.Trans.Jpn.Soc.Comput.Eng.Sci.20080006-20080006; (in Japanese)
Hashimoto H, Grenier N, Sueyoshi M, Touzé DL (2022) Comparison of MPS and SPH methods for solving forced motion ship flooding problems.Appl.Ocean Res.118:103001.https://doi.org/10.1016/j.apor.2021.103001
Hayashi M, Hughes L (2013) The Fukushima nuclear accident and its effect on global energy security.Energy Policy 59:102-111.https://doi.org/10.1016/j.enpol.2012.11.046
He M, Gao X, Xu W, Ren B, Wang H (2019) Potential application of submerged horizontal plate as a wave energy breakwater:A 2D study using the WCSPH method.Ocean Eng.185:27-46.https://doi.org/10.1016/j.oceaneng.2019.05.034
He M, Xu W, Gao X, Ren B (2018) The layout of submerged horizontal plate breakwater (SHPB) with respect to the tidal-level variation.Coastal Eng.J.60(3):280-298.https://doi.org/10.1080/21664250.2018.1514758
Hori C, Gotoh H, Ikari H, Khayyer A (2011) GPU-acceleration for Moving Particle Semi-Implicit method.Comput.Fluids 51(1):174-183.https://doi.org/10.1016/j.compfluid.2011.08.004
Hwang SC, Khayyer A, Gotoh H, Park JC (2014) Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems.J.Fluids Struct.50:497-511.https://doi.org/10.1016/j.jfluidstructs.2014.07.007
Ikari H, Gotoh H (2008) Parallelization of MPS method for 3-D wave analysis.Proceedings of 8th International Conference on Hydro-science and Engineering (ICHE), Nagoya, Japan Ikeda H, Koshizuka S, Oka Y, Park HS, Sugimoto J (2001) Numerical analysis of jet injection behavior for fuel-coolant interaction using particle method.J.Nucl.Sci.Technol.38(3):174-182.https://doi.org/10.1080/18811248.2001.9715019
Iribe T, Fujisawa T, Koshizuka S (2010) Reduction of communication in parallel computing of particle method for flow simulation of seaside areas.Coastal Eng.J.52(4):287-304.https://doi.org/10.1142/S0578563410002221
Iribe T, Fujisawa T, Shibata K, Koshizuka S (2006) Study on parallel computation for fluid simulation using MPS method.Trans Jpn Soc Comput Eng Sci 20060015 (in Japanese)
Jandaghian M, Krimi A, Shakibaeinia A (2021) Enhanced weaklycompressible MPS method for immersed granular flows.Adv.Water Resour.152:103908.https://doi.org/10.1016/j.advwatres.2021.103908
Jena D, Biswal KC (2017) A numerical study of violent sloshing problems with modified MPS method.J.Hydrodyn.29(4):659-667.https://doi.org/10.1016/s1001-6058(16)60779-5
Khayyer A, Gotoh H (2008) Development of CMPS method for accurate water-surface tracking in breaking waves.Coastal Eng.J.50(2):179-207.https://doi.org/10.1142/s0578563408001788
Khayyer A, Gotoh H (2009) Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure.Coastal Eng.56(4):419-440.https://doi.org/10.1016/j.coastaleng.2008.10.004
Khayyer A, Gotoh H (2010) A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method.Appl.Ocean Res.32(1):124-131.https://doi.org/10.1016/j.apor.2010.01.001
Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy of the moving particle semi-implicit method.J.Comput.Phys.230(8):3093-3118.https://doi.org/10.1016/j.jcp.2011.01.009
Khayyer A, Gotoh H (2012) A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPSbased simulations.Appl.Ocean Res.37:120-126.https://doi.org/10.1016/j.apor.2012.05.003
Khayyer A, Gotoh H (2013) Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios.J.Comput.Phys.242:211-233.https://doi.org/10.1016/j.jcp.2013.02.002
Khayyer A, Gotoh H (2016) A multiphase compressible-incompressible particle method for water slamming.Int.J.Offshore Polar Eng.26(1):20-25.https://doi.org/10.17736/ijope.2016.mk42
Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018a) Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction.J.Hydrodyn.30(1):49-61.https://doi.org/10.1007/s42241-018-0005-x
Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018b) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions.Comput.Phys.Commun.232:139-164.https://doi.org/10.1016/j.cpc.2018.05.012
Khayyer A, Gotoh H, Shao S (2009) Enhanced predictions of wave impact pressure by improved incompressible SPH methods.Appl.Ocean Res.31(2):111-131.https://doi.org/10.1016/j.apor.2009.06.003
Khayyer A, Gotoh H, Shao SD (2008) Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves.Coastal Eng.55(3):236-250.https://doi.org/10.1016/j.coastaleng.2007.10.001
Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context.J.Comput.Phys.332:236-256.https://doi.org/10.1016/j.jcp.2016.12.005
Khayyer A, Gotoh H, Shimizu Y (2019) A projection-based particle method with optimized particle shifting for multiphase flows with large density ratios and discontinuous density fields.Comput.Fluids 179:356-371.https://doi.org/10.1016/j.compfluid.2018.10.018
Khayyer A, Gotoh H, Shimizu Y, Gotoh K, Falahaty H, Shao S (2018c) Development of a projection-based SPH method for numerical wave flume with porous media of variable porosity.Coastal Eng.140:1-22.https://doi.org/10.1016/j.coastaleng.2018.05.003
Khayyer A, Gotoh H, Shimizu Y, Nishijima Y (2021a) A 3D Lagrangian meshfree projection-based solver for hydroelastic Fluid-Structure Interactions.J.Fluids Struct.105:103342.https://doi.org/10.1016/j.jfluidstructs.2021.103342
Khayyer A, Shimizu Y, Gotoh H, Hattori S (2021b) Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering.Ocean Eng.226:108652.https://doi.org/10.1016/j.oceaneng.2021.108652
Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021c) A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures.Appl Math Modell 94:242-271.https://doi.org/10.1016/j.apm.2021.01.011
Khayyer A, Tsuruta N, Shimizu Y, Gotoh H (2019) Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering.Appl.Ocean Res.82:397-414.https://doi.org/10.1016/j.apor.2018.10.020
Kim KS, Kim MH (2014) Dynamic coupling between ship motion and three-layer-liquid separator by using moving particle simulation.Int.J.Offshore Polar Eng.24(2):122-128
Kondo M, Koshizuka S (2011) Improvement of stability in moving particle semi-implicit method.Int.J.Numer.Methods Fluids 65(6):638-654.https://doi.org/10.1002/fld.2207
Koshizuka S, Ikeda H, Oka Y (1999) Numerical analysis of fragmentation mechanisms in vapor explosions.Nucl.Eng.Des.189:423-433.https://doi.org/10.1016/S0029-5493(98)00270-2
Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method.Int.J.Numer.Methods Fluids 26:751-769.https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C
Koshizuka S, Oka Y (1996) Moving particle semi-implicit method for fragmentation of incompressible fluid.Nucl.Sci.Eng.123(3):421-434.https://doi.org/10.13182/NSE96-A24205
Lastiwka M, Basa M, Quinlan NJ (2009) Permeable and nonreflecting boundary conditions in SPH.Int.J.Numer.Methods Fluids 61(7):709-724.https://doi.org/10.1002/fld.1971
Lee BH, Park JC, Kim MH, Hwang SC (2011) Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads.Comput.Methods Appl.Mech.Eng.200(9-12):1113-1125.https://doi.org/10.1016/j.cma.2010.12.001
Lee CJK, Noguchi H, Koshizuka S (2007) Fluid-shell structure interaction analysis by coupled particle and finite element method.Comput.Struct.85(11-14):688-697.https://doi.org/10.1016/j.compstruc.2007.01.019
Lee ES, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method.J.Comput.Phys.227(18):8417-8436.https://doi.org/10.1016/j.jcp.2008.06.005
Li G, Gao J, Wen P, Zhao Q, Wang J, Yan J, Yamaji A (2020) A review on MPS method developments and applications in nuclear engineering.Comput.Methods Appl.Mech.Eng.367:113166.https://doi.org/10.1016/j.cma.2020.113166
Li JJ, Qiu LC, Tian L, Yang YS, Han Y (2019) Modeling 3D nonNewtonian solid-liquid flows with a free-surface using DEMMPS.Eng.Anal.Boundary Elem.105:70-77.https://doi.org/10.1016/j.enganabound.2019.04.015
Lind SJ, Xu R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows:A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves.J.Comput.Phys.231(4):1499-1523.https://doi.org/10.1016/j.jcp.2011.10.027
Liu J, Koshizuka S, Oka Y (2005) A hybrid particle-mesh method for viscous, incompressible, multiphase flows.J.Comput.Phys.202:65-93.https://doi.org/10.1016/j.jcp.2004.07.002
Liu X, Morita K, Zhang S (2018) An advanced moving particle semiimplicit method for accurate and stable simulation of incompressible flows.Comput.Methods Appl.Mech.Eng.339:467-487.https://doi.org/10.1016/j.cma.2018.05.005
Liu X, Zhang S (2021) Development of adaptive multi-resolution MPS method for multiphase flow simulation.Comput.Methods Appl.Mech.Eng.387:114184.https://doi.org/10.1016/j.cma.2021.114184
Lucy LB (1977) A numerical approach to the testing of the fission hypothesis.Astron.J.82:1013-1024;
Luo M, Khayyer A, Lin P (2021) Particle methods in ocean and coastal engineering.Appl.Ocean Res.114:102734.https://doi.org/10.1016/j.apor.2021.102734
Luo M, Koh CG (2017) Shared-Memory parallelization of consistent particle method for violent wave impact problems.Appl.Ocean Res.69:87-99.https://doi.org/10.1016/j.apor.2017.09.013
Lyu HG, Deng R, Sun PN, Miao JM (2021) Study on the wedge penetrating fluid interfaces characterized by different densityratios:Numerical investigations with a multi-phase SPH model.Ocean Eng.237:109538.https://doi.org/10.1016/j.oceaneng.2021.109538
Lyu HG, Sun PN, Miao JM, Zhang AM (2022) 3D multi-resolution SPH modeling of the water entry dynamics of free-fall lifeboats.Ocean Eng.257:111648.https://doi.org/10.1016/j.oceaneng.2022.111648
Marrone S, Bouscasse B, Colagrossi A, Antuono M (2012) Study of ship wave breaking patterns using 3D parallel SPH simulations.Comput.Fluids 69:54-66.https://doi.org/10.1016/j.compfluid.2012.08.008
Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast freesurface detection and level-set function definition in SPH solvers.J.Comput.Phys.229(10):3652-3663.https://doi.org/10.1016/j.jcp.2010.01.019
Monaghan JJ (1994) Simulating free surface flows with SPH.J.Comput.Phys.110(2):399-406.https://doi.org/10.1006/jcph.1994.1034
Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries.Comput.Phys.Commun.180(10):1811-1820.https://doi.org/10.1016/j.cpc.2009.05.008
Ni X, Feng W, Huang S, Zhang Y, Feng X (2018) A SPH numerical wave flume with non-reflective open boundary conditions.Ocean Eng.163:483-501.https://doi.org/10.1016/j.oceaneng.2018.06.034
Ni X, Feng W, Huang S, Zhao X, Li X (2020) Hybrid SW-NS SPH models using open boundary conditions for simulation of freesurface flows.Ocean Eng.196:106845.https://doi.org/10.1016/j.oceaneng.2019.106845
Nomura K, Koshizuka S, Oka Y, Obata H (2001) Numerical analysis of droplet breakup behavior using particle method.J.Nucl.Sci.Technol.38(12):1057-1064.https://doi.org/10.1080/18811248.2001.9715136
Pahar G, Dhar A (2017) Numerical modelling of free-surface flowporous media interaction using divergence-free moving particle semi-implicit method.Transp.Porous Media 118(2):157-175.https://doi.org/10.1007/s11242-017-0852-x
Pan XJ, Zhang HX, Lun YT (2008) Numerical simulation of viscous liquid sloshing by moving-particle semi-implicit method.J.Marine Sci.App.7:184-189.https://doi.org/10.1007/s11804-008-7047-3
Pan XJ, Zhang HX, Sun XY (2012) Numerical simulation of sloshing with large deforming free surface by MPS-LES method.China Ocean Eng.26(4):653-668.https://doi.org/10.1007/s13344-012-0049-6
Park S, Jeun G (2011) Coupling of rigid body dynamics and moving particle semi-implicit method for simulating isothermal multiphase fluid interactions.Comput.Methods Appl.Mech.Eng.200(1-4):130-140.https://doi.org/10.1016/j.cma.2010.08.001
Rafiee A, Pistani F, Thiagarajan K (2010) Study of liquid sloshing:numerical and experimental approach.Comput.Mech.47(1):65-75.https://doi.org/10.1007/s00466-010-0529-6
Rao C, Wan D (2018) Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method.J.Hydrodyn.30(1):70-78.https://doi.org/10.1007/s42241-018-0007-8
Ren B, Wen H, Dong P, Wang Y (2016) Improved SPH simulation of wave motions and turbulent flows through porous media.Coastal Eng.107:14-27.https://doi.org/10.1016/j.coastaleng.2015.10.004
Rong S, Chen B (2010) Numerical simulation of Taylor bubble formation in micro-channel by MPS method.Microgravity Sci.Technol.22(3):321-327.https://doi.org/10.1007/s12217-010-9183-z
Sakai M, Shigeto Y, Sun X, Aoki T, Saito T, Xiong J, Koshizuka S (2012) Lagrangian-Lagrangian modeling for a solid-liquid flow in a cylindrical tank.Chem.Eng.J.200-202:663-672.https://doi.org/10.1016/j.cej.2012.06.080
Shakibaeinia A, Jin YC (2009) A weakly compressible MPS method for modeling of open-boundary free-surface flow.Int.J.Numer.Methods Fluids 63:1208-1232.https://doi.org/10.1002/fld.2132
Shakibaeinia A, Jin YC (2011) A mesh-free particle model for simulation of mobile-bed dam break.Adv.Water Resour.34:794-807.https://doi.org/10.1016/j.advwatres.2011.04.011
Shakibaeinia A, Jin YC (2012) MPS mesh-free particle method for multiphase flows.Comput.Methods Appl.Mech.Eng.229-232:13-26.https://doi.org/10.1016/j.cma.2012.03.013
Shibata K, Koshizuka S, Matsunaga T, Masaie I (2017) The overlapping particle technique for multi-resolution simulation of particle methods.Comput.Methods Appl.Mech.Eng.325:434-462.https://doi.org/10.1016/j.cma.2017.06.030
Shibata K, Koshizuka S, Sakai M, Tanizawa K (2012) Lagrangian simulations of ship-wave interactions in rough seas.Ocean Eng.42:13-25.https://doi.org/10.1016/j.oceaneng.2012.01.016
Shibata K, Koshizuka S, Tamai T, Murozono K (2012) Overlapping particle technique and application to green water on deck.International Conference on Violent Flows, Nantes, France, 106-111
Shimizu Y, Gotoh H, Khayyer A (2018) An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept.Comput.Math.Appl.76(5):1108-1129.https://doi.org/10.1016/j.camwa.2018.06.002
Shirakawa N, Yamamoto Y, Horie H, Tsunoyama S (2002) Analysis of flows around a BWR spacer by the two-fluid particle interaction method.J.Nucl.Sci.Technol.39(5):572-581.https://doi.org/10.1080/18811248.2002.9715236
Sun PN, Le Touzé D, Oger G, Zhang AM (2021) An accurate FSISPH modeling of challenging fluid-structure interaction problems in two and three dimensions.Ocean Eng.221:108552.https://doi.org/10.1016/j.oceaneng.2020.108552
Sun PN, Le Touzé D, Zhang AM (2019) Study of a complex fluidstructure dam-breaking benchmark problem using a multi-phase SPH method with APR.Eng.Anal.Boundary Elem.104:240-258.https://doi.org/10.1016/j.enganabound.2019.03.033
Sun X, Sakai M, Sakai MT, Yamada Y (2014) A LagrangianLagrangian coupled method for three-dimensional solid-liquid flows involving free surfaces in a rotating cylindrical tank.Chem.Eng.J.246:122-141.https://doi.org/10.1016/j.cej.2014.02.049
Sun Y, Xi G, Sun Z (2019) A fully Lagrangian method for fluidstructure interaction problems with deformable floating structure.J.Fluids Struct.90:379-395.https://doi.org/10.1016/j.jfluidstructs.2019.07.005
Sun Y, Xi G, Sun Z (2021) A generic smoothed wall boundary in multi-resolution particle method for fluid-structure interaction problem.Comput.Methods Appl.Mech.Eng.378:113726.https://doi.org/10.1016/j.cma.2021.113726
Tajnesaie M, Shakibaeinia A, Hosseini K (2018) Meshfree particle numerical modelling of sub-aerial and submerged landslides.Comput.Fluids 172:109-121.https://doi.org/10.1016/j.compfluid.2018.06.023
Tanaka M, Cardoso R, Bahai H (2018) Multi-resolution MPS method.J.Comput.Phys.359:106-136.https://doi.org/10.1016/j.jcp.2017.12.042
Tanaka M, Masunaga T (2010) Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility.J.Comput.Phys.229(11):4279-4290.https://doi.org/10.1016/j.jcp.2010.02.011
Tanaka M, Masunaga T, Nakagawa Y (2009) Multi-resolution MPS method.Trans.Jpn.Soc.Comput.Eng.Sci.20090001 (in Japanese)
Tang Z, Wan D, Chen G, Xiao Q (2016) Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method.J.Ocean Eng.Mar.Energy 2(3):355-364.https://doi.org/10.1007/s40722-016-0062-6
Tang Z, Zhang Y, Wan D (2016) Numerical simulation of 3-D free surface flows by overlapping MPS.J.Hydrodyn.28(2):306-312.https://doi.org/10.1016/s1001-6058(16)60632-7
Tazaki T, Harada E, Gotoh H (2021) Vertical sorting process in oscillating water tank using DEM-MPS coupling model.Coastal Eng.165:103765.https://doi.org/10.1016/j.coastaleng.2020.103765
Tazaki T, Harada E, Gotoh H (2022) Numerical investigation of sediment transport mechanism under breaking waves by DEMMPS coupling scheme.Coastal Eng.175:104146.https://doi.org/10.1016/j.coastaleng.2022.104146
Tian W, Ishiwatari Y, Ikejiri S, Yamakawa M, Oka Y (2009) Numerical simulation on void bubble dynamics using moving particle semi-implicit method.Nucl.Eng.Des.239(11):2382-2390.https://doi.org/10.1016/j.nucengdes.2009.06.018
Tsukamoto MM, Cheng LY, Kobayakawa H, Okada T, Bellezi CA (2020) A numerical study of the effects of bottom and sidewall stiffeners on sloshing behavior considering roll resonant motion.Mar.Struct.72:102742.https://doi.org/10.1016/j.marstruc.2020.102742
Tsukamoto MM, Cheng LY, Nishimoto K (2011) Analytical and numerical study of the effects of an elastically-linked body on sloshing.Comput.Fluids 49(1):1-21.https://doi.org/10.1016/j.compfluid.2011.04.008
Tsuruta N, Khayyer A, Gotoh H (2013) A short note on dynamic stabilization of moving particle semi-implicit method.Comput.Fluids 82:158-164.https://doi.org/10.1016/j.compfluid.2013.05.001
Tsuruta N, Khayyer A, Gotoh H, Suzuki K (2021) Development of Wavy Interface model for wave generation by the projectionbased particle methods.Coastal Eng.165:103861.https://doi.org/10.1016/j.coastaleng.2021.103861
Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics(SPH) for free-surface flows:past, present and future.J.Hydraul.Res.54(1):1-26.https://doi.org/10.1080/00221686.2015.1119209
Wang J, Zhang X (2019) Improved moving particle semi-implicit method for multiphase flow with discontinuity.Comput.Methods Appl.Mech.Eng.346:312-331.https://doi.org/10.1016/j.cma.2018.12.009
Wang L, Jiang Q, Zhang C (2017) Improvement of moving particle semi-implicit method for simulation of progressive water waves.Int.J.Numer.Methods Fluids 85(2):69-89.https://doi.org/10.1002/fld.4373
Wang PP, Meng ZF, Zhang AM, Ming FR, Sun PN (2019) Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics.Comput.Methods Appl.Mech.Eng.357:112580.https://doi.org/10.1016/j.cma.2019.112580
Wen X, Zhao W, Wan D (2021a) An improved moving particle semiimplicit method for interfacial flows.Appl.Ocean Res.117:102963.https://doi.org/10.1016/j.apor.2021.102963
Wen X, Zhao W, Wan D (2021b) A multiphase MPS method for bubbly flows with complex interfaces.Ocean Eng.238:109743.https://doi.org/10.1016/j.oceaneng.2021.109743
Wen X, Zhao W, Wan D (2021c) Numerical simulations of multilayer-liquid sloshing by multiphase MPS method.J.Hydrodyn.33(5):938-949.https://doi.org/10.1007/s42241-021-0083-z
Wen X, Zhao W, Wan D (2022) Multi-phase moving particle semiimplicit method for violent sloshing flows.Eur.J.Mech.B.Fluids 95:1-22.https://doi.org/10.1016/j.euromechflu.2022.04.002
Xie F, Zhao W, Wan D (2020) CFD simulations of three-dimensional violent sloshing flows in tanks based on MPS and GPU.J.Hydrodyn.33:938-949.https://doi.org/10.1007/s42241-020-0039-8
Xie F, Zhao W, Wan D (2021a) MPS-DEM coupling method for interaction between fluid and thin elastic structures.Ocean Eng.236:109449.https://doi.org/10.1016/j.oceaneng.2021.109449
Xie F, Zhao W, Wan D (2021b) Numerical simulations of liquid-solid flows with free surface by coupling IMPS and DEM.Appl.Ocean Res.114:102771.https://doi.org/10.1016/j.apor.2021.102771
Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach.J.Comput.Phys.228(18):6703-6725.https://doi.org/10.1016/j.jcp.2009.05.032
Xu T, Jin YC (2019) Modeling impact pressure on the surface of porous structure by macroscopic mesh-free method.Ocean Eng.182:1-13.https://doi.org/10.1016/j.oceaneng.2019.04.054
Xu WJ, Zhou Q, Dong XY (2021) SPH-DEM coupling method based on GPU and its application to the landslide tsunami.Part II:reproduction of the Vajont landslide tsunami.Acta Geotech.17:2121-2137.https://doi.org/10.1007/s11440-021-01387-3
Zha R, Peng H, Qiu W (2021) An improved higher-order moving particle semi-implicit method for simulations of two-dimensional hydroelastic slamming.Phys.Fluids 33(3):037104.https://doi.org/10.1063/5.0033491
Zhang G, Wua J, Sun Z, Moctarc OE, Zong Z (2020) Numerically simulated flooding of a freely-floating two-dimensional damaged ship section using an improved MPS method.Appl.Ocean Res.101:102207.https://doi.org/10.1016/j.apor.2020.102207
Zhang G, Zhao W, Wan D (2022a) Moving particle semi-implicit method coupled with finite element method for hydroelastic responses of floating structures in waves.Eur.J.Mech.B.Fluids 95:63-82.https://doi.org/10.1016/j.euromechflu.2022.04.005
Zhang G, Zhao W, Wan D (2022b) Numerical simulations of sloshing waves in vertically excited square tank by improved MPS method.J.Hydrodyn.34(1):76-84.https://doi.org/10.1007/s42241-022-0008-5
Zhang N, Zheng X, Ma Q (2019a) Study on wave-induced kinematic responses and flexures of ice floe by Smoothed Particle Hydrodynamics.Comput.Fluids 189:46-59.https://doi.org/10.1016/j.compfluid.2019.04.020
Zhang S, Gou W, Wang Y, Zhang J, Zheng Y (2021) Direct numerical simulation of atomization by jet impact using moving particle semi-implicit method with GPU acceleration.Comput.Part.Mech.9(3):499-512.https://doi.org/10.1007/s40571-021-00424-y
Zhang T, Koshizuka S, Murotani K, Shibata K, Ishii E (2017) Improvement of pressure distribution to arbitrary geometry with boundary condition represented by polygons in particle method.Int.J.Numer.Methods Eng.112(7):685-710.https://doi.org/10.1002/nme.5520
Zhang T, Koshizuka S, Murotani K, Shibata K, Ishii E, Ishikawa M (2016a) Improvement of boundary conditions for non-planar boundaries represented by polygons with an initial particle arrangement technique.Int.J.Comput.Fluid Dyn.30(2):155-175.https://doi.org/10.1080/10618562.2016.1167194
Zhang T, Koshizuka S, Xuan P, Li J, Gong C (2019b) Enhancement of stabilization of MPS to arbitrary geometries with a generic wall boundary condition.Comput.Fluids 178:88-112.https://doi.org/10.1016/j.compfluid.2018.09.008
Zhang TG, Koshizuka S, Shibata K, Murotani K, Ishii E (2015) Improved wall weight function with polygon boundary in moving particle semi-implicit method.Trans Japan Soc Comput Eng Sci 20150012;
Zhang Y, Chen X, Wan D (2016b) MPS-FEM coupled method for the comparison study of liquid sloshing flows interacting with rigid and elastic baffles.Appl.Math.Mech.37(12):1359-1377
Zhang Y, Wan D (2017) Numerical study of interactions between waves and free rolling body by IMPS method.Comput.Fluids 155:124-133.https://doi.org/10.1016/j.compfluid.2017.03.019
Zhang Y, Wan D (2018a) MPS-FEM coupled method for fluid-structure interaction in 3D dam-break flows.Int.J.Comput.Methods 16(2):1846009.https://doi.org/10.1142/s021987621846009x
Zhang Y, Wan D (2018b) MPS-FEM coupled method for sloshing flows in an elastic tank.Ocean Eng.152:416-427.https://doi.org/10.1016/j.oceaneng.2017.12.008
Zhang Y, Wan D, Hino T (2014) Comparative study of MPS method and level-set method for sloshing flows.J.Hydrodyn.26(4):577-585.https://doi.org/10.1016/s1001-6058(14)60065-2
Zhou Q, Xu, WJ, Dong XY (2021) SPH-DEM coupling method based on GPU and its application to the landslide tsunami.Part I:method and validation.Acta Geotech.17:2101-2119.https://doi.org/10.1007/s11440-021-01388-2

Memo

Memo:
Received date:2022-06-01;Accepted date:2022-06-29。
Corresponding author:Decheng Wan,E-mail:dcwan@sjtu.edu.cn
Last Update: 2022-10-09