|Table of Contents|

Citation:
 A. M. Salehizadeh,A. R. Shafiei.A Coupled ISPH-TLSPH Method for Simulating Fluid-Elastic Structure Interaction Problems[J].Journal of Marine Science and Application,2022,(1):15-36.[doi:10.1007/s11804-022-00260-3]
Click and Copy

A Coupled ISPH-TLSPH Method for Simulating Fluid-Elastic Structure Interaction Problems

Info

Title:
A Coupled ISPH-TLSPH Method for Simulating Fluid-Elastic Structure Interaction Problems
Author(s):
A. M. Salehizadeh A. R. Shafiei
Affilations:
Author(s):
A. M. Salehizadeh A. R. Shafiei
Department of Mechanical Engineering, Yazd University, Yazd 89158-18411, Iran
Keywords:
Smoothed particle hydrodynamicsIncompressible SPHTotal Lagrangian SPHFluidelastic structure interactionFSI particle shifting scheme
分类号:
-
DOI:
10.1007/s11804-022-00260-3
Abstract:
A fully Lagrangian algorithm for numerical simulation of fluid-elastic structure interaction (FSI) problems is developed based on the Smoothed Particle Hydrodynamics (SPH) method. The developed method corresponds to incompressible fluid flows and elastic structures. Divergence-free (projection based) incompressible SPH (ISPH) is used for the fluid phase, while the equations of motion for structural dynamics are solved using Total Lagrangian SPH (TLSPH) method. The temporal pressure noise can occur at the free surface and fluid-solid interfaces due to errors associated with the truncated kernels. A FSI particle shifting scheme is implemented to produce sufficiently homogeneous particle distributions to enable stable, accurate, converged solutions without noise in the pressure field. The coupled algorithm, with the addition of proposed particle shifting scheme, is able to provide the possibility of simultaneous integration of governing equations for all particles, regardless of their material type. This remedy without need for tuning a new parameter, resolves the unphysical discontinuity beneath the interface of fluid-solid media. The coupled ISPH-TLSPH scheme is used to simulate several benchmark test cases of hydro-elastic problems. The method is validated by comparison of the presented results with experiments and numerical simulations from other researchers.

References:

Aldlemy MS, Rasani MR, Ariffin A, Ya TT (2020) Adaptive mesh refinement immersed boundary method for simulations of laminar flows past a moving thin elastic structure.Journal of Hydrodynamics 32(1):148-160.https://doi.org/10.1007/s42241-020-0008-2
Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interaction by SPH.Computers and Structures 85(11-14):879-890.https://doi.org/10.1016/j.compstruc.2007.01.002
Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Freesurface flows solved by means of SPH schemes with numerical diffusive terms.Computer Physics Communications 181(3):532-549.https://doi.org/10.1016/j.cpc.2009.11.002
Belytschko T, Guo Y, Kam Liu W, Ping Xiao S (2000) A unified stability analysis of meshless particle methods.International Journal for Numerical Methods in Engineering 48(9):1359-1400.https://doi.org/10.1002/1097-0207(20000730)48
Bonet J, Lok TS (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations.Computer Methods in Applied Mechanics and Engineering 180(1-2):97-115.https://doi.org/10.1016/S0045-7825(99)00051-1
Chow AD, Rogers BD, Lind SJ, Stansby PK (2018) Incompressible SPH (ISPH) with fast poisson solver on a GPU.Computer Physics Communications 226:81-103.https://doi.org/10.1016/j.cpc.2018.01.005
Cummins SJ, Rudman M (1999) An SPH projection method.Journal of ComputationalPhysics152(2):584-607.https://doi.org/10.1006/jcph.1999.6246
Fatehi R, Manzari M (2012) A consistent and fast weakly compressible smoothed particle hydrodynamics with a new wall boundary condition.International Journal for Numerical Methods in Fluids 68(7):905-921.https://doi.org/10.1002/fld.2586
Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods.Computer Physics Communications 217:66-81.https://doi.org/10.1016/j.cpc.2017.04.005
Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics:theory and application to non-spherical stars.Monthly Notices of the Royal Astronomical Society 181(3):375-389.https://doi.org/10.1093/mnras/181.3.375
Gotoh H, Sakai T, Shibahara T (2000) Lagrangian flow simulation with sub-particle-scale turbulence model.Proceedings of Hydraulic Engineering 44:575-580.https://doi.org/10.2208/prohe.44.575
Gray J, Monaghan J, Swift R (2001) SPH elastic dynamics.Computer methods in applied mechanics and engineering 190(49-50):6641-6662.https://doi.org/10.1016/S0045-7825(01)00254-7
He Y, Bayly AE, Hassanpour A (2018) Coupling CFD-DEM with dynamic meshing:A new approach for fluid-structure interaction in particle-fluid flows.Powder Technology 325:620-631.https://doi.org/10.1016/j.powtec.2017.11.045
Hermange C, Oger G, Le Touzé D (2019) Energy considerations in the SPH method with deformable boundaries and application to fsi problems.Journal of Computational Physics X(1):100008.https://doi.org/10.1016/j.jcpx.2019.100008
Hu X,Adams NA (2007) An incompressible multi-phase SPH method.Journal of Computational Physics 227(1):264-278.https://doi.org/10.1016/j.jcp.2007.07.013
Huang C, Zhang D, Si Y, Shi Y, Lin Y (2018) Coupled finite particle method for simulations of wave and structure interaction.Coastal Engineering 140:147-160.https://doi.org/10.1016/j.coastaleng.2018.07.003
Idelsohn S, Marti J, Souto-Iglesias A, Onate E (2008a) Interaction between an elastic structure and free-surface flows:experimental versus numerical comparisons using the PFEM.Computational Mechanics 43(1):125-132.https://doi.org/10.1007/s00466-008-0245-7
Idelsohn SR, Marti J, Limache A, O?ate E (2008b) Unified lagrangian formulation for elastic solids and incompressible fluids:application to fluid-structure interaction problems via the PFEM.Computer Methods in Applied Mechanics and Engineering 197(19-20):1762-1776.https://doi.org/10.1016/j.cma.2007.06.004
Johnson GR, Beissel SR (1996) Normalized smoothing functions for SPH impact computations.International Journal for Numerical Methods in Engineering 39(16):2725-2741.https://doi.org/10.1002/(SICI)1097-0207(19960830)39:16
Kazemi E, Koll K, Tait S, Shao S (2020) SPH modelling of turbulent open channel flow over and within natural gravel beds with rough interfacial boundaries.Advances in Water Resources 140:103557.https://doi.org/10.1016/j.advwatres.2020.103557
Kazemi E, Nichols A, Tait S, Shao S (2017) SPH modelling of depthlimited turbulent open channel flows over rough boundaries.International Journal for Numerical Methods in Fluids 83(1):3-27.https://doi.org/10.1002/fld.4248
Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018a) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions.Computer Physics Communications 232:139-164.https://doi.org/10.1016/j.cpc.2018.05.012
Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018b) Towards development of enhanced fully-lagrangian mesh-free computational methods for fluidstructure interaction.Journal of Hydrodynamics 30(1):49-61.https://doi.org/10.1007/s42241-018-0005-x Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context.Journal of Computational Physics 332:236-256.https://doi.org/10.1016/j.jcp.2016.12.005
Khayyer A, Shimizu Y, Gotoh H, Nagashima K (2021) A coupled incompressible SPH-hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures.Applied Mathematical Modelling 94:242-271.https://doi.org/10.1016/j.apm.2021.01.011
Khayyer A, Tsuruta N, Shimizu Y, Gotoh H (2019) Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering.Applied Ocean Research 82:397-414.https://doi.org/10.1016/j.apor.2018.10.020
Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method.International Journal for Numerical Methods in Fluids 26(7):751-769.https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7
Langer U, Yang H (2018) Numerical simulation of fluid-structure interaction problems with hyperelastic models:A monolithic approach.Mathematics and Computers in Simulation 145:186-208.https://doi.org/10.1016/j.matcom.2016.07.008
Lee BH, Park JC, Kim MH, Jung SJ, Ryu MC, Kim YS (2010) Numerical simulation of impact loads using a particle method.Ocean Engineering 37(2-3):164-173.https://doi.org/10.1016/j.oceaneng.2009.12.003
Lee ES, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method.Journal of Computational Physics 227(18):8417-8436.https://doi.org/10.1016/j.jcp.2008.06.005
Liao K, Hu C, Sueyoshi M (2015) Free surface flow impacting on an elastic structure:Experiment versus numerical simulation.Applied Ocean Research 50:192-208.https://doi.org/10.1016/j.apor.2015.02.002
Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain lagrangian hydrodynamics:a three-dimensional SPH code for dynamic material response.Journal of Computational Physics 109(1):67-75.https://doi.org/10.1006/jcph.1993.1199
Lin J, Naceur H, Coutellier D, Laksimi A (2015) Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method.Engineering Computations 32(3):779-805.https://doi.org/10.1108/EC-12-2013-0306
Lind S, Xu R, Stansby P, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows:A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves.Journal of Computational Physics 231(4):1499-1523.https://doi.org/10.1016/j.jcp.2011.10.027
Liu GR, Liu MB (2003) Smoothed particle hydrodynamics:a meshfree particle method.World Scientific.https://doi.org/10.1142/5340
Long T, Yang P, Liu M (2020) A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems.International Journal of Mechanical Sciences 174:105558.https://doi.org/10.1016/j.ijmecsci.2020.105558
Lucy LB (1977) A numerical approach to the testing of the fission hypothesis.The Astronomical Journal 82:1013-1024.http://dx.doi.org/10.1086/112164
Nasar A, Rogers BD, Revell A, Stansby P (2019) Flexible slender body fluid interaction:Vector-based discrete element method with eulerian smoothed particle hydrodynamics.Computers and Fluids 179:563-578.https://doi.org/10.1016/j.compfluid.2018.11.024
O’Connor J, Rogers BD (2021) A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU.Journal of Fluids and Structures 104:103312.https://doi.org/10.1016/j.jfluidstructs.2021.103312
Rabczuk T, Belytschko T (2004) Cracking particles:a simplified meshfree method for arbitrary evolving cracks.International Journal for Numerical Methods in Engineering 61(13):2316-2343.https://doi.org/10.1002/nme.1151
Rabczuk T, Belytschko T, Xiao S (2004) Stable particle methods based on lagrangian kernels.Computer Methods in Applied Mechanics and Engineering 193(12-14):1035-1063.https://doi.org/10.1016/j.cma.2003.12.005
Rabczuk T, Gracie R, Song JH, Belytschko T (2010) Immersed particle method for fluidstructure interaction.International Journal for Numerical Methods in Engineering 81(1):48-71.https://doi.org/10.1002/nme.2670
Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction.Computer Methods in Applied Mechanics and Engineering 198(33-36):2785-2795.https://doi.org/10.1016/j.cma.2009.04.001
Rao CP, Wan DC (2018) Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method.Journal of Hydrodynamics 30(1):70-78.https://doi.org/10.1007/s42241-018-0007-8
Salehizadeh A, Shafiei A (2019) Modeling of granular column collapses with μ(I) rheology using smoothed particle hydrodynamic method.Granular Matter 21(2):32.https://doi.org/10.1007/s10035-019-0886-6
Salehizadeh AM, Shafiei AR (2021) The impact of high-velocity sand columns against rigid and deformable structures based on the smoothed particle hydrodynamics method.Computers and Structures 246:106462.https://doi.org/10.1016/j.compstruc.2020.106462
Shao S, Lo EY (2003) Incompressible SPH method for simulating newtonian and non-newtonian flows with a free surface. Advances in Water Resources 26(7):787-800.https://doi.org/10.1016/S0309-1708(03)00030-7
Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible smoothed particle hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body-water slam and efficient wave-body interaction.Computer Methods in Applied Mechanics and Engineering 265:163-173.https://doi.org/10.1016/j.cma.2013.05.017
Sun P, Le Touzé D, Zhang AM (2019) Study of a complex fluidstructure dam-breaking benchmark problem using a multi-phase SPH method with APR.Engineering Analysis with Boundary Elements 104:240-258.https://doi.org/10.1016/j.enganabound.2019.03.033
Sun PN, Le Touzé D, Oger G, Zhang AM (2021) An accurate FSISPH modeling of challenging fluid-structure interaction problems in two and three dimensions.Ocean Engineering 221:108552.https://doi.org/10.1016/j.oceaneng.2020.108552
Swegle J, Hicks D, Attaway S (1995) Smoothed particle hydrodynamics stability analysis.Journal of Computational Physics 116(1):123-134.https://doi.org/10.1006/jcph.1995.1010.
Tsuruta N, Khayyer A, Gotoh H (2013) A short note on dynamic stabilization of moving particle semi-implicit method.Computers and Fluids 82:158-164.https://doi.org/10.1016/j.compfluid.2013.05.001.
Walhorn E, Kolke A, Hubner B, Dinkler D (2005) Fluid-structure coupling within a monolithic model involving free surface flows.Computers and Structures 83(25-26):2100-2111.https://doi.org/10.1016/j.compstruc.2005.03.010.
Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach.Journal of Computational Physics 228(18):6703-6725.https://doi.org/10.1016/j.jcp.2009.05.032.
Xu Y, Yu C, Liu F, Liu Q (2019) A coupled NMM-SPH method for fluid-structure interaction problems.Applied Mathematical Modelling 76:466-478.https://doi.org/10.1016/j.apm.2019.06.020
Zhan L, Peng C, Zhang B, Wu W (2019) A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluidstructure interaction.Journal of Fluids and Structures 86:329-353.https://doi.org/10.1016/j.jfluidstructs.2019.02.002
Zhang C, Rezavand M, Zhu Y, Yu Y, Wu D, Zhang W, Wang J, Hu X (2021a)SPHinXsys:anopen-sourcemulti-physicsandmultiresolution library based on smoothed particle hydrodynamics.Computer Physics Communications 267:108066.https://doi.org/10.1016/j.cpc.2021.108066
Zhang Z, Khalid M, Long T, Liu M, Shu C (2021b) Improved element-particle coupling strategy with δ -SPH and particle shifting for modeling sloshing with rigid or deformable structures.Applied Ocean Research 114:102774.https://doi.org/10.1016/j.apor.2021.102774
Zheng X, Shao S, Khayyer A, Duan W, Ma Q, Liao K (2017) Corrected first-order derivative ISPH in water wave simulations.Coastal Engineering Journal 59(1):1750010.https://doi.org/10.1142/S0578563417500103

Memo

Memo:
Received date: 2021-11-07;Accepted date: 2022-02-09。
Corresponding author:A. R. Shafiei,E-mail:arshafiei@yazd.ac.ir
Last Update: 2022-04-22