|Table of Contents|

 Nahid Nadimi,Reza Javidan,Kamran Layeghi.An Efficient Acoustic Scattering Model Based on Target Surface Statistical Descriptors for Synthetic Aperture Sonar Systems[J].Journal of Marine Science and Application,2020,(3):494-507.[doi:10.1007/s11804-020-00163-1]
Click and Copy

An Efficient Acoustic Scattering Model Based on Target Surface Statistical Descriptors for Synthetic Aperture Sonar Systems


An Efficient Acoustic Scattering Model Based on Target Surface Statistical Descriptors for Synthetic Aperture Sonar Systems
Nahid Nadimi1 Reza Javidan2 Kamran Layeghi1
Nahid Nadimi1 Reza Javidan2 Kamran Layeghi1
1 Computer and Electrical Engineering Department, Islamic Azad University North Tehran Branch, Tehran 1651153311, Iran;
2 Computer Engineering and IT Department, Shiraz University of Technology, Shiraz 7155713876, Iran
UnderwateracousticscatteringSyntheticaperturesonar(SAS)TextureLocalbinarypattern(LBP)Targetstrength (TS)Discretization method
Acoustic scattering as the perturbation of an incident acoustic field from an arbitrary object is a critical part of the targetrecognition process in synthetic aperture sonar (SAS) systems. The complexity of scattering models strongly depends on the size and structure of the scattered surface. In accurate scattering models including numerical models, the computational cost significantly increases with the object complexity. In this paper, an efficient model is proposed to calculate the acoustic scattering from underwater objects with less computational cost and time compared with numerical models, especially in 3D space. The proposed model, called texture element method (TEM), uses statistical and structural information of the target surface texture by employing non-uniform elements described with local binary pattern (LBP) descriptors by solving the Helmholtz integral equation. The proposed model is compared with two other well-known models, one numerical and other analytical, and the results show excellent agreement between them while the proposed model requires fewer elements. This demonstrates the ability of the proposed model to work with arbitrary targets in different SAS systems with better computational time and cost, enabling the proposed model to be applied in real environment.


BfN (2019)[Online] Availableat:https://www.bfn.de/themen/meeresnaturschutz/belastungen-im-meer/pipelines. Accessed 15 June 2019
Bonomo A, Isakson M, Chotiros N (2015) A comparison of finite element and analytic models of acoustic scattering from rough poroelastic interfaces. J Acoust Soc Am 137(4):EL235-EL240. https://doi.org/10.1121/1.4914947
Chai Y, Li W, Gong Z, Li T (2016) Hybrid smoothed finite element method for two-dimensional underwater acoustic scattering problems. Ocean Eng 116:129-141. https://doi.org/10.1016/j.oceaneng.2016.02.034
Chandler-Wilde S, Langdon S (2007) Boundary element methods for acoustics. Lecture notes, University of Reading, Department of Mathematics.
Copley L (1967) Integral equation method for radiation from vibrating bodies. J Acoust Soc Am 41(4A):807-816. https://doi.org/10.1121/1.1910410
Dashen R, Henyey F, Wurmser D (1990) Calculations of acoustic scattering from the ocean surface. J Acoust Soc Am 88(1):310-323. https://doi.org/10.1121/1.399953
Dutt A (2015) Effect of mesh size on finite element analysis of beam. Int J Mech Eng 2(12):8-10. https://doi.org/10.14445/23488360/IJME-V2I12P102
Faran JJ Jr (1951) Sound scattering by solid cylinders and spheres. J Acoust Soc Am 23(4):405-418. https://doi.org/10.1121/1.1906780
Fischell E, Schmidt H (2017) Multistatic acoustic characterization of seabed targets. J Acoust Soc Am 142(3):1587-1596. https://doi.org/10.1121/1.5002887
Flax L, Dragonette L, Überall H (1978) Theory of elastic resonance excitation by sound scattering. J Acoust Soc Am 63(3):723-731. https://doi.org/10.1121/1.381780
Galusha A, Galusha G, Keller J, Zare A (2018) A fast target detection algorithm for underwater synthetic aperture sonar imagery. In Detection and Sensing of Mines. Int Soc Opt Photon:10628-106280Z. https://doi.org/10.1117/12.2304976
Gaunaurd G (1985) Sonar cross sections of bodies partially insonified by finite sound beams. IEEE J Ocean Eng 10(3):213-230. https://doi.org/10.1109/JOE.1985.1145097
Hansen R, Kolev N (2011) Introduction to synthetic aperture sonar. INTECH Open Access. Publisher, pp 1-25. https://doi.org/10.5772/23122
Hayes M, Gough P (2009) Synthetic aperture sonar:a review of current status. IEEE J Ocean Eng 34(3):207-224. https://doi.org/10.1109/JOE.2009.2020853
Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis:a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(6):765-781. https://doi.org/10.1109/TSMCC.2011.2118750
Hunt J, Knittel M, Nichols C, Barach D (1975) Finite-element approach to acoustic scattering from elastic structures. J Acoust Soc Am 57(2):287-299. https://doi.org/10.1121/1.380459
Ihlenburg F (2006) Finite element analysis of acoustic scattering, vol 132. Springer Science & Business Media
Ju Y, Li J, Pan Y, Xu H (2018) Acoustic scattering from underwater target for low frequency based on finite element method. In 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC) IEEE:724-727. https://doi.org/10.1109/SDPC.2018.8665014
Kargl S, España A, Williams K, Kennedy J, Lopes J (2014) Scattering from objects at a water-sediment interface:experiment, high-speed and high-fidelity models, and physical insight. IEEE J Ocean Eng 40(3):632-642. https://doi.org/10.1109/JOE.2014.2356934
Karimi M, Croaker P, Kessissoglou N (2016) Boundary element solution for periodic acoustic problems. J Sound Vib 360:129-139. https://doi.org/10.1016/j.jsv.2015.09.022
Li X, Xu T, Chen B (2018) Atomic decomposition of geometric acoustic scattering from underwater target. Appl Acoust 140:205-213. https://doi.org/10.1016/j.apacoust.2018.05.028
Liu Y, Glass G (2013) Effects of mesh density on finite element analysis. No. 2013-01-1375, SAE Technical Paper. https://doi.org/10.4271/2013-01-1375
Liu L, Lao S, Fieguth P, Guo Y, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368-1381. https://doi.org/10.1109/TIP.2016.2522378
Marine technology news (2019)[Online] Availableat:https://www.marinetechnologynews.com/news/kraken-sonar-begins-trading-509634. Accessed 15 June 2019
Nabelek T, Keller J, Galusha A, Zare A, (2018) Fractal analysis of seafloor textures for target detection in synthetic aperture sonar imagery. In Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXIII. International Society for Optics and Photonics.10628(1062810):16 https://doi.org/10.1117/12.2305023
Nennig B, Perrey-Debain E, Chazot J (2011) The method of fundamental solutions for acoustic wave scattering by a single and a periodic array of poroelastic scatterers. Eng Anal Bound Elem 35(8):1019-1028. https://doi.org/10.1016/j.enganabound.2011.03.007
Nolte B, Ehrlich J, Hofmann HG, Schäfer I, Schäfke A, Stoltenberg A, Burgschweiger R (2015) Numerical methods in underwater acoustics-sound propagation and backscattering. Hydroacoustics 18:127-140
Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971-987. https://doi.org/10.1109/TPAMI.2002.1017623
Okumura T, Masuya T, Takao Y, Sawada K (2003) Acoustic scattering by an arbitrarily shaped body:An application of the boundary-element method. ICES J Mar Sci 60(3):563-570. https://doi.org/10.1016/S1054-3139(03)00060-2
Pierce A (1989) Acoustics:an introduction to its physical principles and applications. Acoustical Society of America, New York, 1989. Chap 10:534
Pignier N, O’Reilly C, Boij S (2015) A Kirchhoff approximation-based numerical method to compute multiple acoustic scattering of a moving source. Appl Acoust 96:108-117. https://doi.org/10.1016/j.apacoust.2015.03.016
Qin L, Huang H, Wang P, Zhang P, Wang Y, Liu J (2018) The 3D imaging for underwater objects using SAS processing based on sparse planar array. In 2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). IEEE,1-6. https://doi.org/10.1109/OCEANSKOBE.2018.8559428
Richard A, Grande E, Brunskog J, Jeong C (2018) Characterization of acoustic scattering from objects via near-field measurements. European Acoustics Association:2195-2202
Schenck H (1968) Improved integral formulation for acoustic radiation problems. J Acoust Soc Am 44(1):41-58. https://doi.org/10.1121/1.1911085
Song F, Li W, Wang M (2017) Study on acoustic target strength characteristics of underwater composite rudder. Vibroengineering Procedia 16:87-90. https://doi.org/10.21595/vp.2017.19376
Tesfaye G, Abiva J, Roberts R (2019) Automated change detection:applications for synthetic aperture sonar and future capabilities. IEEE Syst Man Cybern Mag 5(3):60-C3. https://doi.org/10.1109/MSMC.2019.2913168
Waterman P (1969) New formulation of acoustic scattering. J Acoust Soc Am 45(6):1417-1429. https://doi.org/10.1121/1.1911619
Wu TW (2000) Boundary element acoustics:fundamentals and computer codes. J Acoust Soc Am 111(4). https://doi.org/10.1121/1.1456929
Yang Y, Li X (2016) Blind source extraction based on time-frequency characteristics for underwater object acoustic scattering. Acta Phys Sin 65(16):164301. https://doi.org/10.7498/aps.65.164301
Zampolli M, Tesei A, Canepa G, Godin O (2008) Computing the far field scattered or radiated by objects inside layered fluid media using approximate Green’s functions. J Acoust Soc Am 123(6):4051-4058. https://doi.org/10.1121/1.2902139
Zampolli M, Espana AL, Williams KL, Kargl SG, Thorsos EI, Lopes JL, Kennedy JL, Marston PL (2012) Low-to mid-frequency scattering from elastic objects on a sand sea floor simulation of frequency and aspect dependent structural echoes. J Comput Acoust 20(2):1240007. https://doi.org/10.1142/S0218396X12400073
Zhang J, Chen PM, Chen GB, Fang LC, Tang Y (2014) Acoustic target strength measurement of banded grouper (Epinephelus awoara (Temming and Schlegel, 1842)) and threadsial filefish (Stephanolepis cirrhifer (Temming & Schlegel, 1850)) in the South China Sea. J Appl Ichthyol 29(6):63. https://doi.org/10.1111/jai.12361
Zhang W, Zhou T, Peng D, Shen J (2017) Underwater pipeline leakage detection via multibeam sonar imagery. J Acoust Soc Am 141(5):3917-3917. https://doi.org/10.1121/1.4988849


Received date:2019-08-22;Accepted date:2020-05-01。
Corresponding author:Reza Javidan,javidan@sutech.ac.ir
Last Update: 2020-11-21