|Table of Contents|

Citation:
 Jø,rgen Dokken,John Grue,et al.Wave Analysis of Porous Geometry with Linear Resistance Law[J].Journal of Marine Science and Application,2017,(4):480-489.[doi:10.1007/s11804-017-1438-2]
Click and Copy

Wave Analysis of Porous Geometry with Linear Resistance Law

Info

Title:
Wave Analysis of Porous Geometry with Linear Resistance Law
Author(s):
Jørgen Dokken John Grue Lars Petter Karstensen
Affilations:
Author(s):
Jørgen Dokken John Grue Lars Petter Karstensen
Mechanics Division, Department of Mathematics, University of Oslo, Oslo 0316, Norway
Keywords:
wave analysisfish cagesmean drift forcewave exciting forceadded massdamping
分类号:
-
DOI:
10.1007/s11804-017-1438-2
Abstract:
The wave diffraction-radiation problem of a porous geometry of arbitrary shape located in the free surface of a fluid is formulated by a set of integral equations,assuming a linear resistance law at the geometry. The linear forces, the energy relation and the mean horizontal drift force are evaluated for non-porous and porous geometries. A geometry of large porosity has an almost vanishing added mass. The exciting forces are a factor of 5-20 smaller compared to a solid geometry. In the long wave regime, the porous geometry significantly enhances both the damping and the mean drift force, where the latter grows linearly with the wavenumber. The calculated mean drift force on a porous hemisphere and a vertical truncated cylinder, relevant to the construction of fish cages, is compared to available published results.

References:

An S, Faltinsen OM, 2012. Linear free-surface effects on a horizontally submerged and perforated 2D thin plate in finite and infinite water depths. Appl. Ocean Res., 37, 220-234.
DOI:https://doi.org/10.1016/j.apor.2012.04.006
Behera H, Koley S, Sahoo T, 2015. Wave transmission by partial porous structures in two-layer fluid. Engng. An. with Bound.Elements, 58, 58-78.
DOI:https://doi.org/10.1016/j.enganabound.2015.03.010
Chwang AT, 1983. A porous-wavemaker theory. J. Fluid Mech., 132, 395-406.
DOI:https://doi.org/10.1017/S0022112083001676
Chwang AT, Chan AT, 1998. Interaction between porous media and wave motion. Annu. Rev. Fluid Mech., 30, 53-84.
DOI:https://doi.org/10.1146/annurev.fluid.30.1.53
Chwang AT, Wu J, 1994. Wave scattering by submerged porous disk.J. Eng. Mech., 120, 2575-2587.
DOI:https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2575)
Faltinsen OM, 1990. Wave loads on offshore structures. Annu. Rev.Fluid Mech., 22, 35-56.
Finne S, Grue J, 1997. On the complete radiation-diffraction problem and wave-drift damping marine bodies in the yaw mode of motion. J. Fluid Mech., 357, 289-320.
DOI:https://doi.org/10.1017/S0022112097008240
Grue J, Biberg D, 1993. Wave forces on marine structures with small speed in water of restricted depth. Appl. Ocean Res., 15, 121-135.
DOI:https://doi.org/10.1016/0141-1187(93)90036-W
Grue J, Palm E, 1993. The mean drift force and yaw moment on marine structures in waves and current. J. Fluid Mech., 250, 121-142.
DOI:https://doi.org/10.1017/S0022112093001405
Grue J, Palm E, 1996. Wave drift damping of floating bodies in slow yaw-motion. J. Fluid Mech., 319, 323-352.
DOI:https://doi.org/10.1017/S0022112096007367
Huang Z, Li Y, Liu Y, 2011. Hydraulic performance and wave loadings of perforated/slotted coastal structures:A review.Ocean Engng., 38, 10311053.
DOI:https://doi.org/10.1016/j.oceaneng.2011.03.002
Jarlan GE, 1961. A perforated vertical wall break-water. Dock and Harb. Auth. XⅡ, 486, 394-398.
Koley S, Kaligatla RB, Sahoo T, 2015a. Oblique wave scattering by a vertical flexible porous plate. Stud. Appl. Math., 135, 134.
DOI:10.1111/sapm.12076
Koley S, Behera H, Sahoo T, 2015b. Oblique wave trapping by porous structures near a wall. J. Engng. Mech., 141(3), 1-15.
DOI:https://doi.org/10.1061/(ASCE)EM.1943-7889.0000843
Laws EM, Livsey JL, 1978. Flow through screens. Annu. Rev. Fluid Mech., 10, 247-266.
Liu Y, Li HJ, 2013. Wave reflection and transmission by porous breakwaters:a new analytical solution. Coast. Engng., 78, 4652.
DOI:https://doi.org/10.1016/j.coastaleng.2013.04.003
Molin B, 1994. Second-order hydrodynamics applied to moored structures-A state-of-the-art survey. Ship Technology Res., 41, 59-84.
Molin B, 2001. On the added mass and damping of periodic arrays or partially porous disks. J. Fluids and Struct., 15, 275-290.
DOI:10.1006/jfs.2000.0338
Molin B, 2011. Hydrodynamic modeling of perforated structures.Appl. Ocean Res., 33, 1-11.
DOI:https://doi.org/10.1016/j.apor.2010.11.003
Molin B, Remy F, 2013. Experimental and numerical study of the sloshing motion in a rectangular tank with a perforated screen. J.Fluids and Struct., 43, 463-480.
DOI:http://dx.doi.org/10.1016/j.jfluidstructs.2013.10.00
Newman JN, 1977. Marine hydrodynamics. MIT Press, 402.
Newman JN, 2014. Cloaking a circular cylinder in water waves. Eur.J. Mech. B/Fluids, 47, 145-150.
DOI:http://dx.doi.org/10.1016/j.euromechflu.2013.11.005
Nossen J, Grue J, Palm E, 1991. Wave forces on three-dimensional floating bodies with small forward speed. J. Fluid Mech., 227, 135-160.
DOI:https://doi.org/10.1017/S002211209100006X
Taylor GI, 1956. Fluid flow in regions bounded by porous surfaces.Proc. Roy Soc. Lond. A, 234 (1199), 456-475.
DOI:10.1098/rspa.1956.0050
Willams AN, Li W, Wang K-H, 2000. Water wave interaction with a floating porous cylinder. Ocean Engng., 27, 1-28.
DOI:https://doi.org/10.1016/S0029-8018(98)00078-X
Yu X, 1995. Diffraction of water waves by porous breakwaters. J.Waterway, Port, Coastal, Ocean Engng., 121, 275282.
DOI:https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(275)
Zhao F, Kinoshita T, Bao W, Wan R, Liang Z, Huang L, 2011a.Hydrodynamics identities and wave-drift force of a porous body.Appl. Ocean Res., 33, 169-177.
DOI:https://doi.org/10.1016/j.apor.2011.04.001
Zhao F, Bao W, Kinoshita T, Itakura H, 2011b. Theoretical and experimental study of a porous cylinder floating in waves. J.Offsh. Mech. Arctc. Engng., 133/011301-1-10.
DOI:10.1115/1.4001435

Memo

Memo:
Received date:2016-12-28;Accepted date:2017-05-06。
Corresponding author:John Grue,Email:johng@math.uio.no
Last Update: 2017-12-02